
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512130 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b1

Challenges In Software Testing

Sukhraj Kaur¹, Ms. Navneet Kaur²

¹MCA Student, Department of Computer Science, Global Group of Institutes

² Assistant Professor, Department of Computer Science, Global Group of institutes

ABSTRACT

Software quality has become a critical concern in the global software industry, as poor quality leads to

project delays, financial loss, and, in extreme cases, business failure. This review highlights the persistent

challenges small and medium-sized software organizations face in software quality assurance (SQA) and

testing. It categorizes the major obstacles, identifies responsible stakeholders, and examines why quality

issues continue despite advancements in testing tools and practices. The study emphasizes the need for early

defect detection, streamlined testing processes, effective communication, and improved requirement

engineering to ensure reliable and high-quality software products.

Keywords: Software Quality Assurance, Software Testing, Defects, Stakeholders, Requirements,

Challenges.

INTRODUCTION

Software Quality Assurance (SQA) is a structured set of activities designed to ensure that software

development processes, methods, and products meet predefined quality standards. It focuses on preventing

defects early rather than detecting them after development, making it an essential component of every

software engineering lifecycle. As software systems grow more interconnected with critical sectors such as

healthcare, finance, transportation, and communication, the impact of software failure becomes increasingly

severe—leading to financial loss, operational disruption, safety hazards, and a decline in user trust.

In today’s fast-paced development environment, organizations face major challenges including unclear

requirements, continuous changes in customer needs, increasing system complexity, and limited time for

testing. Despite advances in tools and methodologies, software testing still consumes a significant portion

of project cost and effort. A large percentage of resources are spent on identifying, reproducing, and fixing

defects, often due to gaps in planning or insufficient quality practices adopted earlier in the lifecycle.

To address these issues, modern SQA frameworks emphasize continuous testing, process improvement,

early defect detection, and automation. Embedding quality activities throughout the Software

Development Life Cycle (SDLC) helps organizations reduce risks, minimize defects, and enhance overall

product reliability. This review paper highlights the importance of integrating SQA practices from the initial

stages of development and explores how structured planning, automated testing tools, and risk-based

strategies contribute to delivering high-quality, dependable software systems.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512130 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b2

Background of Software Quality Assurance (SQA)

Software Quality Assurance (SQA) developed as a formal discipline when it became clear that finding

defects after development was costly and ineffective. Early software projects relied mainly on end-stage

testing, but as system complexity increased, this reactive approach failed to prevent major rework and

customer dissatisfaction. This led to the rise of SQA as a preventive, process-oriented activity that focuses

on improving quality from the beginning of the software lifecycle.

SQA is influenced by traditional quality management methods such as Total Quality Management (TQM),

ISO standards, Six Sigma, and CMMI. These frameworks helped establish systematic guidelines for

improving software processes. Modern SQA ensures that activities like requirement validation, design

reviews, code inspection, configuration management, and risk assessment are integrated throughout the

Software Development Life Cycle (SDLC).

With the adoption of agile methodologies, SQA has evolved into a continuous practice supported by

automation, continuous integration, and frequent feedback loops. Instead of being a separate phase, quality

assurance now runs parallel to development, reflecting the idea that quality is a shared responsibility across

the entire team.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512130 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b3

 2. KEY CHALLENGES IN SOFTWARE TESTING

2.1 Limited Test Coverage

Exhaustively testing all inputs and scenarios is impossible; testers must focus on high-risk and business-

critical areas.

2.2 Tester–Developer Communication Gaps

Conflicts occur when developers disagree with bug reports. Strong collaboration and clear communication

reduce friction and support faster issue resolution.

2.3 Regression Testing Pressure

Continuous changes introduce new bugs in old functionality. Without automation, regression cycles become

slow and overwhelming.

2.4 Time Constraints

Tight deadlines force testers to shorten test cycles, which increases the chance of undetected defects.

2.5 Requirement Misunderstandings

Ambiguous or incomplete requirements cause incorrect test scenarios. Testers need clear communication

with clients and analysts.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512130 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b4

2.6 Deciding When to Stop Testing

Because complete testing is impossible, testers rely on risk, defect severity, and coverage metrics to

determine exit points.

