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Abstract: Object recognition in underwater environment is extremely difficult because of problems like color
distortion, light scattering, and decreased visibility. A hybrid approach that combines Multicolor Space
Residual Networks (MCRNet) with Swin-YOLO fusion to increase object recognition accuracy and
underwater image quality. Swin Transformer uses self-attention techniques to extract multi-scale hierarchical
features, whereas MCRNet uses residual learning and different color spaces (RGB, HSV, and Lab) to restore
texture details and correct color distortions. By efficiently improving feature representations, the Swin-
YOLO fusion improves YOLOVS8’s real-time object identification capabilities. According to experimental
findings, the suggested strategy works noticeably better than stand-alone techniques, which makes it a viable
option for marine applications and underwater research.

Index Terms - Underwater Image Enhancement, Object Detection, MCRNet, Swin Transformer, YOLOVS,
Multi-Color Space Processing, Feature Fusion, Deep Learning, Computer Vision, Marine Applications

. INTRODUCTION

UNDERWATER imaging is essential for applications in marine research, archaeology, surveillance, and
au- tonomous navigation. However, the unique optical properties of water—such as light absorption,
scattering, color distor- tion, and noise—significantly degrade image quality, posing challenges for accurate
object detection and analysis. These limitations necessitate advanced enhancement and detection techniques
to improve visibility and recognition in underwater environments.

To address these challenges, we propose a two-stage frame- work that integrates Multi-Color Space Residual
Network (MCRNet) for underwater image enhancement and Swin- YOLO fusion for robust object detection.
MCRNet leverages multiple color spaces (RGB, HSV, and Lab) to correct distortions, restore color fidelity,
and enhance texture details while preserving essential features. Swin-YOLO fusion combines the Swin
Transformer’s hierarchical feature extraction and self- attention mechanisms with YOLQO’s real-time detection
capabilities, enabling precise object localization and classification in underwater conditions. This hybrid
approach enhances image quality and detection accuracy while maintaining computational efficiency, making
it suitable for real-time deployment. The proposed system has wide-ranging applications in **autonomous
underwater vehicles (AUVs), marine ecosystem monitoring, underwater archaeology, defense surveillance,
and search-and-rescue op- erations**, contributing to improved exploration, conservation, and security in
underwater environments.
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Il. LITERATURE SURVEY

Recent advancements in underwater image enhancement focus on overcoming challenges such as haze, low
contrast, and color distortions caused by light scattering and absorption. Traditional single-channel methods
often fail to restore image clarity effectively, leading to the emergence of multi-color space-based approaches
that utilize RGB, HSV, and Lab color spaces. These methods extract complementary information from
different color spaces, ensuring better color restoration, contrast enhancement, and object visibility. Recent
studies leverage deep learning models and adaptive enhancement strategies to improve the quality and
visibility of underwater images, making them more suitable for applications in marine research, robotics, and
surveillance.

MCRNet[1], introduced by Ningwei Qin et al. (2024), employs a multi-color space residual network that
enhances underwater images using RGB, HSV, and Lab color spaces. This approach mitigates color
distortions and enhances struc- tural details by extracting unique information from each color space. The
model utilizes a multi-branch residual learning framework that progressively refines the image, achieving
balanced color correction and improved texture representation. The fusion of information from different color
spaces enables MCRNet to outperform single-color channel methods, produc- ing natural and visually
appealing underwater images. Another approach, Adaptive Standardization and Normalization Net- works
(ASNN)[2], proposed by Cheol Woo Park and Il Kyu Eom (2024), addresses light attenuation issues in
underwater imaging by applying adaptive standardization to equalize pixel values across the image and
normalization networks to adjust overall intensity based on varying underwater environments. This method
significantly enhances contrast and detail visibil- ity while reducing haze and color distortion, making it highly
effective across diverse water conditions.

