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Abstract

This study investigates midpoint convex sets as a relaxation of classical convexity in linear spaces. Every convex
set is midpoint convex, but the converse need not hold. We establish foundational results: stability under
intersections, Minkowski combinations, linear images and pre-images, and translations. We also clarify when
midpoint convexity upgrades to full convexity, notably under closedness, local boundedness, or mild regularity
(e.g. measurability). Several examples and counterexamples are provided, and we correct a common
misconception: unions of midpoint convex sets are generally not midpoint convex unless the family is nested
(i.e. a chain). Short geometric figures illustrate the midpoint property, non-midpoint-convex union, and dyadic
construction that underlies many proofs. These observations are relevant to functional analysis, convex
geometry, optimisation, and the study of Jensen-type structures.

Keywords: Convex set, midpoint convex set, linear space, linear transformation, translation
Dyadic convexity Jensen convexity.

1. Introduction

Convexity plays a fundamental role in functional analysis, optimisation, and topological studies. A subset A of
a linear space L is convex if, for any two points x,y € A, the line segment joining them lies entirely in A.
That is,

Aisconvex @ ax+(1—a)y € Aforallx,y€EAand0 < a < 1.
This definition ensures that every convex combination of two points in the set remains within the set [1].

However, a weaker form of convexity can be defined by considering only the midpoint between two points
rather than all convex combinations. This leads to the concept of a midpoint convex set, which relaxes the
usual convexity condition but retains several useful geometric properties.
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Let L be a real linear space. Aset A € Lisconvexifax + (1 —a)y € Aforall x,y € Aandall « € [0,1] [1,3].
A weaker requirement is the midpoint condition, which only demands the membership of the midpoint:

Definition 1.1 Midpoint convex set
Let A set A € L be midpoint convex if x + y/2 € A whenever x,y € A [2,4].

Every convex set is midpoint convex (choose a = 1/2). The converse fails in general; nonetheless, with
closedness in a topological vector space (TVS) or with measurability/local boundedness, midpoint convexity
often implies convexity (see [1,3,5,6]). Figure 1 shows the midpoint condition.

Figure 1: Midpoint m = (x + y)/2 lies on the segment [x:y]
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Figure 1. Midpoint m =x+y/2 lies on the segment [x:y] (definition of midpoint convexity).

2. Preliminaries and Notation
For x, y € L, denote the line segment by
[x:y] ={ax+ (1 —a)y: a € [0,1]}.

For a scalar A and set ACL, let AA={lata€A} and A+B={a+b:a€A be€EB}
For x € L, the translationisx + A = {x + a: a € A} [1,4].

3. Basic Properties and Theorems
Theorem 3.1 Midpoint characterization

If A € L is midpoint convex, then

a, +a
{ ! Z:al,az EA}

Proof. Trivial containment A € {---} uses a = a + a/2. The reverse follows from the midpoint property of the
triangle.
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Proof.
Let a € A. Then clearly,

. . . +
which implies a € {% a,,a, € A}. Hence,

Ac{a1+a2

1aq,0, € A}.
2 a;, a;

Conversely, let x = a; + a,/2 for some a,,a, € A.
Since A is midpoint convex, x € A. Hence,

{al + a,

2

(a4, 0, EA}QA.

From (3.1) and (3.2), the following equality holds

Figure 2: Two lines A;, A; through the origin; union is not midpoint cor
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Figure 2. Two lines A4, A, through the origin: both midpoint convex, but the union is not

midpoint convex (midpoint of p € A;, q € A, falls outside).

Theorem 3.2 (Minkowski combination with scalars).
If A;, A, < L are midpoint convex and [;, [, € R, then
llAl + lez = {llal + lzaz: a1 € Al’ az € Az}

is midpoint convex.
Proof.
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Proof.

Let x;,x, € ;A1 + ,A,. Then

X1 = llal + l2b1 and Xy = llaz + lzbz, Whel’e aq, a; € A1 and bl,bz € Az.
Now,

X1+ X, a, +a, b; + b,
=4 (257) ru(P5)
2 I\ 2 T3

Since A; and A, are midpoint convex, a; + a,/2 € A; and by, + b,/2 € A,.
Hence, x; + x,/2 € l;A; + [, A,. Therefore, the sum is midpoint convex.

Theorem 3.3 Intersection stability
The intersection of any family of midpoint-convex sets is also midpoint-convex.

Proof.
Let {A;:i € I} be a family of midpoint convex sets in a linear space L, and define
A= ﬂAl
iel
Forany x,y € A, we have x,y € A; for each i.
Since each A; is midpoint convex, x + y/2 € A, for all i.
Hence, x + y/2 € N;gA; = A.
Therefore, A is midpoint convex.

Remark (Unions are delicate).

