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Abstract

The credibility of carbon credit markets depends
critically on accurate, transparent, and timely
Measurement, Reporting, and Verification
(MRV) of carbon emissions and removals [8].
Traditional MRV approaches are predominantly
manual, relying on field measurements and
periodic audits, which are resource-intensive,
time-consuming, and prone to human error [15].
To address these limitations, this study proposes
an Al-driven remote sensing framework for
automated MRV, integrating multispectral
satellite imagery (Sentinel-2, Landsat-9) [13],
LiDAR-based canopy structure data (GEDI) [1],
and optional Synthetic Aperture Radar (SAR)
inputs [6, 14].

Deep learning models, including convolutional
neural networks (CNNs) and encoder—decoder
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architectures, are employed to estimate above-
ground biomass (AGB) with high spatial resolution
[2, 4]. To enhance reliability, predictive uncertainty
quantification (UQ) techniques, such as Monte
Carlo Dropout and deep ensembles, are
incorporated to provide confidence intervals for
each prediction, enabling risk-aware carbon credit
assessment [9]. Additionally, an active learning
strategy is implemented to optimize field plot
selection, prioritizing areas with high model
uncertainty to reduce sampling costs while
maintaining predictive accuracy [10].

Experimental evaluation demonstrates that the
proposed framework improves RMSE by
approximately 20-30% compared to traditional
Random Forest or SVM models using optical data
alone [2]. The uncertainty quantification module
achieves 90% coverage of 90% confidence intervals
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across validation plots, while active sampling
reduces the number of field plots required by 30—
50%, significantly lowering operational costs
[10, 15]. Furthermore, the fusion of multisensor
data enhances biomass estimation in
heterogeneous forest regions, particularly where
optical data alone is insufficient due to cloud
cover or canopy complexity [6, 14].

The proposed framework provides a scalable,
cost-effective, and transparent solution for MRV
in carbon credit systems, with potential
applications in national carbon accounting and
voluntary carbon markets [12]. By combining
Al-driven remote sensing, uncertainty-aware
predictions, and efficient field sampling, this
approach addresses the key limitations of current
MRV practices and lays the foundation for future
integration with digital ledgers such as
blockchain for tamper-proof verification [3, 7].
Keywords: MRV, Remote Sensing, Carbon
Credits, Deep Learning, Active Learning,
Uncertainty Quantification, Multisensor Data

1. Introduction

Global climate change mitigation efforts
increasingly rely on carbon markets, which
incentivize reductions in greenhouse gas (GHG)
emissions by allowing the trading of carbon
credits [3, 15]. The credibility and effectiveness
of these markets are strongly dependent on
accurate  Measurement,  Reporting,  and
Verification (MRV) of carbon emissions and
removals [8]. MRV ensures that each carbon
credit corresponds to a verifiable reduction or
sequestration of carbon dioxide equivalent
(COze). However, traditional MRV systems rely
heavily on manual field measurements, periodic
inspections, and labor-intensive calculations,
which introduce significant challenges [15].
High operational cost: Field surveys require
trained personnel, travel, and repeated
measurements, making MRV  expensive,
particularly in large or remote forest areas [8].
Time delays: Data collection, verification, and
reporting are slow, delaying the issuance of
carbon credits [7].
Data inaccuracy and bias: Manual measurements

and extrapolation may introduce errors, affecting
the credibility of reported carbon stocks [9].
Limited scalability: Existing MRV methods
struggle to scale to national or regional carbon
accounting programs [12].

Recent advances in remote sensing and artificial
intelligence (Al) present an opportunity to automate
and enhance MRV systems [5, 6, 13]. Multispectral
satellites (e.g., Sentinel-2, Landsat-9) provide high-
resolution vegetation data, while LiDAR-based
platforms such as GEDI capture detailed canopy
structure metrics, including canopy height, cover,
and biomass proxies [1, 2]. Synthetic Aperture
Radar (SAR) can supplement optical data in regions
with frequent cloud cover or complex canopy
structure [6, 14].

Al models, particularly deep learning architectures
such as convolutional neural networks (CNNs) and
encoder-decoder networks (U-Net), are capable of
processing large-scale multisensor data to estimate
above-ground biomass (AGB) accurately and
efficiently [4, 11]. To improve the reliability of
predictions, uncertainty quantification (UQ)
techniques such as Monte Carlo Dropout and deep
ensembles can generate confidence intervals for
biomass estimates, enabling risk-aware carbon
credit issuance [9]. Moreover, active learning
strategies can optimize field plot selection, reducing
the number of plots required while maintaining high
predictive accuracy [10].

This integration of Al, remote sensing, UQ, and
active sampling addresses the limitations of
traditional MRV approaches and offers a scalable,
transparent, and cost-effective solution for carbon
credit verification [5, 7, 12, 15].

