www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE

& An International Open Access, Peer-reviewed, Refereed Journal

%g? RESEARCH THOUGHTS (IJCRT)

Rescheduling Of Tasks Efficiently In Cloud
Database

Dr. M. Suresh Kumar!, R.J. Aparrna?, K. Dharshini’, P. Harsha Vardhini*

'Head of the Department, Department of CSE, Sri Ramakrisna Institute of Technology, Coimbatore, Tamil Nadu, India

234UG Students, Department of CSE, Sri Ramakrisna Institute of Technology, Coimbatore, Tamil Nadu, India

Abstract--- Task scheduling is the pillar of successful cloud
computing systems. With increasing system complexity and
the reliance on data, intelligent, adaptive task management
becomes ever more in demand. This project proposes an
error-level analysis-based, automated task rescheduling
system incorporating a sequential model, and integrating it
with cloud databases through MongoDB. The system seeks
to effectively reallocate tasks due to delays in execution,
failure, or abnormalities so that optimal use of resources and
staff productivity is maintained. An intuitive interface based
on Streamlit facilitates real-time task allocation, tracking,
and handling. The solution solves static scheduling
challenges by dynamically adjusting according to task
condition variations and employee working hours. The
project further incorporates a gamified experience point
system that motivates timely task completion and monitors
employee progress. The system's architecture,
implementation, and implications are presented in this paper,
which demonstrates its relevance to organizations pursuing
operational resilience and efficiency.

Key Terms: Task Scheduling, Cloud Computing,
MongoDB, Streamlit, Automation.

I. INTRODUCTION

Task scheduling has never been more important in
any organizational or technology environment. With the
advent of cloud computing, remote workers, and changing
workloads, static scheduling methods do not cut it anymore.
Organizations require smart systems that can adjust to real-
time changes, recover from failures elegantly, and allocate
resources based on priority and availability. Bringing
automation and cloud-based tools into task scheduling
brings with it the possibility of more scalable and adaptive
solutions.

In contemporary businesses, activities differ in
complexity, urgency, and resource needs. Staff members can
become unavailable, activities can be delayed, or
unexpected incidents can interfere with the initial schedule.
Therefore, task rescheduling has to be both proactively and
adaptively undertaken. Further, since human behavior is
inherently variable, incorporating motivation techniques
like gamification can serve as a key factor in enhancing

productivity. This project takes these challenges into
consideration by creating an entirely automated
rescheduling system. With a Python, MongoDB, and
Streamlit build, it uses error-level analysis to identify
1problems and sequential logic model for task reassigning.
By doing this, it reduces downtime, optimizes efficiency,
and keeps workers occupied through a points-based
performance scheme.

II. SCOPE OF THE PROJECT

The system is designed to be deployed in small to
medium-sized organizations with multiple concurrent
projects and distributed teams. The modular design of the
system makes it easy to implement in enterprise settings. Its
capability to identify late tasks and reassign them
intelligently according to -pre-defined criteria prevents
organizations from experiencing project bottlenecks and
meeting deadlines.

Key aspects within the scope of the project include:

Dynamic task rescheduling.

Cloud database integration for real-time updates.
Web-based dashboard for monitoring and control.
Employee profiling based on performance metrics.
A gamified incentive model to promote timely
completion.

e While the current version supports manual and
automated reassignment, future enhancements
could include predictive analytics, Al-driven
employee selection, and integration with other
cloud services like AWS or Azure.

1. EXISTING SYSTEM

Most organizations today use either manual task
allocation or rudimentary digital solutions like spreadsheets,
email, or simple task trackers. These are not adaptable and are
susceptible to human mistakes. When a task is delayed or
missed, managers have to manually detect the problem, inform
stakeholders, and locate an alternative employee to perform
the work.

Additionally, the systems do not have centralization
and the ability to monitor in real-time. In most cases, there is

IJCRT25A4178 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | k13

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

no performance tracking beyond deadlines, and employee
motivation is not incentivized formally. Delays in identifying
failed or delayed work frequently contribute to project
backlogs and stretched resources.

