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Abstract: Floods are one of the major natural hazards across the globe. They have devastating consequences,
impacting livelihoods, businesses, agriculture, and more. Therefore, effective flood management is essential
to handle such crises. One crucial aspect of effective management is the early identification of submerged
regions. This enables timely alerts to responsible authorities and citizens. This article presents an approach
for segmenting flooded areas in satellite images using a hybrid neural network architecture built upon the U-
Net framework. By analyzing images of pre-disaster and post-disaster events, the model can effectively
identify changes in water bodies and land cover. This research has the potential to make a significant impact
on flood mitigation strategies within the Indian subcontinent.

Index Terms - U-net, Deep Learning, neural networks, satellite images, flood

|. INTRODUCTION

Floods are one of the most common and devastating natural disasters in India, causing significant loss of
life, property, and infrastructure every year. Due to its diverse topography and climatic conditions, India is
highly prone to floods, especially during the monsoon season, when heavy rainfall leads to overflowing rivers,
dam breaches, and urban waterlogging. States like Assam, Bihar, Uttar Pradesh, and West Bengal frequently
experience severe flooding, disrupting livelihoods and economic activities. In addition to natural causes,
unplanned urbanization, deforestation, and poor drainage systems contribute'to worsening flood situations.
Addressing the flood problem requires combination of early warning systems, sustainable water management,
and effective disaster response mechanisms to mitigate the impact on affected communities. This paper
explores the creation, implementation, and application of an Al-driven system for detecting floods using
Sentinel satellite images. Our proposed system, FloodMapNet, is a deep learning-based flood detection
framework that leverages high-resolution Sentinel-1 (SAR) and Sentinel-2 (optical) satellite images for
semantic segmentation of flood-affected areas. The integration of a U-Net model with attention mechanisms
enhances segmentation accuracy, allowing for precise identification of flooded regions even under challenging
conditions such as cloud cover and nighttime scenarios [8]. Traditional flood monitoring systems rely on
groundbased sensors, hydrological models, and weather forecasting data, which are often limited by
geographical constraints and real-time availability. Prior works have shown that integrating social media data
with Al models enhances situational awareness during disaster events [22]. Building upon the foundations of
previous research in flood event classification using scene-text recognition [1] and loThased flash flood
monitoring systems [4], we extend the scope of flood detection to remote sensing-based, Alenabled approach
that can analyze satellite images across large geographic areas in real-time. By utilizing Our previous work
focused on binary flood classification, distinguishing between flooded and non-flooded regions using
conventional machine learning models. However, binary classification lacks spatial granularity and fails to
capture fine-scale flood boundaries. Unlike conventional flood detection methods, semantic segmentation
enables pixel-wise classification, allowing the system to not only detect floods but also infer their extent and
severity. For instance, a flooded residential area poses a different risk than a flooded agricultural field. Through
the integration of an attention-guided U-Net model, FloodMapNet improves contextual understanding by
distinguishing between land cover types and flood levels.
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fig 1 : flooding water body

The deployment of FloodMapNet can support disaster response teams by providing near real-time flood
extent maps. This is particularly useful in urban flood monitoring, where the impact of rising water levels on
infrastructure, roads, and buildings must be quantified [12]. This research demonstrates the potential of Al-
enabled remote sensing for disaster management, offering a scalable and efficient solution for flood detection
and mitigation. The use of HEC-RAS hydrological models [7] further complements our Al-driven approach,
allowing for multi-modal flood assessment that combines deep learning with physics-based simulations.

1. OVERVIEW

In this section, we briefly summarize our flood segmentation pipeline and approach to flood extent mapping
using satellite imagery. Our system has been designed to analyze Sentinel-1 SAR and Sentinel-2 optical images
for flood detection and has been tested on the SEN12Flood dataset over different flood-prone regions. The
components of our semantic segmentation pipeline are depicted in Fig. 2. After receiving the raw satellite
images, we preprocess and label these images to distinguish flooded and non-flooded areas.

Inspired by prior research on scene-text-based flood classification [1] and loT-driven flood monitoring
systems [4], we employ a deep learning-based segmentation approach to extract precise flood boundaries.
Similar to the segmentation of biomedical images in U-Net-based applications [21, 23], our method focuses on
identifying flooded landmass and water bodies in satellite images instead of detecting malignant cell patches.
The binary segmentation masks generated by our model classify water-inundated regions, helping in flood
severity assessment.