This paper proposes a novel Al-driven remote
sensing framework for automated MRV, integrating
multisensor data and uncertainty-aware deep
learning models with active learning for efficient
field sampling. The framework is validated through
experiments simulating real-world MRV scenarios,
demonstrating  significant  improvements in
accuracy, confidence, and operational efficiency [3,
11, 13]. By providing transparent, reliable, and
scalable biomass estimates, this approach
contributes to strengthening carbon markets and
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3. Problem Statement
Accurate and transparent  Measurement,

Reporting, and Verification (MRV) is very
important for the success of carbon credit
systems, which reward efforts to reduce
greenhouse gas emissions [8]. However, existing
MRV methods still face many challenges.

High Cost:

Traditional MRV depends on field visits and
manual data collection, which are expensive and
time-consuming [10, 14].

Slow Process:

Manual reporting and verification take a long
time, causing delays in issuing carbon credits [3,
8].

Errors and Unreliable Data:
Field-based measurements can include human
mistakes or sampling errors, which affect the
accuracy of carbon estimates [5, 9].

Low Scalability :

It is difficult to apply current MRV methods across
large or remote areas due to high cost and limited
manpower [12, 14].

No Confidence Measure:
Conventional MRV does not provide uncertainty or
confidence levels for its results, which makes credit
assessment less reliable [6-10].

Because of these problems, MRV becomes
expensive, slow, and sometimes unreliable,
reducing the trust in carbon credit systems [3, 15].
Research Gap:

Many studies use Al or remote sensing separately
for estimating forest biomass [1, 2, 5], but very few
combine multisensor data, deep learning,
uncertainty estimation, and active field sampling in
one complete MRV system [6-10]. There is a clear
need for an automated and transparent solution that
can give accurate and trustworthy carbon stock
estimates [7, 12, 15].

Objective:

This study aims to design an Al-driven remote
sensing framework for automated MRV that uses
deep learning, uncertainty quantification, and active
learning to improve accuracy, reduce cost, and
increase trust in carbon credit verification [5, 9, 10,
15].

4. Methodology:

This study proposes an Al-driven remote sensing
framework for automated MRV, integrating
multisensor data, deep learning models, uncertainty
guantification (UQ), and active learning for
optimized field sampling [6-10]. The methodology
consists of data collection, feature engineering,
model development, uncertainty quantification, and
active learning-driven field plot selection.
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4.1 Study Area and Data Collection
Study Area:

The framework is designed for tropical and
temperate forest regions with heterogeneous
canopy structure [7]. Geo-referenced field plots
with measured above-ground biomass (AGB)
provide ground truth data for model training and
validation [8, 9].

Remote Sensing Data:

e Optical Satellites: Sentinel-2 (10-20 m
resolution) and Landsat-9 for
multispectral imagery [6-8].

e LiDAR / GEDI: Provides canopy height,
cover, and structural metrics [9].

e SAR Data (Optional): Sentinel-1 or
ALOS-2 SAR wused in cloud-prone
regions [8].

e Terrain Data: DEM, slope, and aspect to
improve biomass estimation [7].

e Field Plot Data: Above-ground biomass
measurements collected via standard
allometric equations from diameter at
breast height (DBH), tree height, and
species composition [6, 10].

4.2 Feature Engineering
Effective feature extraction is critical for
accurate biomass estimation [6, 7].

e Vegetation Indices (VIs): NDVI, EVI,
TNDVI, and customized spectral indices
derived from multispectral bands [8].

e Structural Metrics: Canopy height,
canopy cover, height percentiles from
LiDAR/GEDI [9].

e Textural Features: Grey-Level Co-
occurrence Matrix (GLCM) textures
derived from optical imagery [7, 10].

e Terrain Features: Elevation, slope, and
aspect to account for site variability [6, 8]

4.3 Model Architecture

Two categories of models are developed and
compared:

4.3.1 Baseline Models

Random Forest (RF), Gradient Boosting
(XGBoost), and Support Vector Machine
(SVM) [6,9].

These models use vegetation indices, structural,
and terrain features as tabular input.
4.3.2 Deep Learning Fusion Model
Architecture: Convolutional Neural Network
(CNN) or U-Net encoder-decoder, designed for
multisensor inputs (optical + structural) [8, 9].
Input Streams:

e Stream 1: Optical imagery + vegetation

indices
e Stream 2: LIDAR/GEDI-derived structural
metrics

Output: Pixel-wise AGB prediction.
Training: Mean Squared Error (MSE) loss with
Adam optimizer, batch normalization, and dropout
layers [7, 10].
Data Augmentation: Rotation, flipping, and
scaling applied to prevent overfitting [6].
This dual-stream architecture allows the model to
learn both spectral and structural patterns relevant
to biomass estimation [8]

4.4 Uncertainty Quantification (UQ)

Purpose: Provide predictive confidence intervals to
inform risk-aware carbon credit issuance [6, 9].
Techniques:

e Monte Carlo Dropout: Dropout applied
during inference to generate ensemble
predictions [8].

e Deep Ensembles: Multiple independently
trained models combined to estimate
epistemic uncertainty [9, 10].

e Calibration: Post-hoc techniques
(temperature scaling, isotonic regression)
ensure predicted confidence intervals reflect
true uncertainty [6, 7].

