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Abstract:  Artificial intelligence has advanced through a convergence of mathematical theory, computational 

power, and data-driven modelling. Although modern systems often appear to rely primarily on engineering 

scale and empirical performance, their behaviour is best understood through rigorous mathematical 

frameworks that articulate representation, optimisation, inference, and generalisation. This paper examines 

the principal mathematical structures underlying contemporary artificial intelligence and analyses how these 

structures interact with deep networks, generative architectures, and reinforcement learning. It also considers 

the emerging role of artificial systems in mathematical discovery, where learning models participate in 

theorem exploration, symbolic manipulation, and proof development. Through this integrated study, the paper 

demonstrates that mathematics and artificial intelligence form a bidirectional and evolving relationship in 

which theory clarifies system behaviour and artificial systems generate new mathematical questions. 
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I. INTRODUCTION 

 

The rapid expansion of artificial intelligence in the past two decades has been accompanied by a deepening 

dependence on mathematical analysis. At first glance, the effectiveness of large-scale neural systems may 

appear to arise from extensive data resources, high computational capacity, and architectural heuristics. Yet 

each of these components operates within mathematical structures that govern what models can represent, 

how they learn, and why they generalise. Classical theories of approximation, probability, optimisation, and 

information provide the first layer of understanding, while more recent research incorporates geometry, 

topology, and dynamical systems to illuminate contemporary architectures such as transformers and diffusion 

models (Goodfellow et al., 2016; Petersen & Voigtlaender, 2020). The intersection of these disciplines forms 

the conceptual environment in which present-day artificial intelligence develops. 
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This paper investigates that intersection through a structured inquiry into the mathematical foundations of 

artificial intelligence and the reciprocal influence of artificial systems on mathematical reasoning. The first 

objective is to outline the major mathematical pillars that sustain modern learning frameworks. The second 

objective is to examine how these pillars manifest within deep learning, generative modelling, and 

reinforcement learning, which constitute the dominant paradigms of current practice. The third objective is to 

study artificial intelligence as an instrument of mathematical thought, where models contribute to formal 

proof, symbolic derivation, and conjecture formation. By approaching these themes in an integrated manner, 

the study demonstrates that mathematics and computational intelligence are mutually constitutive, each 

shaping the development of the other. 

I. Mathematical Pillars of Contemporary Artificial Intelligence 

Artificial intelligence is grounded in a set of mathematical theories that operate both independently and in 

synthesis. Linear algebra provides the foundational language of vectors, matrices, and tensor representations 

(Strang, 2016). Every neural network layer is expressed as a linear transformation followed by a non-linear 

mapping; the stability and expressivity of these transformations depend on eigenvalues, singular values, and 

operator norms. Functional analysis extends this algebraic language to infinite-dimensional spaces, where 

networks are treated as parameterised families of functions (Rudin, 1991). In this framework, questions about 

continuity, approximability, and boundedness of mappings become essential in explaining the scope and 

limitations of representational power. 

Probability theory and statistics form the second major pillar. Learning is an inferential process conducted 

under uncertainty, and concepts such as risk, expectation, variance, concentration inequalities, and 

convergence underpin nearly all theoretical analyses (Boucheron et al., 2013). Classical statistical learning 

theory articulates this perspective through empirical risk minimisation, capacity control, and uniform 

convergence, providing a rigorous account of when and why models observing finite samples can generalise 

(Vapnik, 1998). 

Optimisation constitutes a third pillar. While classical optimisation theory is dominated by convexity and 

convergence guarantees, deep learning operates in non-convex, high-dimensional landscapes where such 

guarantees rarely apply. Nevertheless, stochastic gradient descent reliably converges to favourable minima 

(Bubeck et al., 2023). Research on over parameterised networks, loss landscape geometry, and implicit 

regularisation has begun to explain why these algorithms succeed despite theoretical obstacles. 

Information theory offers an additional unifying vocabulary. Entropy, mutual information, and Kullback–

Leibler divergence provides quantitative measures of uncertainty and dependence that shape the objectives of 

many contemporary models, including variational autoencoders and contrastive learners (Cover & Thomas, 

2006; Tishby & Zaslavsky, 2015). 

Geometry and topology further enrich this analytical structure. The manifold hypothesis motivates 

dimensionality reduction techniques and representation learning, while differential geometric methods 

describe optimisation on curved parameter spaces and topological data analysis provides tools for identifying 

structure in data (Carlsson, 2009). 

II. Deep Learning as Approximation, Optimisation, and Statistical Estimation 

Deep learning spans approximation theory, optimisation dynamics, and statistical inference. Universal 

approximation theorems demonstrate that neural networks can approximate large classes of functions 

(Cybenko, 1989). More recent results highlight the importance of depth in representing functions efficiently 

(Petersen & Voigtlaender, 2020). 
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Optimisation research examines the behaviour of gradient-based algorithms navigating non-convex surfaces. 

Empirical studies show that wide networks often converge to flat minima associated with better generalisation, 

and stochastic gradient descent implicitly promotes such solutions (Zhang et al., 2017). 

From the viewpoint of statistical inference, the capacity of deep networks challenges classical generalisation 

theory. Although these models can perfectly interpolate training data, they often generalise remarkably well. 

This has inspired new theoretical approaches based on stability, margin theory, and implicit biases of 

optimisation (Belkin et al., 2019). 

