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Abstract: Atrtificial intelligence has advanced through a convergence of mathematical theory, computational
power, and data-driven modelling. Although modern systems often appear to rely primarily on engineering
scale and empirical performance, their behaviour is best understood through rigorous mathematical
frameworks that articulate representation, optimisation, inference, and generalisation. This paper examines
the principal mathematical structures underlying contemporary artificial intelligence and analyses how these
structures interact with deep networks, generative architectures, and reinforcement learning. It also considers
the emerging role of artificial systems in mathematical discovery, where learning models participate in
theorem exploration, symbolic manipulation, and proof development. Through this integrated study, the paper
demonstrates that mathematics and artificial intelligence form a bidirectional and evolving relationship in
which theory clarifies system behaviour and artificial systems generate new mathematical questions.

Index Terms - Mathematical foundations, artificial intelligence, optimisation, statistical learning theory, deep
learning, generative modelling, reinforcement learning, geometric methods, theorem proving, computational
intelligence

|I. INTRODUCTION

The rapid expansion of artificial intelligence in the past two decades has been accompanied by a deepening
dependence on mathematical analysis. At first glance, the effectiveness of large-scale neural systems may
appear to arise from extensive data resources, high computational capacity, and architectural heuristics. Yet
each of these components operates within mathematical structures that govern what models can represent,
how they learn, and why they generalise. Classical theories of approximation, probability, optimisation, and
information provide the first layer of understanding, while more recent research incorporates geometry,
topology, and dynamical systems to illuminate contemporary architectures such as transformers and diffusion
models (Goodfellow et al., 2016; Petersen & Voigtlaender, 2020). The intersection of these disciplines forms
the conceptual environment in which present-day artificial intelligence develops.
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This paper investigates that intersection through a structured inquiry into the mathematical foundations of
artificial intelligence and the reciprocal influence of artificial systems on mathematical reasoning. The first
objective is to outline the major mathematical pillars that sustain modern learning frameworks. The second
objective is to examine how these pillars manifest within deep learning, generative modelling, and
reinforcement learning, which constitute the dominant paradigms of current practice. The third objective is to

study artificial intelligence as an instrument of mathematical thought, where models contribute to formal
proof, symbolic derivation, and conjecture formation. By approaching these themes in an integrated manner,
the study demonstrates that mathematics and computational intelligence are mutually constitutive, each
shaping the development of the other.

I. Mathematical Pillars of Contemporary Artificial Intelligence

Artificial intelligence is grounded in a set of mathematical theories that operate both independently and in
synthesis. Linear algebra provides the foundational language of vectors, matrices, and tensor representations
(Strang, 2016). Every neural network layer is expressed as a linear transformation followed by a non-linear
mapping; the stability and expressivity of these transformations depend on eigenvalues, singular values, and
operator norms. Functional analysis extends this algebraic language to infinite-dimensional spaces, where
networks are treated as parameterised families of functions (Rudin, 1991). In this framework, questions about
continuity, approximability, and boundedness of mappings become essential in explaining the scope and
limitations of representational power.

Probability theory and statistics form the second major pillar. Learning is an inferential process conducted
under uncertainty, and concepts such as risk, expectation, variance, concentration inequalities, and
convergence underpin nearly all theoretical analyses (Boucheron et al., 2013). Classical statistical learning
theory articulates this perspective through empirical risk minimisation, capacity control, and uniform
convergence, providing a rigorous account of when and why models observing finite samples can generalise
(Vapnik, 1998).

Optimisation constitutes a third pillar. While classical optimisation theory is dominated by convexity and
convergence guarantees, deep learning operates in non-convex, high-dimensional landscapes where such
guarantees rarely apply. Nevertheless, stochastic gradient descent reliably converges to favourable minima
(Bubeck et al., 2023). Research on over parameterised networks, loss landscape geometry, and implicit
regularisation has begun to explain why these algorithms succeed despite theoretical obstacles.

