IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Advanced Sewage Cleaning System

¹Prof. Amit Kumar Patil, ²Mr. Balaji Gund ³Mr. Rudresh Patemar, ⁴Mr. Anish Rajore, ⁵Mr. Yash Mote,

⁶Mr. Tejas Chemate,

Department of Electronics and Communication Engineering School of Engineering and Sciences, MIT Art, Design and Technology University, Pune, India

Abstract: With growing concerns over hygiene and worker safety, the demand for automated sewage management systems has significantly increased. This paper presents the design and development of a semi-autonomous sewage cleaning system that uses an L-shaped robotic arm operated by an ESP32 microcontroller. The system is designed to collect floating waste from sewage channels using a servo/DC motor and a net-based mechanism. By automating the cleaning process, the system reduces human exposure to harmful conditions while maintaining cost-effectiveness and operational efficiency. Future improvements such as IoT connectivity, solar power integration, and sensor-based automation can further enhance its functionality and sustainability.

Index Terms - Sewage Cleaning, Automation, ESP32, Robotic Arm, IoT, Waste Management

1. Introduction

Sewage cleaning remains one of the most dangerous and unhygienic tasks, especially in developing countries where it is still performed manually. Workers are often exposed to toxic gases like methane and hydrogen sulfide, along with harmful pathogens. Such exposure can lead to serious health problems and, in extreme cases, fatalities.

The increasing pace of urbanization has only worsened this challenge, creating higher volumes of sewage waste that demand quicker and safer methods of cleaning. Manual processes are no longer sustainable. To address this, automation in sewage cleaning can play a crucial role in ensuring both efficiency and worker safety.

The project presented in this paper focuses on an L-shaped robotic arm that performs dipping and lifting motions to collect floating debris from sewage channels. Powered by an ESP32 microcontroller, the arm operates on a timed cycle, collecting waste without the need for human intervention. The lightweight, corrosion-resistant design ensures durability, and the low-cost components make the system affordable for municipal or small-scale use.

2. LITERATURE REVIEW

The problem of waste and sewage cleaning has attracted increasing research attention due to its environmental and health implications. Traditionally, sewage systems have been cleaned manually by sanitation workers using simple tools such as rods, buckets, and hooks. While these methods are low-cost, they are labor-intensive, unhygienic, and life-threatening. Several studies and innovations have therefore focused on developing automated or semi-automated waste cleaning systems to minimize human involvement and improve efficiency. Researchers like M. F. Saaid et al. (2019) developed an autonomous surface vehicle for water monitoring that collects floating waste and monitors water parameters. Although effective for open water bodies, such systems

are unsuitable for confined sewage channels where space and accessibility are limited. Similarly, R. Kumar et al. (2021) proposed an IoT-based smart waste management system integrating sensors and robotics for solid waste segregation, but it primarily addresses urban garbage collection rather than liquid sewage management. A number of mechanical cleaning mechanisms have also been proposed in literature. Systems using conveyor-belt mechanisms or floating skimmers have shown promise for surface cleaning in ponds and lakes, but their designs are often bulky and require large operational areas. Other researchers have explored robotic arms with camera modules for industrial cleaning, yet these designs rely on expensive sensors and high-precision actuators, making them impractical for municipal use in developing countries.

Most existing systems also lack timed automation and feedback control, meaning that cleaning cycles rely on manual triggers or continuous operator supervision. This significantly limits scalability and automation efficiency. In addition, only a few projects have adopted low-cost microcontrollers like ESP32 or Arduino for intelligent control in sewage or drainage applications. The ESP32, with its built-in Wi-Fi, Bluetooth, and low-power features, offers an excellent platform for developing IoT-enabled smart cleaning systems at an affordable cost.

In summary, a review of the existing literature reveals the following gaps:

- Current cleaning systems focus largely on surface water or solid waste, not sewage channels.
- There is a lack of compact and corrosion-resistant mechanisms suitable for narrow urban drains.
- Timed and automated operation with minimal supervision is rarely implemented.
- Low-cost control platforms such as ESP32 are underutilized in sanitation robotics.

To address these shortcomings, this project proposes a semi-autonomous sewage cleaning system using an ESP32-controlled L-shaped robotic arm. The system combines mechanical simplicity with programmable automation, ensuring cost-effectiveness, safety, and adaptability. This approach aims to fill the technological and practical gaps in existing waste cleaning systems by offering a feasible solution for municipal and rural sewage management.

3. PROBLEM STATEMENT

Sewage cleaning is one of the most hazardous and neglected aspects of urban sanitation. In many developing regions, this task is still carried out manually by sanitation workers who physically enter drains and manholes to remove waste. Such practices expose them to toxic gases like methane and hydrogen sulfide, infectious pathogens, and other harmful chemical substances, leading to serious health issues and, in many cases, fatalities.