The union of midpoint convex sets need not be midpoint-convex, even if they intersect pairwise.
Counterexample in R?: Let A; = {(t,0):t € R} and 4, = {(t, 2t): t € R}. Both are convex (hence
midpoint convex) and intersect at (0,0). Pick p = (2,0) € A; and g = (—2,—4) € A,. Then
p+q/2=(0,—-2)¢& A, UA,. (SeeFig.2.)

Theorem 3.4 Union of a chain
The intersection of any family of midpoint-convex sets is also midpoint-convex.

Proof.
Let {A;: i € I} be a family of midpoint convex sets in a linear space L, and define
A= ﬂAl
iel
For any x,y € A, we have x,y € A; for each i.
Since each A; is midpoint convex, x + y/2 € A; for all i.
Hence, x + y/2 € Nig4; = A.
Therefore, A is midpoint convex.

Theorem 3.5. (Image and Inverse Image under Linear Transformation)

Let T: X — Y be a linear transformation between linear spaces.
Then:

1. The image of a midpoint convex set in X is midpoint convex in Y; and
2. The inverse image of a midpoint convex set in Y is midpoint convex in X.

Proof.

Let A € X be midpoint convex.

For z;,z, € T(A), there exist x,,x, € A such that z; = T(x;) and z, = T(x,).
Then
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Z1 + 2y - <x1 + xz)
2 2 /)

Since A is midpoint convex, x; + x,/2 € A. Thus z; + z,/2 € T(A).
Hence, the image is mid-point convex.

Now let B € Y be midpoint convex and consider T~1(B).
For x,,x, € T"1(B), we have T(x,),T(x,) € B.
As B is midpoint convex,

T(x1) +T(x2) T (xl + xz) cB
2 B 2 '

Therefore, x; + x,/2 € T~1(B), proving that T~1(B) is midpoint convex.
Theorem 3.6 (Translation of a set).
If Aisa subset of a linear space L and x € L, the set
x+A={x+aa€A}
is called the translate of A by x [4].
Theorem 3.7.
If A isa midpoint convex subset of L, then every translate x + A4 is also midpoint convex.

Proof.

Lety,,y, €Ex + A.

Then y; = x + a, and y, = x + a, for some a,,a, € A.
Now,

ty: +a1+a2

2 2

Since A is midpoint convex, a; + a,/2 € A.
Hence, y; + y,/2 € x + A.
Therefore, x + A is midpoint convex.

4. From Midpoint Convexity to Convexity
Midpoint convexity gives all dyadic combinations.
m/2" =1/2 (1/2 () ),
1 midpoints
S0 ax + (1 — a)y € A for every dyadic a € [0,1]. Approximating general « by dyadics then yields convexity
under mild closure or regularity.
Theorem 4.1 (Closed midpoint convex = convex) [1,3].

If ACL is midpoint convex and closed (in a TVS), then A is convex.
Proof sketch. Let a,, be dyadics with «;,, = «. Since a,x + (1 — a,,)y € A and A is closed, the limit ax + (1 —
a)y € A.
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Theorem 4.2 (Local boundedness or measurability) [5,6].

If A< R™ is midpoint convex and either (i) locally bounded at one point or (ii) Lebesgue-measurable with
nonempty interior, then A is convex.

Idea. Apply Jensen-type upgrading: midpoint convexity + mild regularity = full convexity (classical for
functions; adapt via indicator sets) [5,6].

(Figure 3 illustrates dyadic constructions converging to a general «.)

Figure 3: Dyadic construction via repeated midpoints approaching a € [0,1]
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Figure 3. Dyadic construction: repeated midpoints generate a« = m/2™ and approximate any « € [0,1];
closedness then yields full convexity.

5. Examples and Counterexamples

Example 5.1 (Convex = midpoint convex). Every affine subspace or half-space is convex; hence, it is midpoint
convex [1,3].

Example 5.2 (Midpoint convex but not convex).
Let f: R — R be a discontinuous additive function (Hamel basis construction) [6]. Its epigraph E =
{(x,t):t = f(x)} is midpoint convex (Jensen additivity) yet not convex due to lack of regularity of f.

Counterexample 5.3 (Union failure):
Union of two distinct lines through the origin in R? fails midpoint convexity (Fig. 2).

6. Discussion and Concluding Remarks
6.1 Conceptual significance

Midpoint convexity captures a “first-order” convex behaviour-stability under averaging two points without
committing to all convex combinations. Thus, it is well-suited to iterative methods that proceed by halving or
averaging steps (e.g. bisection-like feasibility updates, Krasnosel’ skii-Mann iterations, and other projection
schemes where the midpoint is a natural choice). In such contexts, midpoint-convex feasible regions allow the
algorithm to remain feasible under midpoint updates, even when the full convexity of the feasible set is unknown
or too strong.