3. CATEGORIES OF SQA CHALLENGES

3.1 Requirement-Related Challenges

Incomplete, unclear, or frequently changing requirements introduce defects early in development. Many

companies lack professional requirement engineers, leading to miscommunication and inconsistent

requirement documentation.

3.2 Requirement Collection Issues

Requirements may be missed due to negligence, lack of time, or clients providing information in fragments.

This leads to logical errors, rework, and product dissatisfaction.

4. STAKEHOLDER-RELATED ISSUES

4.1 Developer Challenges

Developers often prioritize speed over quality, skip unit testing, or have limited SQA knowledge.

Overconfidence or inadequate training leads to poor coding practices.

4.2 Organization-Level Risks

Many SMEs lack dedicated QA teams and focus on delivery speed rather than quality, which leads to

recurring defects.

4.3 Customer-Driven Threats

Clients sometimes prioritize cost over quality, expecting minimal-functionality software and ignoring

necessary testing stages.

4.4 Vendor Negligence

Third-party vendors may implement quick fixes or incomplete solutions to meet deadlines, causing

mismatches and production issues.

5. WHERE SOFTWARE QUALITY DECLINES

Quality weaknesses occur from planning to implementation, especially in:

 Requirement gathering

 Estimation

 Design and coding

 Testing and integration

 User training and maintenance

Organizations often rush releases, with many admitting they launch products with little or no testing.

6. BARRIERS TO EFFECTIVE TESTING

QA teams often receive features late, leaving minimal time for testing. Proper preparation, test planning,

documentation review, and early involvement of QA can help overcome this barrier.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512130 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b5

7. CONCLUSION

Software companies struggle with consistent growth due to recurring quality challenges. This review

concludes that quality issues arise from weak requirement engineering, poor communication, organizational

negligence, and pressure to deliver quickly. Strengthening SQA practices, involving stakeholders

responsibly, and prioritizing quality from the beginning can reduce financial loss and improve long-term

software reliability and success.

References

1. ETH Zurich. Automated Object-Oriented Software Testing Using Genetic Algorithms and Static

Analysis. Swiss Federal Institute of Technology Zurich, 2010, pp. 1–3.

2. Humphrey, W. S. Winning with Software: An Executive Strategy. Carnegie Mellon University

Software Engineering Institute, 2001, pp. 1–19. Print ISBN-10: 0-201-77639-1; Web ISBN-10: 0-

321-57935-6.

3. Tian, J. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement.

Department of Computer Science and Engineering, Southern Methodist University, 2005.

4. Rittinghouse, J. W. Managing Software Deliverables: A Software Development Management

Methodology. 2004. ISBN: 1-55558-313-X.

5. Jones, C. A Short History of the Cost per Defect Metric. Capers Jones & Associates LLC, 2012, pp.

2–2.

6. Naik, K. Software Testing and Quality Assurance: Theory and Practice. Department of Electrical

and Computer Engineering, University of Waterloo, 2008.

7. National Institute of Standards and Technology (NIST). The Economic Impacts of Inadequate

Infrastructure for Software Testing. RTI Project Number 7007.011, 2002. Final Planning Report.

8. Black, R. Investing in Software Testing: The Cost of Software Quality. RBCS, Inc., 2000. In

Managing the Testing Process, 2nd Edition. Wiley, New York, 2002.

9. Ricardo, R. Testability of Dependency Injection. University of Amsterdam, Faculty of Science,

Master’s Research in Software Engineering, 2007.

10. Ross, J. The Secrets to High Customer Satisfaction. 2013.

11. Sommerville, I. Requirements Engineering Challenges. 2013, pp. 3–22.

12. Teodoro, T. Software Reverse Engineering Education. San Jose State University, USA, 2009.

13. John, CEO, Testplant. Software Quality Suffers as Businesses Hurriedly Attempt to Innovate, 2017.

http://www.ijcrt.org/