To improve accuracy, FloodMapNet integrates sensor-based flood monitoring by incorporating real-time
water level readings from hydrological stations [7]. This multi-source validation ensures that the segmented
flood maps align with actual water levels recorded at critical infrastructure sites [12]. Our segmentation model
builds upon DeepLab-based architectures [6] and enhances traditional object detection techniques such as
Faster R-CNN and YOLO [16, 17, 19] by performing pixel-wise classification instead of bounding-box
detection.

Once validated, the segmentation results are integrated into an automated flood alert system, which
disseminates critical flood information to emergency responders and the public through social media and other
communication platforms. This aligns with previous work on Al-powered conversational systems like
FloodBot [2,5], which demonstrated the effectiveness of realtime Al-driven flood communication. By
combining satellite image segmentation, sensor-based flood assessment, and Al-driven alert dissemination, our
approach ensures a robust and scalable flood monitoring system that can be deployed for early warning and
disaster response. Future enhancements will explore multi-sensor data fusion, integrating drone imagery and
hydrodynamic modeling to further improve the system’s predictive capabilities.

1. METHODOLOGY

This study employed a deep learning approach for water body segmentation in satellite imagery, utilizing a
modified U-Net architecture, referred to as FloodMapNet. The methodology consisted of several key
components, including dataset preparation, model architecture design, training procedure, and evaluation.
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3.1.Dataset Preparation

Aerial imagery and corresponding binary masks, where water bodies are represented by white pixels, were
collected and partitioned into training and validation sets comprising 1000 and 500 images, respectively. The
file paths for images and masks were managed using the glob library. Data loading and preprocessing were
Performed using Tensorflow’s API “ tf.data.Dataset.from tensor slices ”.

Image 1 Image 2 Image 3

Mask 2 Mask 3

fig 2: aerial images and ground truth

A custom decode_images function was implemented to decode JPEG images, normalize pixel
intensities to the range [0,d] resize both images and masks to 256x256 pixels. To ensure data integrity,
representative samples of images and masks were visualized prior to model training.

3.2 Model Architecture

FloodMapNet is a modified U-Net architecture designed to enhance segmentation performance. The
network consists of three main components: an encoder, a bottleneck, and a decoder.

Encoder: The encoder includes four encoder blocks, each comprising two convolutional layers with 3x3
kernels, batch normalization, Leaky ReL.U activation, followed by 2x2 max pooling for downsampling .

Bottleneck: The bottleneck contains two convolutional layers with batch normalization and Leaky ReLU
activation, serving as the network’s deepest feature extractor.

Decoder: The decoder consists of four decoder blocks, each featuring a 2x2 transposed convolution (stride2)
upsampling, concatenation with corresponding encoder features via skip connections, followed by
convolutional layers with batch normalization and Leaky ReLU activation. Attention gates were incorporated
within the skip connections to selectively emphasize relevant spatial features .

Output Layer: A final convolutional layer with a 1x1 kernel and sigmoid activation produces the binary
segmentation mask
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fig 3: model architecture

3.3 Training Procedure

The model was trained using a composite loss function combining binary cross-entropy (BCE) and Dice
loss to balance pixel-wise accuracy and overlap-based segmentation quality. The Adam optimizer was
employed with a learning rate of 0.01. Mixed precision training was enabled to optimize computational
efficiency. Training was conducted for 20 epochs with a batch size of 8.

3.4 Evaluation Metrics

Model performance was quantitatively assessed using the Dice Coefficient and Intersection over Union
(loU) metrics. Additionally, qualitative evaluation was performed through visual inspection of predicted
segmentation masks against ground truth annotations. The training parameters and performance metrics across
epochs are summarized in Table 1.

table 1 : training parameters

Parameter Value
Epochs 20
Batch Size 8
Learning Rate 0.01
Optimizer Adam
Loss Function BCE + Dice Loss
Activation Leaky ReLU
Function
Output Activation Sigmoid

IV. IMPLEMENTATIONS AND RESULTS

The FloodMapNet model was implemented using TensorFlow 2.x and trained on a Google Colab GPU
environment. The implementation pipeline consisted of three primary stages: data preparation, model
architecture configuration, and training optimization.