Similarly, Adaptive Color Correction and Model Conversion for Dehazing, introduced by Yiming Lia et al.
(2024)[3], com- bines adaptive color correction with haze removal techniques to improve underwater image
quality. The model dynamically adjusts colors based on environmental characteristics, reducing excessive
green or blue tints, while the dehazing method re- moves haze caused by light scattering in water. This
approach improves both color accuracy and image clarity, making it highly effective for underwater
exploration and marine re- search applications. In addition, Ming Zhou et al. (2023)

[4] propose a lightweight object detection framework that integrates image restoration and color
transformation. Their model recovers image clarity by reducing noise and improving contrast while applying
color transformation techniques to en- hance object visibility in underwater environments. Designed for real-
time applications, this framework is computationally efficient, making it suitable for underwater robotics,
marine biology studies, and surveillance. CEH-YOLO [5], developed by Jiangfan Feng and Tao Jin (2024),
presents an optimized YOLO-based model for underwater object detection. The model introduces composite
feature extraction techniques and robust loss functions that significantly improve detection accuracy. By
incorporating pre- processing techniques that enhance image visibility before detection, CEH-YOLO ensures
reliable object detection in challenging underwater conditions, making it valuable for applications such as
marine species identification, underwater navigation, and security surveillance. CFENet [6], proposed by Xun
Jia et al. (2024), presents a cost-effective image enhance- ment network that employs cascaded feature
extraction. This approach progressively refines image details while minimiz- ing computational costs,
ensuring that both global and local features are preserved. CFENet is particularly suitable for real- time,
resource-constrained applications, such as underwater drones and remote sensing devices.

Another innovative method, INSPIRATION [7], introduced by Hao Wang et al. (2024), applies
reinforcement learning- based enhancement driven by human visual perception. This approach automatically
adjusts enhancement parameters based on perceptual feedback, learning optimal contrast, bright- ness, and
color balance adjustments to improve clarity. By mimicking human vision, INSPIRATION produces
visually natural enhancements, making it highly suitable for applica- tions in marine exploration and
underwater surveillance. Sim- ilarly, Multi-Scale Fusion and Adaptive Gamma Correction, proposed by
Dan Zhang et al. (2023), addresses low-light underwater imaging challenges. This model extracts multi-
scale features to improve both local and global visibility while adjusting brightness dynamically based on
environmen- tal lighting conditions. This adaptive strategy mitigates the loss of detail in dim underwater
settings, making it highly effective for deep-sea exploration and underwater monitoring systems. Another
noteworthy approach, proposed by Manigandan Muniraj and Vaithiyanathan Dhandapani (2024) [8],
involves

IJCRT2511479 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e24


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
modified color correction combined with an adaptive look- up table (LUT) and edge-preserving filtering.
The model neutralizes dominant green and blue tones, fine-tunes color representation through LUT
adjustments, and preserves object boundaries and fine structural details using edge-preserving filtering. This
hybrid method significantly enhances color accuracy and image sharpness, making it highly effective for
underwater object detection and scientific analysis.

These studies highlight the importance of multi-color space processing, adaptive normalization, and deep
learning-based enhancement techniques in improving underwater image qual- ity. However, there remain
challenges in ensuring robustness across diverse water conditions, such as varying turbidity levels and lighting
conditions. Additionally, integrating real- time processing capabilities is essential for practical applica- tions
in autonomous underwater vehicles (AUVs) and marine research. Future research should also explore the
combination of multi-modal imaging techniques, such as thermal and hy- perspectral imaging, to further
enhance underwater vision. By advancing hybrid enhancement models and Al-driven adaptive processing,
researchers can develop more effective solutions for underwater imaging, ultimately benefiting marine
biology, surveillance, and underwater navigation.

I1l. PROPOSED METHOD

Integrating Multi-Color Space Residual Networks (MCR- Net) with Swin-YOLO fusion for enhanced
underwater ob- ject detection leverages the strengths of multiple advanced techniques. MCRNet utilizes
multiple color spaces (HSV, LAB, RGB) to extract and refine image features, addressing underwater image
challenges such as low contrast and color distortion. The Residual Enhancement Block (REB) further
enhances these features, improving texture and color rep- resentation. Swin Transformer is employed for
hierarchical feature extraction using self-attention mechanisms, capturing both local and global contextual
information. These enhanced features are then fused with YOLOVS, a state-of-the-art object detection model,
to accurately detect and localize objects in the enhanced images. This integration significantly improves object
detection performance, particularly in complex under- water environments, offering real-time and robust
results.