6.2 When midpoint convexity suffices-and when it does not

If the workflow only uses midpoints (e.g. repeated halving) and the data/space confer mild regularity, midpoint
convexity may be functionally adequate.

e Intersections preserve midpoint convexity (Theorem 3.2), so multi-constraint settings remain tractable in
this case.

e Linear images/preimages preserve midpoint convexity (Theorem 3.4), so switching coordinates or
enforcing linear constraints does not break the structure of the problem.
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e Translations preserve midpoint convexity (Theorem 3.5), which is valuable for sensitivity analysis or
recentering.

However, midpoint convexity fails to guarantee closure under many standard convex operations that crucially
use non-dyadic coefficients, and unions jeopardise the property unless nested (Theorem 3.7). Therefore, true
convexity is indispensable in applications that require arbitrary convex combinations.

6.3 Links to Jensen convexity and dyadic limits

The midpoints-to-dyadics passage parallels the core idea behind Jensen’s convex functions (midpoint convex
functions). Classical theorems assert: Jensen convexity + measurability/local boundedness = convexity [5,6].
This is mirrored here: midpoint convex sets + closedness (or the set analogue of “nice” regularity) = convex
sets. Consequently, midpoint convexity can be seen as a pre-convex property that becomes convex “in the limit”
when a minimal analytic structure is present.

6.4 Geometric and functional contexts

e Convex geometry: Midpoint convex bodies share some geometric intuitions with convex bodies but not
the full Brunn-Minkowski apparatus [8]. However, averaging arguments and barycentric ideas (e.g. in
uniformly convex spaces [7]) resonate with midpoint logic.

e Optimisation: In feasibility-seeking, where constraints are only known to be midpoint convex (e.g.
empirical constraints closed under pairwise averaging), one can design averaging-based algorithms that
maintain feasibility and then attempt to show convexity via regularity checks (closedness, measurability).

e Variational analysis: The epigraph perspective connects midpoint convexity to Jensen-type structures
and sublevel sets of midpoint convex functions [5,6].

6.5 Correcting the union misconception

The counterexample in R? (Figure 2) shows that even very “nice” midpoint convex sets (lines) can have a union
that is not midpoint convex. Therefore, arguments that rely on “gluing” feasible regions via union should seek
nested constructions or rely on intersections (which are safe).

6.6 Limitations and open problems
Several natural research problems have emerged.
1. Midpoint Carathéodory

For convex sets in R4, Carathéodory’s theorem bounds the number of points needed to represent a convex
combination. What is the sharp dyadic/halving analogue for closed midpoint convex sets (or those that
satisfy upgrading conditions)?

2. Quantitative upgrading.

Given a closed midpoint convex set A ¢ R™, what is an effective rate by which dyadic approximations
(via midpoints) fill all convex combinations? Can one bound the number of halvings needed to e-
approximate a € [0,1]?

3. Stability under nonlinear maps

While linear images and preimages preserve midpoint convexity, general nonlinear maps do not preserve
it. Which classes (e.g. affine, monotone operators, proximal mappings) preserve the midpoint convexity
of images or preimages?

4. Separation phenomena

Separation theorems are central to convex analysis[1,3]. Are there weak separation results for midpoint-
convex sets under additional regularity? What role do supporting functionals play in this process?
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5. Measure-theoretic refinements

Extending Jensen-type regularity upgrades for sets, can we classify minimal measure-theoretic
assumptions ensuring midpoint convex = convex in R™?

Addressing these issues would better place midpoint convexity within the landscape of convex analysis and
could suggest new algorithmic heuristics.

Midpoint convexity is a compelling and surprisingly robust weakening of convexity that preserves many
useful operations, intersections, linear images/preimages, translations, and certain Minkowski
combinations. This supports a constructive dyadic approach to building general convex combinations through
repeated halving. While midpoint convex sets may fail to be convex in general, closedness (in a TVS) or mild
regularity (measurability/local boundedness) often upgrades the midpoint convexity to full convexity. This
bridges a practical gap: in settings where only midpoint stability is known or easily verified, convexity can still
be obtained by checking the light regularity conditions. The corrected understanding of unions (unsafe unless
nested) prevents common pitfalls. We anticipate that further studies, particularly quantitative dyadic
approximations, midpoint analogues of classical convex theorems, and stability under structured nonlinear maps,
will enhance both the theoretical foundations and algorithmic applications of this elegant concept.

7. Applications and Outlook

Midpoint convexity appears in averaging algorithms, projection and splitting methods that use repeated halving,
and relaxations where dyadic stability is sufficient (e.g. feasibility heuristics). The transformation properties
(Theorems 3.5-3.7) allow midpoint convexity to propagate through linear mappings and translations, while
Theorems 4.1-4.2 provide practical criteria to recover full convexity in TVSs or R™. Future directions include
midpoint analogues of Carathéodory’s theorem, stability under nonlinear images, and links to Jensen’s convex
functionals in variational analysis [5,6].
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