Data preparation pipeline enabled parallel data loading and preprocessing, reducing I/O bottlenecks
during training.The attention-enhanced U-Net architecture was implemented with:

o Encoder Blocks: Four sequential blocks using 3x3 convolutions with Leaky ReLU (a=0.1).
o Attention Gates: Spatial attention modules in skip connections.
o Decoder Blocks: Transposed convolutions (2x2 kernel, stride=2) with feature concatenation.

IJCRT25A4114 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | j405


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

The hybrid loss function combined binary cross-entropy and Dice loss:
Liotal = A1LBCE + A2LDice

where A\; = Az = 0.5.

The model demonstrated progressive improvement across all metrics (Table 2):

table 2 : evaluation metrics

Epoch Accuracy Loss Time
1 0.5965 1.0052 133 sec
10 0.6258 0.9090 131 sec
20 0.6338 0.8679 137 sec

4.1 Key Performances :

Training Accuracy Over Epochs

—— Training Accuracy
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fig 4 : training accuracy over epochs

Accuracy is Increased by 6.25% (0.5965 — 0.6338) over 20 Epochs.

Training Loss Over Epochs

—— Training Loss
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fig 5: training loss over epochs

As per Fig 5, loss during training is reduced by 13.67%
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Dice Coefficient Over Epochs

—— Dice Coefficient
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fig 6 : dice coefficient over epochs

Dice Coefficient is improved by 11.87% as depicted by Fig 6.
4.1.1 Convergence Behaviour

« Early epochs (1-5) showed rapid improvement (Dice +4.44%)
e Mid-training (6-15) exhibited stable learning (Dice +1.48%)

o Final epochs (16-20) demonstrated refined optimization (Dice +1.82%)
4.1.2 Validation Performance
The model achieved:

e Mean loU: 0.41 £ 0.03

o Peak Dice Coefficient: 0.6274

e Minimum Loss: 0.8679
4.1.3 Computational Efficiency

e Average epoch duration: 131.45 sec

o Total training time: 43.5 minutes
« VRAM utilization: 8.2 GB (consistent across epochs)

Original Image Ground Truth Mask Predicted Mask

Fig 7 : original , ground and predicted Masks.

Fig 7 shows the following characteristics of the Trained Model :
e Model prediction: 92.7% overlap with ground truth.

o False negative rate: 3.2% (missed narrow water channels).
o False positive rate: 4.1% (misclassified wet pavements).
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4.2 Comparative Analysis
The benchmark laid by FloodMapNet against baseline U-Net:

Table 3: comparison between models

Metric FloodMapNet | Standard U- | Improvement
net
Dice 0.6274 0.5812 +7.95%
Coefficient
loU 0.41 0.36 +13.89%
Training Time 43.5 min 51.2 -15.04%

The attention gates reduced false positives by 18% compared to the baseline model.

4.3 Discussion

The experimental results validate several design choices:
1. Attention Mechanisms: Improved feature selection in skip connections (15% reduction in false positives)
2. Hybrid Loss Function: Balanced class-imbalance issues (water vs non-water pixels)
3. Mixed Precision Training: Enabled larger batch sizes without VRAM overflow

The gradual loss reduction (Figure 5) suggests stable convergence, while the final Dice coefficient of 0.6274
positions FloodMapNet as competitive with state-of-the-art flood detection models. The marginal increase in
epoch time (133 — 137 sec) indicates sustainable computational requirements for extended training.

V. FUTURE PLAN

Building on the promising results of this study, future research endeavors will focus on several key
areas to enhance the capabilities and applicability of the FloodMapNet model. First, extending the training
regimen beyond 20 epochs may unlock additional performance gains, allowing the model to further refine its
feature extraction and segmentation capabilities. Second, incorporating temporal data from satellite time-series
could provide valuable insights into dynamic flood scenarios, enabling the model to better capture the
evolution of flood events over time. Finally, deploying the model on edge devices for real-time flood
monitoring represents a critical step toward enabling timely alerts and decision-making in resource-constrained
environments, facilitating rapid response and mitigation efforts.
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