The proposed system, outlined in the diagram Fig 1., follows a multi-step process for enhanced underwater
object detection using deep learning techniques. Figure 3.1 illustrates an image processing pipeline designed
to enhance images and detect objects within them. The process begins with preprocessing steps like noise
reduction and image augmentation to improve image quality and diversity. The image is then converted into
multiple color spaces to extract diverse features. A convolu- tional neural network (CNN) is employed
alongside the Swin Transformer to extract relevant features, with batch normaliza- tion and ReLU activation
functions aiding in training stability and non-linearity. Swin Transformer’s hierarchical multi-scale
representation enhances feature extraction, capturing spatial dependencies effectively. The extracted features
from different color spaces are fused using Multi-Channel Feature Fusion (MCFF) to create a more
comprehensive representation.
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Fig. 1. Proposed Architecture Diagram
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Subsequently, the Swin-YOLO fusion integrates the re- fined feature maps from Swin Transformer with
YOLOV8’s object detection framework to improve detection accuracy and robustness. Post-processing
techniques like non-maximum suppression and confidence filtering are applied to refine the detected objects
and eliminate redundant or low-confidence detections. The final output comprises the enhanced image along
with the detected objects, their bounding boxes, and associated confidence scores.

Here’s a breakdown of the different components and their function in the system:

1. INPUT PREPROCESSING BLOCK:

Noise reduction is a crucial step in preprocessing underwater images, as it helps eliminate unwanted
distortions and enhances the quality of the input data. By minimizing noise, the clarity of the image
improves, making it easier for the model to process and extract relevant features. Additionally, image
augmentation techniques, such as rotations, scaling, and color adjustments, are applied to the input images.
These augmentations create a more diverse dataset, which is beneficial for training the model to handle various
real-world conditions. This improves the model’s robustness and its ability to generalize across different
underwater environments.

2. COLOR SPACE CONVERSION (HSV, LAB, RGB):

The system works with three different color spaces—HSV, LAB, and RGB—to capture a wider range of
color features in underwater images. The system extracts features from each of these color spaces separately.
The Convolutional Attention Block (CAB) plays a critical role in the model by focusing on learning important
spatial features from each of the color space representations, including HSV, LAB, and RGB. This block
enhances the model’s ability to capture significant details specific to each color space, improving feature
extraction. Following this, the Residual Enhancement Block (REB) is employed to refine and enhance the
features extracted by the CAB. By leveraging residual learning, the REB improves texture and color
representation, which is particularly crucial in underwater imaging conditions where accurate color restoration
and detailed texture capture are often challenging.

3. 1x1 Convolution Layer, Batch Normalization,

The 1x1 Convolution Layer is used to reduce the dimension- ality of the features while preserving the
necessary information. It achieves this by applying a convolution operation with a kernel size of 1x1, which
allows the model to combine infor- mation across different channels without affecting the spatial dimensions
of the input. This operation reduces the number of channels while retaining key feature representations.
Batch Normalization, on the other hand, helps stabilize the learning process by normalizing the activations
of each layer. It normalizes the input to the activation function by ensuring that the output has a mean of
zero and a variance of one. This process makes the model more efficient by accelerating training and
reducing sensitivity to the initial weight values. Batch Normalization also includes learnable scaling and
shifting parameters that allow the network to recover its representational power after normalization
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4. MCFF (MuLTI-COLOR FEATURE FUSION):

In this step, features extracted from multiple color spaces—HSV, LAB, and RGB—are fused
together to create a comprehensive and robust feature map. Each color space offers unique advantages:
HSV helps highlight hue-related features, LAB captures perceptual color differences, and RGB provides
detailed color information. By combining these features, the model benefits from the strengths of each color
space, ensuring a more accurate and complete representation of the underwater scene. This multi-color space
feature fusion improves the model’s ability to handle various underwater imaging challenges, such as color
distortion, low contrast, and poor visibility, ultimately enhancing object detection performance.

4. Loss FUNCTION):

To train MCRNet, we use the following loss functions. We use |” to represent the enhanced image, and I* to
represent the corresponding ground truth image.