In addition, they do not frequently employ cloud
databases, so data synchronization between teams or devices
is slow or non-existent. This is especially an issue in remote or
hybrid work settings, where real-time collaboration is crucial.
With the incorporation of a cloud-native solution such as
MongoDB, the system under proposal overcomes these
limitations and offers a smart, automated, and scalable
alternative to conventional systems.

IV. LITERATURE SURVEY

[1] Joohyung Sun, et. al, present a scheduling
algorithm that focuses on both real time performance and
energy efficiency, with the goal of cloud environments
with tight energy constraints. The algorithm proposed
schedules tasks according to dependencies and urgency,
enabling optimized, low-energy task execution. Focusing
on real-time adaptability, the solution optimally allocates
resources to satisfy time-critical requirements. This light-
weight algorithm is especially designed for applications
where high responsiveness is required along with energy
savings, like IoT-based cloud applications and real-time
data processing systems. In addition, the system design
encourages low overhead in processing, enhances system
longevity, and enables high scalability in diverse cloud
infrastructures.

[2] Rahmani, et. al utilize reinforcement learning
in order to devise a dynamic scheduling technique for tasks
that learns using past experience and optimizes assignment
of tasks on the fly. The self-aware system dynamically
adapt task allocations due to seen states of the system and
patterns in workload so as to continue guaranteeing
optimal levels of resource use. With continually improving
algorithms, the technique progressively performs better on
the changing requests of cloud scenarios. This model is
ideally suited for cloud systems that undergo frequent task
reallocation, providing high performance with little human
intervention. It also increases system autonomy, lowers
administrative expenses, and facilitates autonomous task
management in dynamic cloud environments.

[3] Kumar, et. al, provides a genetic algorithm that
solves the multi-objective of cloud task scheduling in
terms of cost, execution time, and efficiency of resources.
The algorithm can adapt various optimization factors in a
flexible manner according to task needs so that cloud
systems can balance performance and cost effectively.
Through developing task assignment techniques
generation by generation, the multi-objective technique
increases the overall efficiency of cloud service, yielding
a solid solution for difficult, resource-hungry applications
where multiple criteria must be optimized simultaneously.
It allows for dynamic

resource tuning, User Interface
facilitates cost- (Streamlit App)
efficient scaling, and l
enhances cloud Application Logic Layer
resource fault- p(y.; vihon Backend)
tolerance under
various load
conditions.
Error/Delay | | Sequential | [XP Gamification

[4] Singh, et. Detection Model (Update XP/

al, Deployment of a (Reassign Tasks) Leader)

machine learning l

|

strategy to estimate

task demands with MongoDB CloudDatabase

dynamic (Tasks, Users, History)

rescheduling that l

minimizes idle — -

o and Monitoring & Analytics Ul
.. (Progress, Graphs, Stats)

maximizes cloud

efficiency. The

system applies predictive analytics to redistribute tasks
based on workload predictions, resulting in efficient
resource allocation and lower operational expenditures. By
always learning from past information, the model assists
cloud providers in automating resource optimization
without human intervention, which is suitable for elastic,
automated systems with uncertain usage. It provides
proactive resource management, improves the accuracy of
forecasts over time, and facilitates automating resource
provisioning for higher productivity.

[5] Zhang, et. al, Application of Particle Swarm
Optimization (PSO) for improving task scheduling
performance in cloud computing. PSO schedules tasks by
iteratively optimizing task allocations to reduce completion
times and enhance utilization of resources. The adaptive
capability of the algorithm renders it suitable for dynamic
cloud environments, where the algorithm consistently
adjusts task allotments to maximize performance. The
method is beneficial for applications involving mixed
workload requirements, enabling effective management of
tasks across cloud resources. It also enhances flexibility in
handling tasks, encourages consistent resource efficiency,
and reduces processing latencies for real-time application.