III. Generative Modelling and Probabilistic Foundations 

Generative models derive from variational inference, optimal transport, and stochastic processes. Variational 

autoencoders use evidence lower bounds to balance reconstruction accuracy and regularity (Kingma & 

Welling, 2014). Generative adversarial networks minimise divergences or Wasserstein distances between 

model and data distributions (Goodfellow et al., 2014; Arjovsky et al., 2017). Diffusion models construct 

generative processes by reversing stochastic differential equations (Song et al., 2021). 

These approaches demonstrate how deeply probability and measure theory inform generative modelling. 

Divergence selection influences training stability, while geometric properties of probability spaces govern 

sampling trajectories and model fidelity. 

IV. Reinforcement Learning and Mathematical Models of Sequential Decision Making 

Reinforcement learning builds on Markov decision processes, dynamic programming, and stochastic control. 

Classical convergence guarantees for value iteration and policy iteration rely on contraction mappings 

(Puterman, 1994). When combined with deep function approximation, these guarantees weaken, resulting in 

a gap between theoretical expectations and empirical success. Recent research attempts to rebuild solid 

mathematical foundations for deep reinforcement learning through error bounds, stability conditions, and 

sample-complexity analyses (Sutton & Barto, 2018; Agarwal et al., 2021). 

V. Artificial Intelligence as an Instrument of Mathematical Reasoning 

Artificial intelligence increasingly participates in mathematical practice. Large language models trained on 

mathematical corpora and specialised neural architectures contribute to automated theorem proving, symbolic 

manipulation, and conjecture formation (Polu et al., 2022). These systems interact with formal proof 

assistants, generating lemmas or proposing proof steps that are then verified through symbolic logic. This 

hybrid dynamic raises questions concerning the nature of mathematical understanding and the future of 

collaborative mathematical discovery (Avigad, 2022). 

AI thus does not replace mathematical reasoning but reshapes its modes of exploration, search, and validation.  

Conclusion 

The relationship between mathematics and artificial intelligence is both foundational and generative. 

Mathematics supplies the structures that make artificial systems intelligible, while contemporary artificial 

systems generate new mathematical questions concerning approximation, optimisation, inference, and 

reasoning. Deep networks expose the geometry of high-dimensional optimisation; generative models 

reinterpret stochastic processes as engines of synthesis; and reinforcement learning challenges classical 

theories of sequential decision making. Meanwhile, artificial intelligence contributes to mathematical practice 

by supporting theorem discovery and symbolic reasoning. The interface between theory and computation is 

therefore dynamic and evolving, demanding continuing research at the intersection of mathematics and 

artificial intelligence. 

 

http://www.ijcrt.org/


www.ijcrt.org                                               © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882     

IJCRT25A1250 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j683 
 

References  

[1]. Agarwal, A., Kakade, S. M., Lee, J. D., & Mahajan, G. (2021). Implicit regularization in reinforcement 

learning. Foundations and Trends in Machine Learning, 14(4), 465–606. 

[2]. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. Proceedings of the International 

Conference on Machine Learning. 

[3]. D.Dasu and P.Suresh Varma, “Employing Various Data Cleaning Techniques to Achieve Better Data 

Quality using Python”, Sixth International Conference on Electronics, Communication and Aerospace 

Technology (ICECA- 2022)/2023, IEEE Xplore Part Number: CFP22J88-ART, Pages: 1562-1566. 

[4]. Avigad, J. (2022). Mathematical reasoning and formal verification in the age of AI. Notices of the 

American Mathematical Society, 69(10), 1693–1705. 

[5]. Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine learning practice with 

the bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849–15854. 

[6]. Boucheron, S., Lugosi, G., & Massart, P. (2013). Concentration inequalities. Oxford University Press. 

[7]. Bubeck, S., Eldan, R., Lee, Y. T., & Mikulincer, D. (2023). A universal law of robustness via isoperimetry. 

Journal of the ACM. 

[8]. Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2), 255–308. 

[9]. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Wiley. 

[10].Cybenko, G. (1989). Approximation by superpositions of sigmoidal functions. Mathematics of Control, 

Signals, and Systems, 2(4), 303–314. 

[11]. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. 

[12]. Goodfellow, I. et al. (2014). Generative adversarial networks. Advances in Neural Information 

Processing Systems. 

[13]. Kingma, D. P., & Welling, M. (2014). Auto-encoding variational Bayes. International Conference on 

Learning Representations. 

[14]. Petersen, P. & Voigtlaender, F. (2020). Topological and metric properties of spaces of deep neural 

networks. Foundations of Computational Mathematics, 20(6), 1–68. 

[15]. Polu, S., Sutskever, I., & others. (2022). Formal mathematics statement curriculum learning. arXiv 

preprint arXiv:2202.01344. 

[16]. Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. Wiley. 

[17]. Rudin, W. (1991). Functional analysis (2nd ed.). McGraw-Hill. 

[18]. Song, Y., Sohl-Dickstein, J., & Kingma, D. (2021). Score-based generative modelling through stochastic 

differential equations. International Conference on Learning Representations. 

[19]. Strang, G. (2016). Introduction to linear algebra (5th ed.). Wellesley-Cambridge Press. 

[20]. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press. 

[21]. Tishby, N., & Zaslavsky, N. (2015). Deep learning and the information bottleneck principle. IEEE 

Information Theory Workshop. 

http://www.ijcrt.org/


www.ijcrt.org                                               © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882     

IJCRT25A1250 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j684 
 

[22]. Vapnik, V. (1998). Statistical learning theory. Wiley. 

[23]. Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning requires 

rethinking generalization. International Conference on Learning Representations. 

 

http://www.ijcrt.org/

