IJCRT.ORG ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Oral Disintegrating Film Comprehensive Review

¹Mrunali Munindra kumbhare, ²Dr. Suhas Sakarkar

Maharashtra Institute of Pharmacy, Betala, Bramhapuri, Chandrapur, Maharashtra- 441206 (India)

Abstract:

Oral dissolving films (ODFs) are advanced oral dosage forms designed for application onto the buccal mucosa, offering both local and systemic therapeutic effects. These films are often preferred over conventional oral drug delivery systems due to their flexibility, ease of use, and improved patient comfort. ODFs leverage the bioadhesive properties of certain polymers, which, upon hydration, adhere to specific mucosal regions for prolonged periods. This allows them to bypass first-pass metabolism and enhance bioavailability. Additionally, they are self-administrable, cost-effective, and exhibit high patient compliance. Among the various techniques used for formulating ODFs, the solvent casting method is the most widely employed. Typically, hydrophilic polymers are combined with other excipients to create films that disintegrate rapidly, releasing the active pharmaceutical ingredients (APIs) within seconds. ODFs provide multiple advantages, including ease of access, simple administration and withdrawal, strong mucosal retention, low enzymatic degradation, cost-efficiency, and enhanced patient compliance. These attributes contribute to their growing potential for commercial and therapeutic application. This review focuses on the mechanism of action, advantages, formulation components, preparation methods, evaluation parameters, and currently marketed ODF products. It also discusses advancements in novel fast-dissolving technologies within this drug delivery platform.

Keywords: Solvent casting method, Rolling Method, flexible films, Compressed film based-systems, Mucoadhesive sustained release films.

INTRODUCTION

The oral route remains the most preferred method for drug administration due to its convenience, ease of self-administration, and cost-effectiveness. It is widely accepted by patients and accounts for nearly 60% of all available pharmaceutical dosage forms, primarily as oral solid dosage forms. However, challenges such as low bioavailability, delayed onset of action, and difficulty swallowing (dysphagia) have

prompted the pharmaceutical industry to explore alternative dosage forms, including parenterals and liquid orals.¹

Among the innovations in oral drug delivery, Fast Dissolving Oral Films (FDOFs) or Orally Disintegrating Films (ODFs) have emerged as an advanced, patient-friendly alternative. These are ultrathin, flexible films that rapidly disintegrate or dissolve upon contact with saliva, usually within seconds, without the need for water or chewing.² This dosage form is especially beneficial for populations such as pediatric, geriatric, bedridden, and emetic patients, as well as in emergency conditions like allergic attacks or sudden coughing episodes.³

FDOFs are composed of hydrophilic polymers that allow for rapid dissolution in the buccal cavity, enabling systemic drug absorption via the oral mucosa. The oral mucosa offers a high degree of vascularization and permeability—4 to 1000 times greater than the skin—leading to quick onset of action and improved bioavailability, particularly for drugs with extensive first-pass metabolism and low doses.⁴

Advantages of Orally Disintegrating Films

Orally disintegrating films offer multiple benefits:

- Ease of administration without water⁵
- Improved patient compliance, especially in children and the elderly6
- Enhanced bioavailability through pre-gastric absorption⁷
- Improved stability due to the solid-state nature of the film⁸
- Reduced choking risk, which is critical in pediatric care
- JCR Masking of bitter taste, a key factor in pediatric drug acceptability

This delivery system is particularly suitable for children, who often struggle with traditional dosage forms due to taste preferences, swallowing difficulties, and increased sensitivity to drug toxicity. However, pediatric formulations must also consider the safety of excipients, 9 as some compounds safe for adults can be toxic in neonates and infants. Furthermore, regulatory changes—such as the 2007 Pediatric Regulation—have emphasized the importance of tailoring drugs to children's physiological needs, requiring specialized formulations and strengths. 10

Despite these challenges, Orally Disintegrating Films have shown great promise as a pediatric-friendly dosage form, especially for drugs like Topiramate (TPM), which is widely used for epilepsy management in children.¹¹

IJCR

- Hydroxypropyl methylcellulose (HPMC)
- Guar gum
- Polyethylene oxide (PEO)

And plasticizers like:

- Glycerin
- Sorbitol

These excipients were tested across a range of concentrations to optimize the film for:

- Rapid disintegration
- Acceptable mechanical properties
- Palatability
- Drug content uniformity
- Stability

Classification of oral films

There are 3 types of oral films, they are:

- 1. Flash release/Fast dissolving films (placed on the tongue)
- 2. Mucoadhesive melt away films (gingival or buccal region)
- 3. Mucoadhesive sustained release films (adhere to the buccal mucosa)

FAST DISSOLVING TECHNOLOGY30

- 1. Lyophilized systems
- 2. Compressed film-based types

1. Lyophilized systems:

This technology involves taking a suspension or solution of drug with other structural excipients, by using mould or blister pack, which forms film-shaped units.¹³