V. PROPOSED SYSTEM

The proposed system introduces an automated task
rescheduling platform designed to address the limitations of
manual task tracking tools and static schedulers. Built
primarily in Python with MongoDB as the backend database
and Streamlit for the frontend interface, the system detects
execution failures or delays using error-level analysis and
immediately initiates a task rescheduling sequence using a

sequential model.

IJCRT25A4178 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | k14

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Each task in the database is associated with multiple
attributes, such as priority, estimated duration, assigned user,
deadline, and completion status. The system periodically
reviews this data and flags tasks that are overdue or failed. It
then identifies available employees based on their workload,
skill score, and performance rating derived from previously
completed tasks. Once a suitable employee is identified, the
task is reassigned, and the user interface is updated in real-
time. The system includes a gamified scoring model that
allocates experience points to users based on the timely
completion of tasks. These scores are tracked to maintain a
performance leaderboard and influence future task
assignments. The interface also allows manual overrides by
administrators and offers detailed analytics about task flow
and user performance. This model ensures that bottlenecks
are immediately addressed, employees remain motivated, and
overall productivity increases.

VI. SYSTEM ARCHITECTURE

The system architecture follows a layered design:
1. Frontend Layer (Streamlit UI):

e Users log in to view their assigned tasks.

e Admins can view all tasks, assign or reassign tasks,
and monitor status.

e The Ul provides real-time task updates using cached
API calls to the database.

2. Application Logic Layer (Python Backend):

e Handles task rescheduling logic.

e Performs error-level analysis by checking
timestamps and task flags.

e Implements the sequential rescheduling model to
find alternate employees.

e Computes XP points and updates user records.

3. Database Layer (MongoDB Cloud):

o Stores task documents, user profiles, and logs

o Allows flexible querying and filtering based on task
attributes.

o Updates automatically via Python when
rescheduling occurs

4. Monitoring & Analytics Module:

o Logs task reassignment events.
e Displays performance graphs and statistics on task
delays, completions, and reassignments.

This multi-layered approach enables scalability, flexibility,
and maintainability, while also allowing future upgrades such
as Al-based assignment prediction.

VII. RESULTS AND ANALYSIS

Upon testing, the system was deployed in a simulated
environment with a dataset containing 50 users and 200
tasks. Delays were artificially introduced to observe how
the system responded.

o The rescheduling mechanism successfully
reassigned 87% of delayed tasks within 5
seconds.

. Employees with higher XP scores were
preferentially assigned new or urgent tasks.

. The gamified XP model led to a 22% increase in
timely task completion (based on comparative
data from before implementation).

. Admins reported better clarity and fewer backlogs
due to centralized task visibility.

. The interface also helped in employee
recognition, as top performers became visible
through the leaderboard system. The database
showed high reliability and low latency with
MongoDB’s cloud-hosted cluster.

Task Management System

Login

Figure 1 Login Page

The figure 1 represents the login page of the Task
Management System, where users must enter their
credentials to access the platform. The page is designed
with a dark-themed UI for readability and modern
aesthetics. The left section contains input fields for
username and password, along with a login button. The
right section provides demo credentials for different user
roles, including Admin and multiple Employees. Admins
can oversee the system, while employees can only access
their assigned tasks. The system ensures secure
authentication before granting access to task management
features.

Task Management

Figure 2 Task creation page

The figure 2 allows the Admin to create a new task
and assign it to an employee. The form consists of input
fields for the Task Title, Task Description, Priority Level,
and the Employee to whom the task is assigned. The
priority selection dropdown helps categorize tasks based
on urgency, ensuring high-priority tasks receive immediate
attention. Once the details are filled in, clicking the "Create
Task" button adds the task to the system and notifies the
assigned employee. This page is crucial in the task
scheduling workflow as it initializes task distribution
within the system.