A. Charbonnier Loss
L1 loss, which determines the separation between the augmented image and the matching ground truth image,
q ~
Lewar = |“ - Iil:’Jr{HE""EE

where ¢ is empirically set to 10>,

B. SSIM Loss

The Structural Similarity Index (SSIM) evaluates two im- ages’ structure, contrast, and brightness. The
following is the SSIM formula:

camat” 5y = ZHrHe + ) (207 + C2)
W F@ - FUHU ¥ 0 T T
i ;oo 2
where p)~ and pu* denote the mean of the enhanced image and the corresponding ground truth image,
respectively. ¢

and ¢%is the covariance. The constants ¢; and ¢, are set to ensure stability in case of a zero denominator:
c1={255x 0.01)%, ¢z =(255 x 0.03)%
The SSIM loss is then expressed as:
Lesma=1— SSIM(I”, I*)

.C . Edge Loss

Similar to the image super-resolution task, high-frequency edge details of the underwater image will be lost
due to various degradation problems. Therefore, we use edge loss to optimize the edge information:

q
Leage = || V{I") — YV (1*)]|2 + €2

where V denotes the gradient operator.

D. Perceptual Loss

Perceptual loss uses features extracted from the VGG net- work [?], pre-trained on the ImageNet dataset [?],
to supervise the features generated by the model and enhance high-level perception information. We use the
conv5_4layer in the VGG19 network to calculate the perceptual loss:

Lpere= | D) — D) |

where @ denotes the high-level features extracted from the conv5_4layer.
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E. Total Loss

The total loss function is obtained by linearly combining the three loss components:

-'r—rc:'tc.r.f = -"—chf.rr + LS.‘SIM + AELEdge + Apercf—perc

where we set .= Aperc= 0.05 based on experience

6. Swin Transformer for Feature Enhancement:

The Swin Transformer Fig 3. is integrated into the system to improve feature extraction by leveraging
its hierarchical self- attention mechanisms. Unlike traditional CNN-based models, Swin Transformer
efficiently captures local and global dependencies, making it ideal for enhancing underwater images. The
extracted features from MCFF are processed through the Swin Transformer, refining spatial and contextual
information before object detection.

7.YOLOV8 Object Detection :

YOLOVS is the latest iteration of the ”You Only Look Once” (YOLO) series of object detection
algorithms, known for its speed and accuracy in real-time applications. It introduces several advancements
over its predecessors, incorporating a unified architecture for both object detection and segmentation tasks.
YOLOVS leverages a new backbone network, enhanced feature aggregation techniques, and improved anchor-
free detection heads, enabling it to achieve higher precision and recall rates while maintaining computational
efficiency. Its architecture is highly modular, making it adaptable for various use cases, from general object
detection to specific tasks like underwater imagery, traffic monitoring, and medical imaging. YOLOv8
supports dynamic input shapes and boasts better generalization across datasets, making it suitable for both
edge devices and large-scale deployments. By integrating state-of-the-art innovations in computer vision,
YOLOVS8 continues to set benchmarks for real-time object detection, offering an optimal balance between
speed and accuracy. YOLOvV8 Neural Network Fig 2., the latest iteration of the YOLO (You Only Look
Once) object detection framework, is highly adaptable for underwater image enhancement and object
detection tasks. It comprises key components like a backbone network, a neck, and detection heads, all
optimized for real-time performance and high accuracy. The backbone extracts essential features from
underwater images, leveraging advancements in Convolutional Neural Networks (CNNs)-to handle complex
underwater visual characteristics like low contrast, noise, and color distortion. The neck, typically employing
feature pyramid networks (FPN) or path aggregation networks (PAN), merges multi-scale feature maps to
enhance the detection of objects of varying sizes. Finally, the detection heads refine predictions, assigning
bounding boxes and class labels, ensuring accurate detection even in murky or turbid waters. YOLOV8’s
versatility, combined with its capability to integrate multi-color space feature enhancement techniques, makes
it an ideal tool for improving object visibility and identification in underwater environments. After processing
the image through the feature extraction layers, the system uses YOLOV8 (You Only Look Once version 8),
a state-of-the-art real-time object detection model, to detect objects in the enhanced image. This block is
responsible for accurately localizing objects, especially in the complex underwater environment.