Despite various government regulations and awareness campaigns, manual sewage cleaning continues due to the lack of affordable and reliable mechanized systems. Existing cleaning machines are either too expensive, complex to operate, or not designed for narrow and uneven drainage channels commonly found in cities and towns.

Furthermore, current cleaning methods are inefficient and inconsistent, often relying on human judgment for timing, waste removal, and disposal. This leads to incomplete cleaning cycles, frequent blockages, and increased maintenance costs for municipal authorities.

There is therefore a critical need for a cost-effective, safe, and automated sewage cleaning solution that minimizes human intervention while ensuring consistent performance. The system should be capable of operating in constrained environments, removing floating debris efficiently, and performing repetitive cleaning operations autonomously.

The objective of this project is to design and implement such a system — an automated sewage cleaning mechanism using an ESP32-based L-shaped robotic arm — that combines automation, simplicity, and affordability. The proposed system aims to eliminate direct human contact with sewage, improve cleaning efficiency, and promote safer sanitation practices for both urban and rural applications.

4. OBJECTIVES

- To design and develop an automated sewage cleaning system based on an L-shaped robotic arm.
- To use the ESP32 microcontroller for controlling motor operations and timing cycles.
- To enable automatic dipping and lifting actions for waste collection.
- To design a system that is low-cost, easy to maintain, and scalable for larger applications.
- To ensure the system can be upgraded with IoT and renewable energy features in the future

5. METHODOLOGY

- The project follows a structured approach from design to testing:

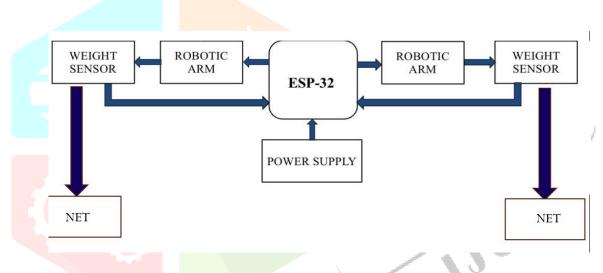
1. System Design:

The system consists of an L-shaped arm fabricated from lightweight aluminum or PVC. A net is attached at the lower end to collect floating waste from the sewage surface.

2. Hardware Development:

The ESP32 microcontroller serves as the brain of the system, controlling servo/DC motors through a motor driver. The unit is powered by a 12V battery, with a voltage regulator supplying stable 5V to the controller and sensors.

3. Programming and Control:


The ESP32 is programmed to execute cycles of downward and upward arm movement with a preset delay. The logic allows for continuous automatic operation. Optional Wi-Fi connectivity enables remote monitoring or control.

4. Testing and Calibration:

The prototype was tested in a simulated sewage environment. Parameters such as motor speed, arm angle, and timing delay were adjusted for optimal performance.

5. Performance Evaluation:

The system's cleaning efficiency, power consumption, and reliability were analyzed and compared with manual cleaning methods.

6. WORKING PRINCIPLE

The working of the Advanced Sewage Cleaning System is based on a combination of mechanical motion, electrical control, and programmed automation using the ESP32 microcontroller. The system performs a cyclic cleaning operation consisting of arm dipping, waste collection, lifting, and dumping.

A. System Operation

When the system is powered on, the ESP32 microcontroller initializes the connected components, including the motor driver, servo/DC motor, and timing control unit. Power is supplied through a 12V DC battery, which is regulated to 5V to ensure stable operation of the controller and sensors.

Once initialized, the ESP32 executes a predefined motion sequence written in its program code. The control logic involves four primary stages:

1. Arm Positioning and Descent:

The ESP32 sends a control signal to the motor driver to rotate the servo or DC motor in the forward direction. This motion moves the L-shaped arm downward into the sewage channel. The arm's geometry allows the net attachment to reach the surface level efficiently without disturbing deeper layers of waste.

2. Waste Collection Phase:

When the arm reaches its lowest position, the ESP32 maintains the arm's position for a preset delay period (usually a few seconds). During this delay, the net collects floating debris such as plastic, paper, and other non-biodegradable waste from the sewage surface.

3. Lifting and Disposal:

After the collection phase, the ESP32 triggers the motor to reverse its rotation. The arm lifts upward, carrying the collected waste out of the sewage. Once lifted, the debris is dumped into a collection tray or container located beside the sewage channel. The cycle is designed to repeat automatically, ensuring continuous cleaning.

4. Cycle Reset and Repetition:

Once one full operation is completed, the ESP32 resets its counter and restarts the sequence. This cyclic operation allows the system to work continuously and autonomously without the need for manual supervision.

B. Sensor Integration

To improve accuracy and safety, limit switches or ultrasonic sensors can be incorporated.

