www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

é%} INTERNATIONAL JOURNAL OF CREATIVE
/ RESEARCH THOUGHTS (1JCRT)
Qa & An International Open Access, Peer-reviewed, Refereed Journal

Challenges In Software Testing

Sukhraj Kaur', Ms. Navneet Kaur?

'MCA Student, Department of Computer Science, Global Group of Institutes
2 Assistant Professor, Department of Computer Science, Global Group of institutes

ABSTRACT

Software quality has become a critical concern in the global software industry, as poor quality leads to
project delays, financial loss, and, in extreme cases, business failure. This review highlights the persistent
challenges small and medium-sized software organizations face in software quality assurance (SQA) and
testing. It categorizes the major obstacles, identifies responsible stakeholders, and examines why quality
issues continue despite advancements in testing tools and practices. The study emphasizes the need for early
defect detection, streamlined testing processes, effective communication, and improved requirement
engineering to ensure reliable and high-quality software products.

Keywords: Software Quality Assurance, Software Testing, Defects, Stakeholders, Requirements,
Challenges.

INTRODUCTION

Software Quality Assurance (SQA) is a structured set of activities designed to ensure that software
development processes, methods, and products meet predefined quality standards. It focuses on preventing
defects early rather than detecting them after development, making it an essential component of every
software engineering lifecycle. As software systems grow more interconnected with critical sectors such as
healthcare, finance, transportation, and communication, the impact of software failure becomes increasingly
severe—leading to financial loss, operational disruption, safety hazards, and a decline in user trust.

In today’s fast-paced development environment, organizations face major challenges including unclear
requirements, continuous changes in customer needs, increasing system complexity, and limited time for
testing. Despite advances in tools and methodologies, software testing still consumes a significant portion
of project cost and effort. A large percentage of resources are spent on identifying, reproducing, and fixing
defects, often due to gaps in planning or insufficient quality practices adopted earlier in the lifecycle.

To address these issues, modern SQA frameworks emphasize continuous testing, process improvement,
early defect detection, and automation. Embedding quality activities throughout the Software
Development Life Cycle (SDLC) helps organizations reduce risks, minimize defects, and enhance overall
product reliability. This review paper highlights the importance of integrating SQA practices from the initial
stages of development and explores how structured planning, automated testing tools, and risk-based
strategies contribute to delivering high-quality, dependable software systems.

IJCRT2512130 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ b1

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

HIERARCHY OF SQA CHALLENGES

Requirement
Challenges

Organization-Level
Challenges

Stakeholder-Related
Challenges

Background of Software Quality Assurance (SQA)

Software Quality Assurance (SQA) developed as a formal discipline when it became clear that finding
defects after development was costly and ineffective. Early software projects relied mainly on end-stage
testing, but as system complexity increased, this reactive approach failed to prevent major rework and
customer dissatisfaction. This led to the rise of SQA as a preventive, process-oriented activity that focuses
on improving quality from the beginning of the software lifecycle.

SQA is influenced by traditional quality management methods such as Total Quality Management (TQM),
ISO standards, Six Sigma, and CMMI. These frameworks helped establish. systematic guidelines for
improving software processes. Modern SQA ensures that activities like requirement validation, design
reviews, code inspection, configuration management, and risk assessment are integrated throughout the
Software Development Life Cycle (SDLC).

With the adoption of agile methodologies, SQA has evolved into a continuous practice supported by
automation, continuous integration, and frequent feedback loops. Instead of being a separate phase, quality
assurance now runs parallel to development, reflecting the idea that quality is a shared responsibility across
the entire team.

IJCRT2512130 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ b2

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

SOFTWARE QUALITY
ASSURANCE PROCESS

REQUIREMENT ANALYSIS
. >
o
TEST PLANNING
. <
, L ‘
TEST CASE DESIGN
- =
a J/ ™
TEST EXECUTION
o
~ ™
L DEFECT REPORTING
v
4 D
TEST CLOSURE
. J
4
L TEST RESULT ANALYSIS

2. KEY CHALLENGES IN SOFTWARE TESTING
2.1 Limited Test Coverage

Exhaustively testing all inputs and scenarios is impossible; testers must focus on high-risk and business-
critical areas.

2.2 Tester—Developer Communication Gaps

Conflicts occur when developers disagree with bug reports. Strong collaboration and clear communication
reduce friction and support faster issue resolution.

2.3 Regression Testing Pressure

Continuous changes introduce new bugs in old functionality. Without automation, regression cycles become
slow and overwhelming.