8, POST PROCESSING:

Non-Maximum Suppression (NMS) is a post-processing technique used to eliminate redundant bounding
boxes that overlap and correspond to the same object. When multiple bounding boxes predict the same object,
NMS selects the one with the highest confidence score and removes the others, reducing false positives and
enhancing detection precision. This is crucial in scenarios where multiple detectors may identify the same
object in slightly different locations. Confidence Filtering further refines this process by removing predictions
with low confidence scores, ensuring that only the most reliable detections, which are more likely to be
accurate, are retained. This dual approach improves the quality of object detection by focusing on the most
probable and distinct detections, thereby reducing noise and enhancing the model’s overall performance in
identifying underwater objects. Together, NMS and Confidence Filtering ensure more accurate, precise, and
efficient object detection, essential for challenging underwater environments where visibility and clarity are
often compromised.
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9. OUTPUT:

The final output of the system consists of two key components: the enhanced image and the detected objects.
The enhanced image is the result of multiple processing steps, including noise reduction, color space feature
extraction, and image enhancement techniques, which together improve the visibility, clarity, and color
accuracy of the underwater image. The detected objects are the results of the YOLOV8 object detection block,
which identifies and locates key objects within the enhanced image. By combining these outputs, the system
not only improves image quality but also provides accurate object detection, facilitating better underwater
analysis and monitoring.

The proposed system is designed to address the unique challenges of underwater object detection by
combining three powerful models: an Image Enhancement Model using a Residual Network (ResNet), a Swin
Transformer for feature refinement, and an Object Detection Model based on YOLOv8. The Image
Enhancement Model is responsible for improving the quality of underwater images, which are often
affected by issues such as color distortion, low contrast, and visi- bility degradation due to water turbidity
and light scatter- ing. The Residual Network (ResNet) leverages deep learning techniques, including residual
connections, to enhance image features and recover important details that are typically lost in underwater
environments. It operates across multiple color spaces such as RGB, HSV, and LAB to address the color
and illumination challenges specific to underwater imagery. This enhancement process improves the texture,
contrast, and overall quality of the input image, providing a clearer and more accurate representation of the
underwater scene.

The Swin Transformer is integrated into the system to further refine the extracted features by utilizing
hierarchical feature representation and self-attention mechanisms. Unlike traditional CNNs, the Swin
Transformer effectively captures both local and global contextual information, enabling better representation
of objects and environmental features. By in- corporating the Swin Transformer, the system enhances the
quality of feature maps before they are passed to the object detection stage, improving detection accuracy in
complex underwater environments.

Swin Transformer

Patch Partioning Blocks

Processed Image

Input Image
P = Features

Linear Embedding Patch Merging
Fig. 3. Image Processing through Swin Transformer Stages

The third component, YOLOVS, is a state-of-the-art object detection model that is optimized for fast and
accurate de- tection of objects within the enhanced underwater images. YOLOV8 is known for its ability to
detect multiple objects in real-time, with high accuracy and minimal computational overhead. By applying
YOLOvV8 after the image enhancement and feature refinement steps, the system ensures that objects are
detected in their highest possible visual quality.

This integration of image enhancement, feature refinement, and object detection allows for a comprehensive
solution that addresses both visual clarity and object identification, crucial for applications such as
underwater exploration, robotics, and environmental monitoring. Overall, the combination of the Residual
Network for image enhancement, the Swin Transformer for feature refinement, and YOLOvVS8 for object
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detection provides a highly effective, robust, and real-time solution for underwater object detection in
challenging environments

IV RESULT AND DISCUSSION

1) Dataset Overview and Preprocessing Outcomes: The dataset comprised images from diverse
underwater environments,  including clear, turbid, and low-light conditions. After preprocessing with
MCRNet, a marked improvement in image quality was observed. Enhanced images exhibited reduced
noise, corrected colors, and better contrast, facilitating object detection.

TABLE 1 COMPARISON OF IMAGE ENHANCEMENT METRICS

Metric MCENet,+ Swin-YOLO | MCRNet, Only

PSNE (dB) 24.8 221

s5sDd 0.836 081

BRISQUE (Lower is better) 184 227
TAELE]

EVALUATION METRICS
TABLE 2 For Image Enhancement For Object Detection

Metric MCRENet + Swin-YOLO | MCRENet and YOLOvS Only
mAP@0.5 89.4%% 87.6%
Precision 92.7% 913%
Recall 89.9%% 88.1%
F1 Score 912% 89.7%

Quantitative assessment of the preprocessing step demonstrated significant improvements-in image clarity
metrics, such as:

Peak Signal-to-Noise Ratio (PSNR): Improved by 18.5% on average.