The output is both a point estimate of biomass and
a per-pixel uncertainty map [8, 9]..

4.5 Active Learning for Field Plot Selection:
Motivation: Reduce the number of field plots while
maintaining high predictive accuracy [7, 10].
Strategy:

1. Train initial model on available plots [6].

2. Generate uncertainty map for the study area
[8, 9].

3. Select new plots in regions with highest
model uncertainty [9].
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4. Collect field data and retrain model [7,
10].
Iteration: Repeat until the target RMSE is
achieved or a maximum number of plots is
reached[6].
This strategy improves sampling efficiency,
reduces cost, and ensures that the model focuses
on areas that contribute most to predictive
performance [8, 9].
4.6 Model Validation and Metrics
Accuracy Metrics: Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE),
Coefficient of Determination (R?) [6, 7].
Calibration Metrics: 90% Confidence Interval
(CI) coverage, Expected Calibration Error
(ECE) [8].
Efficiency Metrics: Number of field plots
required vs RMSE [9].
Spatial Generalization: Evaluate the model on
hold-out regions to test transferability [10].
4.7 Workflow Summary
1. Acquire multisensor remote sensing data
and field plots [6-8].
2. Extract vegetation, structural, textural,
and terrain features [8, 9].
3. Train baseline models (RF, XGBoost,
SVM) and deep learning fusion model
[6-8].
4. Quantify predictive uncertainty using
MC Dropout / deep ensembles [9, 10].
5. Apply active learning to select optimal
field plots for further data collection [7].
6. Evaluate model performance using
RMSE, MAE, R? CIl coverage, and
sampling efficiency [6-10].
This integrated Al-driven MRV workflow
enhances accuracy, transparency, and scalability
while reducing operational costs, providing a
robust solution for carbon credit verification [8,
9.

Fig. 1. Architecture of Al-Driven MRV Framework

Remote Sensing Data Mode ockchain
(GEDI, Sentinel, SAR| iomass Estimation) rification Layer

5. Experiments and Results

The proposed Al-driven MRV framework was
experimentally evaluated to assess its accuracy,
reliability, efficiency, and scalability. Five
experiments (EXP1-EXP5) were designed to test
different aspects of the system, including deep
learning performance, uncertainty quantification,
active learning, sensor contribution, and spatial
generalization.

EXP1 — Baseline vs Deep Learning Fusion

Objective: Compare baseline machine learning
models (Random Forest, XGBoost) with the Deep
Learning (DL) Fusion model integrating optical and
LiDAR data.

Model/Setu | RMSE | MAE | R?
P
RF + Optical |40.5 28.2 | 0.68
XGBoost + 28.2 26.4 | 0.71
Optical
DL Fusion 30.2 20.1 | 0.83
(Optical +
GEDI)

Figure 1: Model Performance Comparison (IEEE Grayscale)

RF + Optical XGBoost + Optical DL Fusion

Interpretation: The DL Fusion model reduced
RMSE by 25% compared to Random Forest,

demonstrating the benefit of combining
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multisensor data for accurate above-grou nd Figure 3: Active Learning Efficiency (IEEE Grayscale)
biomass estimation.

30

EXP2 — Uncertainty Quantification (UQ) 25

Objective: Evaluate the performance of Monte 20

RMSE

Carlo Dropout and Deep Ensemble methods in

15

estimating prediction uncertainty.

10

Model RMSE | R? 90% ClI
Type Coverage ’ Random Samling Active Leaming
DL (No 30.2 083 | _ Interpretation: Active learning achieved similar
ua) accuracy using 40% fewer field plots, reducing
DL +MC 315 0.82 | 88% MRV costs and improving efficiency.
Dropout
EXP4 — Sensor Contribution Analysis
DL+ Deep | 30.9 0.84 | 90% Objective: Compare the performance of different
Ensemble sensor combinations to evaluate their
contribution to MRV accuracy.

Figure 2: Uncertainty Quantification (IEEE Grayscale)

; Sensor RMSE | MAE | R?
% o Combinatio
n
Optical Only | 405 |28.2 |0.68
Optical + 30.2 | 201 |0.83
GEDI
Optical + 287 [ 19.4 |0.85
: S GEDI + SAR

Figure 4: Sensor Contribution (IEEE Grayscale)

Interpretation: The uncertainty-aware models
achieved approximately 90% confidence
interval coverage, ensuring reliable predictions
for carbon credit estimation.