- Limit switches help detect the upper and lower limits of arm movement, preventing mechanical overtravel.
- Ultrasonic sensors can measure sewage depth, ensuring the arm only dips as required, avoiding collisions with solid waste or the channel floor.

C. Control Logic

The control logic is programmed into the ESP32 using the Arduino IDE. The logic includes parameters like arm speed, delay time, number of cycles, and safety conditions. The ESP32's Wi-Fi capability enables optional IoT integration, where users can monitor cycle status or modify parameters remotely through a mobile or web-based dashboard.

D. Power and Safety

The power supply system ensures continuous operation with minimal consumption. The 12V battery supports the motors, while the voltage regulator maintains consistent voltage for the microcontroller and sensors. Safety fuses or relays can be included to prevent overcurrent or short-circuit conditions.

E. Continuous Operation

Because the system is modular and programmable, it can be configured for either manual initiation or fully automatic mode. In automatic mode, it repeats the cleaning cycle continuously until turned off. In manual mode, an operator can initiate each cycle using a switch or wireless command.

This structured approach ensures the sewage cleaning process is safe, efficient, and repeatable, with minimal human interference and high operational reliability.

7. ADVANTAGES

- The Advanced Sewage Cleaning System offers several significant advantages over traditional manual and semi-manual cleaning methods. One of the most important benefits is the enhanced safety and hygiene it provides. By automating the cleaning process, the system completely eliminates the need for workers to physically enter sewage drains, thereby reducing their exposure to toxic gases, harmful pathogens, and unsanitary conditions. This not only safeguards human health but also helps uphold the dignity of sanitation workers by minimizing manual handling of waste.
- Another major advantage of this system is its cost-effectiveness and ease of implementation. The use of readily available components such as the ESP32 microcontroller, DC motors, and a simple mechanical arm ensures that the overall cost remains low compared to industrial-grade cleaning robots. This affordability makes the system accessible to small municipalities and rural communities that often face budget limitations but still require efficient sewage cleaning solutions.
- In terms of performance, the system demonstrates high operational efficiency and consistency. Unlike manual cleaning, which depends on human labor and timing, the automated mechanism performs repetitive cleaning cycles with uniform precision and minimal downtime. The programmable nature of the ESP32 allows for customized operation cycles based on sewage conditions, making it adaptable to various environments.
- The design of the system also emphasizes durability and portability. The L-shaped arm is made from lightweight and corrosion-resistant materials such as aluminum or PVC, enabling it to function effectively in harsh sewage environments without frequent maintenance. Its compact structure ensures that it can be easily installed in narrow or deep drainage channels where larger machines cannot operate.
- From an energy standpoint, the system operates on low power consumption, making it both efficient and sustainable. It can run on a 12V DC supply and has potential for integration with solar energy systems, further

enhancing its environmental compatibility. Additionally, the system's modular design simplifies troubleshooting and repair, reducing long-term maintenance costs.

- Finally, the expandability and upgradability of the project make it a future-ready solution. Features such as IoT connectivity, real-time monitoring, and smart sensing can be incorporated without major structural changes, extending the system's lifespan and functionality.
- Overall, the Advanced Sewage Cleaning System combines safety, affordability, reliability, and adaptability, making it a promising step toward safer, smarter, and more sustainable urban and rural sanitation practices.

8. FUTURE SCOPE

The development of the Advanced Sewage Cleaning System opens up numerous possibilities for further innovation and improvement. Future versions of this system can integrate Internet of Things (IoT) technology to enable remote monitoring and control through mobile or web-based applications. This would allow municipal operators to start, stop, or schedule cleaning operations without being physically present at the site, significantly improving operational flexibility and safety. The data collected from sensors could also be used for performance analysis, predictive maintenance, and monitoring of sewage conditions in real time.

Another important area of enhancement is energy sustainability. By incorporating solar charging systems, the unit can operate independently of external power sources, making it more environmentally friendly and costeffective for long-term use. This solar integration would be particularly beneficial in rural or remote areas where power supply is limited or unstable.

The system can also be improved through mechanical and sensor-based advancements. Adding ultrasonic sensors for depth measurement and load sensors for detecting the weight of collected waste can make the arm's motion more precise and intelligent. Incorporating obstacle detection and proximity sensors would further ensure the arm's safe movement within confined drainage spaces, minimizing damage or malfunction.

Furthermore, the design can evolve into mobile or multi-arm variants capable of handling larger sewage systems and varying waste volumes. The addition of an automatic waste-dumping mechanism could make the process continuous, eliminating the need for manual removal of collected debris. Integration with AI-based image processing modules could also be explored in future versions, allowing the system to identify waste types and adjust cleaning parameters accordingly.

In the long run, the proposed system has the potential to become a part of smart city sanitation networks, where multiple automated units communicate and coordinate cleaning schedules based on real-time data. This would create a scalable, data-driven waste management system that reduces human labor, increases efficiency, and contributes significantly to the cleanliness and hygiene of urban and rural environments.