Structural Similarity Index (SSIM): Increased from, 0.62 to 0.84.

Color Restoration Index (CRI): Enhanced by 22%.
2.)YOLOV8 Model Training and Evaluation: The YOLOv8 model was fine-tuned on the enhanced dataset.
Key training parameters included a batch size of 16, a learning rate of 0.001, and training over 100 epochs.
The model demonstrated rapid convergence, achieving optimal performance within 75 epochs.

PSNR (Peak Signal-to-Noise Ratio)
25

20

0
MCRNet + Swin-YOLO MCRNet Only

Fig. 4. Comparison of PSNR- MCRNet-YOLO and MCRNet-swin-YOLO
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SSIM (Structural Similarity Index)
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SSIM Score

0.2

0.0
MCRNet + Swin-YOLO MCRNet Only

Fig. 5. Precision,Recall,F1-Score Comparison

PERFORMANCE METRICS:

Mean Average Precision (MAP@0.5): Achieved 87.6%, a 14.2% increase over the baseline model
trained without enhancement.

Precision and Recall: Precision improved to 91.3%, while recall reached 88.1%.

F1 Score: Recorded at 89.7%, indicating a balanced performance between precision and recall.
. Inference Speed: YOLOV8 achieved an average infer- ence time of 18 ms per image on an NVIDIA
RTX 3090 GPU.

3.)Integration with Auxiliary Models: The integration of Swin Transformer for feature extraction further
refined the detection performance. By fusing enhanced feature maps from the Swin Transformer with
YOLOVS8’s detection pipeline, the model effectively localized and classified objects in.complex underwater
scenarios. Performance improvements include:

MAP@0.5: Increased to 89.4%, showcasing a synergistic effect.

Object Localization Accuracy: Improved by 9% for smaller and occluded objects.

e Robustness to Noise: Misclassification rates decreased by 11% inturbid conditions.
Precision, Recall, F1-Score Comparison

mmm MCRNet + Swin-YOLO
YOLOvS

80

60

Score (%)

=
=]

20

Precision Recall F1-Score

Fig. 6. Comparison of mAp-MCRNet-YOLO and MCRNet-swin-YOLO
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Mean Average Precision (mAP @ 0.5)

80

60

mAP (%)

20

MCRNet + Swin-YOLO YOLOv8 Only

Fig. 7. Comparison of MCRNet-YOLO and MCRNet-swin-YOLO

4.)Comparison with Baseline and State-of-the-Art Models: Table 111 summarizes the performance of the
proposed hy- brid model against other methods, including Faster R-CNN, YOLOV5, and the standalone
YOLOVS.

5.)Significance of Preprocessing: Preprocessing with MCRNet proved instrumental in enhancing image
quality, which directly influenced the detection accuracy of YOLOv8. By mitigating underwater distortions
like color degradation and low contrast, the enhanced images allowed the model to better recognize object
features. This highlights the importance of domain specific preprocessing for underwater applications.

Original image Enhanced image Object detection

Fig. 8. Image enhancement and object detection using multi color space residual network and Yolo
v8

Original image Enhanced image Object detection

Fig. 9. Image enhancement and object detection using multi color space residual network ,swin
transformer and YOLO V8
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Fig. 10. Performance Trend Analysis

6.)YOLOVS'’s Performance in Underwater Scenarios: The results confirm YOLOVS’s suitability for
underwater object detection. Its advanced architecture, including CSPNet for feature propagation and
decoupled detection heads, enabled high precision and recall. The model’s fast inference speed makes it
viable for real-time applications, such as autonomous underwater vehicles (AUVs) and marine monitoring
systems.
7.)Impact of Auxiliary Models: The incorporation of Swin Transformer significantly improved detection
performance by providing hierarchical and multi-scale feature representations. This was particularly
beneficial for detecting small and oc- cluded objects, a common challenge in underwater environ- ments.
The combined use of MCRNet and Swin Transformer created a robust preprocessing and feature extraction
pipeline that addressed the unique challenges of underwater detection.
8.)Robustness to Environmental Variations: The hybrid model demonstrated strong generalization across
diverse un- derwater conditions. While baseline models struggled with turbid and low-light images, the
proposed approach maintained high accuracy. This robustness stems from the preprocessing and feature
enhancement techniques, which mitigate the ad- verse effects of underwater distortions.
9.)Comparison with State-of-the-Art Models: Compared to Faster R-CNN and YOLOVS5, the proposed model
achieved superior performance in all metrics. This underscores the advantage of integrating domain-specific
preprocessing and advanced feature extraction mechanisms with state-of-the-art detection models.
10.)Applications and Limitations: Applications: The en- hanced YOLOv8 model has broad applications,
including:

Marine biodiversity studies.

Autonomous underwater navigation.

Monitoring of underwater structures and pipelines.
Illegal fishing and underwater surveillance.

LIMITATIONS:

Computational Complexity: The integration of auxiliary models slightly increased inference time.
Dependency on Preprocessing: The model’s perfor- mance heavily relies on preprocessing quality,
which might not generalize to all underwater datasets.

Dataset Diversity: While the dataset was diverse, certain rare conditions, like extreme turbidity,
remain underrep- resented.
11.)Future Work: Future research should focus on:
Reducing computational overhead without compromising performance.
Expanding the dataset to include more diverse underwater scenarios.
Exploring unsupervised and semi-supervised learning ap- proaches for better generalization.
Real-world deployment and testing with AUVs to evalu- ate practical viability.

[JCRT2511479 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ e33


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

TABLE Ill
COMPARISON OF THE PROPOSED MODEL WITH BASELINE AND STATE-OF-THE-ART METHOD

MModel mAP@E0.5| Precizion | Eecall Fl Inference
Score Time
(%)
Faster 76 2% 22.1% T8 4% 80.2% 68
R-CNNM
YOLOvE | E1.5% 25.6% g3.2% 24 4% 28

YOLOvE | 27.6% 01.3% 25.1% 20.7% 18

Proposed | 8§9.4% 02.7% 80.0%4 0]1.2%4 21
Model

V Conclusion

The results demonstrate that the proposed hybrid model, combining MCRNet, Swin Transformer, and
YOLOVS, achieves state-of-the-art performance in underwater object de- tection. Preprocessing and advanced
feature extraction played pivotal roles in overcoming underwater distortions and improv- ing detection
accuracy. While there are areas for improvement, the robust performance across diverse scenarios highlights
the potential of this approach for real-world underwater applications.

. Dataset Overview and Preprocessing Outcomes

The dataset comprised images from diverse underwater environments, including clear, turbid, and low-light
conditions. After preprocessing with MCRNet, a marked improvement in image quality was observed.
Enhanced images exhibited reduced noise, corrected colors, and better contrast, facilitating object detection.
Qualitative comparisons before and after preprocessing are shown in Figure 1.

Quantitative assessment of the preprocessing step demon- strated significant improvements in image clarity
metrics, such as:Peak Signal- to-Noise Ratio (PSNR): Improved by 18.5 Structural Similarity Index (SSIM):
Increased from 0.62 to 0.84.

Color Restoration Index (CRI): Enhanced by 22

. YOLOvV8 Model Training and Evaluation

The YOLOv8 model was fine-tuned on the enhanced dataset. Key training parameters included a batch size
of 16, a learning rate of 0.001, and training over 100 epochs. The model demonstrated rapid convergence,
achieving optimal performance within 75 epochs.

Performance Metrics:

Mean Average Precision (NAP@0.5): Achieved 87.6 Precision and Recall: Precision improved to 91.3

F1 Score: Recorded at 89.7

Inference Speed: YOLOVS achieved an average inference time of 18 ms per image on an NVIDIA RTX 3090
GPU.

. Integration with Auxiliary Models

The integration of Swin Transformer for feature extraction further refined the detection performance. By
fusing enhanced feature maps from the Swin Transformer with YOLOVS’s detection pipeline, the model
effectively localized and clas- sified objects in complex underwater scenarios. Performance improvements
include:

MAP@0.5: Increased to 89.4%, showcasing a synergistic effect.
Object Localization Accuracy: Improved by 9% for smaller and occluded objects.
Robustness to Noise: Misclassification rates decreased by 11% in turbid conditions.
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