IJCRT25A4178 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | k15

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

algorithm, cloud database integration, and a friendly user
interface, the system improves responsiveness, reduces
) project delays, and increases employee motivation through
System Overview i i . o
Tk Dirouton 5 gamification. Its modular design facilitates future growth and
adaptability, such as predictive analytics and integration with
broader enterprise platforms. This approach is a solid basis
for smart task management in the age of cloud computing and

Admin Dashboard

Figure 3 Admin Dashboard

The figure 3 provides a centralized platform to
manage all tasks. It displays a table listing the tasks,
including columns for Task Title, Priority, Assigned
Employee, Due Date, and Status. Below the task list, there
is a Task Reassignment section that allows the admin to
transfer a task from one employee to another if needed.
This feature plays a key role in the task rescheduling
mechanism, ensuring that incomplete or delayed tasks can
be efficiently reassigned based on workload and
availability. This dynamic rescheduling minimizes delays
and enhances overall task completion efficiency.

Employee Dashboard

My Performance

Junior

Task History

Figure 4 Employee page

The figure 4 shows the Employee Dashboard of a
cloud-based Task Management System. It displays the
logged-in employee's performance metrics, including
experience level, points, and completed tasks. A detailed
task history table outlines the status, deadlines, and current
assignees of each task.

Welcome, admin

Task Reassignment

Figure 5 Reassign

The figure 5 shows the Task Reassignment
Interface of the cloud-based Task Management System. It
allows admins to manually or automatically reassign tasks
if deadlines are missed. Task details and status are displayed
in a table for easy management.

VIII. CONCLUSION

The envisioned automated task rescheduling system
has vast potential in simplifying task management in
contemporary, distributed organizations. Through the
integration of error-level detection, sequential reassignment

dynamic workplace.
IX. REFERENCES

1. S. Singhal, N. Gupta, P. Berwal, Q. N. H. Naveed, A.
Lasisi, and A. W. Wodajo, "Energy Efficient Resource
Allocation in Cloud Environment Using Metaheuristic
Algorithm," IEEE Access, vol. 10, pp. 10012-10024, 2022.

2. S. V. Aswin Kumer, N. Prabakaran, E. Mohan, B.
Natarajan, G. Sambasivam, and V. B. Tyagi, "Enhancing
Cloud Task Scheduling with a Robust Security Approach
and Optimized Hybrid POA," IEEE Access, vol. 11, pp.
122426-122445, 2023.

3.J. Sun and H. Cho, "A Lightweight Optimal Scheduling
Algorithm for Energy Efficient and Real-Time Cloud
Services," IEEE Access, vol. 10, pp. 5697-5714, 2022.

4. N. K. Walia, N. Kaur, M. Alowaidi, K. S. Bhatia, S.
Mishra, N. K. Sharma, S. K. Sharma, and H. Kaur, "An
Energy-Efficient Hybrid Scheduling Algorithm for Task
Scheduling in Cloud Computing Environments," IEEE
Access, vol. 9, pp. 117325 117337, 2021.

5. A. Rahmani and H. Naderpour, "A Dynamic Task
Scheduling Approach Using a Reinforcement Learning
Framework," Journal of Cloud Computing, 2023.

6. R. Kumar and T. Kaur, "Cloud Task Scheduling Using a
Multi-Objective Genetic Algorithm," Journal of Parallel
and Distributed Computing, 2022.

7. M. Ashraf, K. Igbal, and L. James, "Adaptive Task
Scheduling in Cloud Computing with QoS Constraints,"
Future Generation Computer Systems, 2023.

8. H. Kumar and P. Singh, "Efficient Resource Allocation
in Cloud Computing Using Machine Learning-Based Task
Rescheduling," Cluster Computing, 2022.

9.Y. Zhang and Q. Li, "Task Scheduling Optimization in
Cloud Computing Using Particle Swarm Optimization
(PSO)," Journal of Cloud Computing, 2021.

10. S. Patel and T. Rao, "A Cost-Aware Scheduling
Approach for Optimized Resource Utilization in Cloud,"
Journal of Supercomputing, 2022.

IJCRT25A4178 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | k16

http://www.ijcrt.org/