2.4 Time Constraints
Tight deadlines force testers to shorten test cycles, which increases the chance of undetected defects.
2.5 Requirement Misunderstandings

Ambiguous or incomplete requirements cause incorrect test scenarios. Testers need clear communication
with clients and analysts.

IJCRT2512130 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ b3

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882
2.6 Deciding When to Stop Testing

Because complete testing is impossible, testers rely on risk, defect severity, and coverage metrics to
determine exit points.

3. CATEGORIES OF SQA CHALLENGES
3.1 Requirement-Related Challenges

Incomplete, unclear, or frequently changing requirements introduce defects early in development. Many
companies lack professional requirement engineers, leading to miscommunication and inconsistent
requirement documentation.

3.2 Requirement Collection Issues

Requirements may be missed due to negligence, lack of time, or clients providing information in fragments.
This leads to logical errors, rework, and product dissatisfaction.

4. STAKEHOLDER-RELATED ISSUES
4.1 Developer Challenges

Developers often prioritize speed over quality, skip unit testing, or have limited SQA knowledge.
Overconfidence or inadequate training leads to poor coding practices.

4.2 Organization-Level Risks

Many SMEs lack dedicated QA teams and focus on delivery speed rather than quality, which leads to
recurring defects.

4.3 Customer-Driven Threats

Clients sometimes prioritize cost over quality, expecting minimal-functionality software and ignoring
necessary testing stages.

4.4 Vendor Negligence

Third-party vendors may implement quick fixes or incomplete solutions to meet deadlines, causing
mismatches and production issues.

5. WHERE SOFTWARE QUALITY DECLINES
Quality weaknesses occur from planning to implementation, especially in:
e Requirement gathering
o Estimation
e Design and coding
o Testing and integration
e User training and maintenance

Organizations often rush releases, with many admitting they launch products with little or no testing.

6. BARRIERS TO EFFECTIVE TESTING

QA teams often receive features late, leaving minimal time for testing. Proper preparation, test planning,
documentation review, and early involvement of QA can help overcome this barrier.

IJCRT2512130 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ b4

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

7. CONCLUSION

Software companies struggle with consistent growth due to recurring quality challenges. This review

concludes that quality issues arise from weak requirement engineering, poor communication, organizational
negligence, and pressure to deliver quickly. Strengthening SQA practices, involving stakeholders

responsibly, and prioritizing quality from the beginning can reduce financial loss and improve long-term

software reliability and success.

References

1. ETH Zurich. Automated Object-Oriented Software Testing Using Genetic Algorithms and Static
Analysis. Swiss Federal Institute of Technology Zurich, 2010, pp. 1-3.

2. Humphrey, W. S. Winning with Software: An Executive Strategy. Carnegie Mellon University
Software Engineering Institute, 2001, pp. 1-19. Print ISBN-10: 0-201-77639-1; Web ISBN-10: 0-
321-57935-6.

3. Tian, J. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement.
Department of Computer Science and Engineering, Southern Methodist University, 2005.

4. Rittinghouse, J. W. Managing Software Deliverables: A Software Development Management
Methodology. 2004. ISBN: 1-55558-313-X.

5. Jones, C. A Short History of the Cost per Defect Metric. Capers Jones & Associates LLC, 2012, pp.
2-2.

6. Naik, K. Software Testing and Quality Assurance: Theory and Practice. Department of Electrical
and Computer Engineering, University of Waterloo, 2008.

7. National Institute of Standards and Technology (NIST). The Economic Impacts of Inadequate
Infrastructure for Software Testing. RTI Project Number 7007.011, 2002. Final Planning Report.

8. Black, R. Investing in Software Testing: The Cost of Software Quality. RBCS, Inc., 2000. In
Managing the Testing Process, 2nd Edition. Wiley, New York, 2002.

9. Ricardo, R. Testability of Dependency Injection. University of Amsterdam, Faculty of Science,
Master’s Research in Software Engineering, 2007.

10. Ross, J. The Secrets to High Customer Satisfaction. 2013.

11. Sommerville, I. Requirements Engineering Challenges. 2013, pp. 3-22.

12. Teodoro, T. Software Reverse Engineering Education. San Jose State University, USA, 2009.

13. John, CEO, Testplant. Software Quality Suffers as Businesses Hurriedly Attempt to Innovate, 2017.

IJCRT2512130 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ b5

http://www.ijcrt.org/