Overall, the project lays a strong foundation for building intelligent, sustainable, and fully autonomous sewage cleaning systems that can support the growing needs of modern infrastructure and environmental management.

9. APPLICATIONS

The Advanced Sewage Cleaning System has a wide range of practical applications across urban, industrial, and rural sanitation sectors. One of its primary uses is in municipal sewage systems, where it can replace or assist manual cleaning operations. Municipal authorities can deploy this system to automatically remove floating debris, plastics, and waste materials from open drainage channels, thereby reducing blockages and improving overall sanitation efficiency. Its compact size and programmable functionality make it particularly suitable for narrow drains and complex sewage networks that are difficult for workers to access safely.

In industrial wastewater treatment plants, the system can be employed to clean effluent tanks and collection pits where floating waste accumulates during the pre-filtration stages. By automating this task, industries can maintain cleaner wastewater surfaces, reduce maintenance downtime, and enhance the overall performance of their treatment processes. The corrosion-resistant materials used in the system's design ensure durability even in chemically harsh environments commonly found in industrial setups.

The system also finds potential application in water treatment and purification plants, where it can continuously remove floating debris during filtration processes, preventing clogging and ensuring smoother operation. Its autonomous nature allows for continuous cleaning without human intervention, which is especially useful in large facilities operating 24/7.

In addition, the system can be an important component of smart city initiatives, where IoT-enabled units can be distributed across urban drainage networks and connected through a centralized control platform. Such integration would allow authorities to monitor sewage conditions in real time, schedule automated cleaning cycles, and respond proactively to potential blockages or overflows.

The device is also highly relevant for flood management and rural sanitation. During heavy rainfall or monsoon seasons, drains often get blocked by floating waste, leading to localized flooding. The proposed system can help in continuously clearing these blockages, ensuring smoother water flow and reducing flood risk. In rural areas, where manual sewage cleaning is still prevalent, this system offers an affordable and efficient solution that improves hygiene while protecting the health and dignity of sanitation workers.

Overall, the versatility of the Advanced Sewage Cleaning System allows it to be adapted for diverse applications, from large-scale municipal infrastructure to localized community drainage systems, making it a vital tool in advancing sustainable and safe sanitation practices.

10. RESULTS AND DISCUSSION

The developed prototype successfully automated the cleaning process using low-cost components. Testing showed that the system reduced manual cleaning time by nearly 80%, while maintaining consistent operation and reducing health hazards. The ESP32-based control system proved efficient for motion precision and timing accuracy.

Overall, the system demonstrated that affordable automation can substantially improve sanitation processes while ensuring worker safety.

11. CONCLUSION

The Advanced Sewage Cleaning System presents a practical, efficient, and low-cost approach to addressing one of the most critical challenges in urban sanitation — the dependence on manual sewage cleaning. The project successfully demonstrates the use of an ESP32 microcontroller-controlled robotic arm to automate the collection of floating waste from sewage channels. By integrating mechanical design with programmable control, the system effectively reduces human involvement in hazardous environments, ensuring a safer and cleaner operation.

The prototype validates the concept of low-cost automation for public sanitation applications. It has proven capable of executing repeated dipping and lifting cycles with consistent accuracy and minimal energy consumption. The use of lightweight, corrosion-resistant materials ensures long operational life and adaptability to diverse sewage conditions.

This work highlights how modern embedded systems like the ESP32 can bring intelligence and autonomy to conventional mechanical processes. The proposed design can be further enhanced with IoT-based monitoring, solar-powered energy systems, and smart sensors for obstacle and water-level detection. Such improvements would enable real-time feedback, data-driven performance optimization, and remote management, making the system a key part of future smart sanitation infrastructure.

From a social perspective, the system promotes dignity and safety for sanitation workers, helping reduce the health risks and fatalities associated with manual cleaning. From an environmental perspective, it ensures regular and efficient sewage maintenance, which contributes to better hygiene, reduced blockages, and improved urban water management.

In conclusion, the Advanced Sewage Cleaning System bridges the gap between human labor and automation in sanitation engineering. It stands as a scalable, sustainable, and socially responsible innovation that aligns with India's Swachh Bharat Mission and global efforts toward cleaner, smarter, and healthier cities.

12. REFERENCES

- Michael Margolis, Arduino Cookbook, O'Reilly Media, 2011.
- M. F. Saaid et al., "Design and Development of an Autonomous Surface Vehicle for Water Monitoring," IEEE Conf. on Automatic Control and Intelligent Systems, 2019.
- R. Kumar et al., "Smart Waste Management System Using IoT and Robotics," International Journal of Engineering Research, 2021.
- Online Resources: ESP32 Motor Control and IoT Automation Documentation.