Information theory offers an additional unifying vocabulary. Entropy, mutual information, and Kullback—
Leibler divergence provides quantitative measures of uncertainty and dependence that shape the objectives of
many contemporary models, including variational autoencoders and contrastive learners (Cover & Thomas,
2006; Tishby & Zaslavsky, 2015).

Geometry and topology further enrich this analytical structure. The manifold hypothesis motivates
dimensionality reduction techniques and representation learning, while differential geometric methods
describe optimisation on curved parameter spaces and topological data analysis provides tools for identifying
structure in data (Carlsson, 2009).

I1. Deep Learning as Approximation, Optimisation, and Statistical Estimation

Deep learning spans approximation theory, optimisation dynamics, and statistical inference. Universal
approximation theorems demonstrate that neural networks can approximate large classes of functions
(Cybenko, 1989). More recent results highlight the importance of depth in representing functions efficiently
(Petersen & Voigtlaender, 2020).
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Optimisation research examines the behaviour of gradient-based algorithms navigating non-convex surfaces.
Empirical studies show that wide networks often converge to flat minima associated with better generalisation,
and stochastic gradient descent implicitly promotes such solutions (Zhang et al., 2017).

From the viewpoint of statistical inference, the capacity of deep networks challenges classical generalisation
theory. Although these models can perfectly interpolate training data, they often generalise remarkably well.
This has inspired new theoretical approaches based on stability, margin theory, and implicit biases of
optimisation (Belkin et al., 2019).

II1. Generative Modelling and Probabilistic Foundations

Generative models derive from variational inference, optimal transport, and stochastic processes. Variational
autoencoders use evidence lower bounds to balance reconstruction accuracy and regularity (Kingma &
Welling, 2014). Generative adversarial networks minimise divergences or Wasserstein distances between
model and data distributions (Goodfellow et al., 2014; Arjovsky et al., 2017). Diffusion models construct
generative processes by reversing stochastic differential equations (Song et al., 2021).

These approaches demonstrate how deeply probability and measure theory inform generative modelling.
Divergence selection influences training stability, while geometric properties of probability spaces govern
sampling trajectories and model fidelity.

IV. Reinforcement Learning and Mathematical Models of Sequential Decision Making

Reinforcement learning builds on Markov decision processes, dynamic programming, and stochastic control.
Classical convergence guarantees for value iteration and policy iteration rely on contraction mappings
(Puterman, 1994). When combined with deep function approximation, these guarantees weaken, resulting in
a gap between theoretical expectations and empirical success. Recent research attempts to rebuild solid
mathematical foundations for deep reinforcement learning through error bounds, stability conditions, and
sample-complexity analyses (Sutton & Barto, 2018; Agarwal et al., 2021).

V. Artificial Intelligence as an Instrument of Mathematical Reasoning

Artificial intelligence increasingly participates in mathematical practice. Large language models trained on
mathematical corpora and specialised neural architectures contribute to automated theorem proving, symbolic
manipulation, and conjecture formation (Polu et al., 2022). These systems interact with formal proof
assistants, generating lemmas or proposing proof steps that are then verified through symbolic logic. This
hybrid dynamic raises questions concerning the nature of mathematical understanding and the future of
collaborative mathematical discovery (Avigad, 2022).

Al thus does not replace mathematical reasoning but reshapes its modes of exploration, search, and validation.
Conclusion

The relationship between mathematics and artificial intelligence is both foundational and generative.
Mathematics supplies the structures that make artificial systems intelligible, while contemporary artificial
systems generate new mathematical questions concerning approximation, optimisation, inference, and
reasoning. Deep networks expose the geometry of high-dimensional optimisation; generative models
reinterpret stochastic processes as engines of synthesis; and reinforcement learning challenges classical
theories of sequential decision making. Meanwhile, artificial intelligence contributes to mathematical practice
by supporting theorem discovery and symbolic reasoning. The interface between theory and computation is
therefore dynamic and evolving, demanding continuing research at the intersection of mathematics and
artificial intelligence.
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