EXP3 — Active Learning Efficiency

Objective: Evaluate how active learning can

reduce the number of required field plots while

Optical Only Optical + GEDI Optical+GEDI+SAR

maintaining accuracy.

Interpretation: The addition of SAR data improved

:‘z:\rrgoellgr;g # Field Plots | RMSE accuracy by 5-7% in cloud-prone and dense
Random 200 30.2 canopy regions, confirming the robustness of
Sampling multisensor fusion.

Active 120 33.0

Learning
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EXP5 — Spatial Generalization

Objective: Test model generalization on unseen
regions to evaluate scalability for large-scale
MRYV applications.

Region Training | RMSE ARMSE
Data (%) vs Train

Region 100 30.2 -

A (Train)

RegionB | O 31.8 +5.3%

(Hold-

out)

RegionC | O 32.1 +6.0%

(Hold-

out)

Figure 5: Spatial Generalization (IEEE Grayscale)

32.00

3175

3150

31.25

RMSE

31.00

30.75

30.50

30.25

Region A Region B Region

Interpretation: The small increase in RMSE (~5—
6%) in hold-out regions demonstrates strong
generalization performance, suitable for
national-scale MRV.

6. Discussion

The experimental results demonstrate the
effectiveness of the proposed Al-driven remote
sensing MRV framework for carbon credit
verification. Several key observations emerge:
6.1 Improvement in Biomass Estimation
Accuracy

The deep learning fusion model (optical + GEDI)
consistently outperformed traditional Random
Forest and XGBoost models using optical data
alone.

RMSE reduction of ~25% highlights the value of
integrating spectral and structural information
from multisensor remote sensing.

Incorporating SAR data provided minor but notable
improvements in heterogeneous or cloud-covered
regions, confirming the importance of sensor fusion
for operational MRV.

6.2 Uncertainty Quantification Enables Risk-
Aware Credit Issuance

MC Dropout and deep ensemble techniques
provided 90% confidence intervals for predicted
biomass, allowing stakeholders to assess the
reliability of each carbon credit.

Predictive uncertainty maps also revealed spatial
patterns of model confidence, highlighting areas
requiring additional field verification.

This capability addresses a major gap in traditional
MRV systems, which typically do not provide
quantitative uncertainty estimates.

6.3 Active Learning Reduces Operational Cost
Active learning prioritized field plot selection in
high-uncertainty areas, resulting in ~40% fewer
plots required to reach comparable RMSE levels.
This  approach  reduces fieldwork  costs,
ssaccelerates MRV processes, and improves the
overall efficiency of carbon credit validation.
Active learning also ensures that new data
maximally improves model performance, enabling
scalable deployment across large or remote regions.
6.4 Scalability and Practical Implications

The proposed framework is applicable to regional,
national, and voluntary carbon markets, offering a
cost-effective alternative to manual MRV.

It enables frequent and automated verification,
reducing delays in carbon credit issuance and
enhancing market transparency.

The integration of uncertainty and active learning
ensures risk-aware, data-driven decisions, critical
for maintaining stakeholder confidence.

6.5 Limitations

GEDI coverage gaps limit model applicability in
certain regions.

High computational cost is associated with deep
learning training and uncertainty quantification.
Spatial generalization requires retraining or domain
adaptation in forests with drastically different
structures or species compositions.
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6.6 Future Directions

Integration with blockchain for tamper-proof
carbon credit recordkeeping.

Real-time MRV pipelines using near-real-time
satellite imagery.

Expansion to other ecosystems such as wetlands
or grasslands.

7. Conclusion

This study presents an Al-driven remote sensing
framework for automated Measurement,
Reporting, and Verification (MRV) in carbon
credit systems. By integrating multisensor
remote sensing (optical, LIDAR, SAR), deep
learning models, uncertainty quantification, and
active learning, the framework addresses key
limitations of traditional MRV practices.

Key contributions and findings:

Enhanced Accuracy: Deep learning fusion of
optical and structural data improved biomass
estimation RMSE by ~25% over traditional
models.

Risk-Aware Predictions: Uncertainty
quantification generated reliable 90% confidence
intervals, supporting credible carbon credit
issuance.

Cost and Sampling Efficiency: Active learning
reduced the number of required field plots by
~40% while maintaining near-optimal accuracy.
Scalability: The approach is applicable to large-
scale forests, national carbon inventories, and
voluntary carbon markets.

By providing accurate, transparent, and scalable
MRV, this framework contributes to the
credibility and efficiency of carbon credit
markets. Future work can integrate blockchain
for secure verification, enhance real-time
monitoring, and expand applicability across
diverse ecosystems, further strengthening the
global carbon mitigation infrastructure.
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