2. Compressed film based-systems

The standard film technology by direct compression of excipients is used to produce this system. The film technologies have different levels of hardness and friability depending on method of manufacturing.¹⁴

JCR

Oral Thin Films

It is also called as oral wafers. Form the past few years the oral thin films are evolved in confection and oral care markets in the form of breath strips¹⁵

Advantages of orally FDFs:

- 1.ODFs can be administered without water, anywhere& anytime. 16
- 2.Larger superficial area (LSA) films aid in rapid disintegration as well as in dissolution of the bodies oral cavity.¹⁷
- 3. Promoting mouth-freshening property. 18

Oral Mucosa

Three layers of cells make up the oral mucosa:

Stratified epithelium: The basement membrane separates this outermost layer in the oral cavity from the connective tissue. 19

Lamina propria: Positioned beneath the basement membrane, this layer consists of connective tissue.

Submucous membrane: Acting as the oral cavity's lowest layer

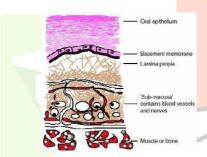


Figure 1. Structure of oral mucus

Composition of Oral Disintegrating Films

Oral softening films are a fine layer with parts ranging from 5 to 20 cm2 containing drugs. The formulation allows for loading drugs up to 30 mg. From a supervisory standpoint, for use in oral pharmaceutical dosage forms, all additives contained in the formulation must be licensed for application and generally recognized as safe. ²⁰

Components of Formulation:

- Drug
- Film-forming polymers
- Plasticizers
- Salvia stimulating agents
- Sweetener

Film Forming Polymers

Your paragraph provides important insight into the role of hydrophilic polymers in the formulation of Orally Disintegrating Films (ODFs). However, it could benefit from improved clarity, grammar, and academic tone. Here's a refined version of your text with clearer structure, better flow, and improved readability.²¹

Role of Hydrophilic Polymers in Orally Disintegrating Films

Hydrophilic polymers are essential in the formulation of orally disintegrating films due to their ability to facilitate rapid disintegration, enhance mouthfeel, and impart desirable mechanical properties such as flexibility and tensile strength.²² To achieve optimal film characteristics-including hydrophilicity, flexibility, stability, and pleasant sensory attributes polymers are often used in combination with other polymers rather than individually²³

One of the most critical decisions in ODF formulation is the selection of an appropriate polymer, as it directly influences key film properties such as disintegration time, mechanical strength, and drug release profile. Typically, the polymer content should constitute at least 45% of the total dry film weight, with 60%-65% being the recommended range to ensure the desired performance characteristics.²⁴

Importantly, there is a correlation between the molecular weight of the polymer and its disintegration behaviour. As the molecular weight increases, the rate of film disintegration tends to decrease, potentially affecting the film's efficacy in delivering the active pharmaceutical ingredient (API) rapidly.²⁵

Would you like to include examples of commonly used hydrophilic polymers like HPMC, pullulan, or PEO, along with their specific advantages and limitations in ODF formulations? That could strengthen this section further, especially if you're writing a research paper or literature review. The polymers selected for oral thin films must meet the following criteria²⁶

- Non-irritating and non-toxic without impurities
- Have favorable spreadability and wetting property
- Exhibit sufficient tensile, peel, and shear strengths
- Willingly existible and cost-effective
- Low molecular weight and soluble in water
- Display outstanding film-creating ability
- Keep a long shelf life

Polymers

Polymers are the most important ingredient of the oral fast dissolving film.

Plasticizers

Plasticizers improve flexibility and reduce brittleness of FDFs and by addition of plasticizers, tensile strength and elongation can be improved.²⁷

Sweetening Agents

Both natural and artificial sweeteners aided to improve palatability of FDFs. Commonly, these agents are used in a minimal amount the is 3-6% w/w, either alone or in combination. The classical sources of sweetener are sucrose, dextrose, fructose, glucose, liquid glucose and isomaltose. The artificial sweeteners are acesulfame-K, sucralose, alitame and neotame which fall under the second-generation artificial sweeteners.²⁸

Saliva-stimulating Agent

They increase production of saliva helps in faster disintegration of rapid dissolving films formulations.

Stabilizing-Agents

Agent included in a formulation to render it stable physically such as preserving consistency of a solution known as stabilizing agent. Common stabilizing agents are xanthan gum, locust bean-gum and carrageenan, pullulan gum.²⁹

Flavouring Agents

Recognition of oral disintegrating/dissolving formulation by an individual depend on initial flavour quality observed in first few seconds after product has been consumed & after taste of formulation least for 10 min.³⁰

Colouring Agents

These are the agents which gives suitable colour to the formulation and should have the approval from FD & C act and concentration of these colouring agents not exceed more than 1 % of orally.³¹

Method of film formulation

There are almost 4 method foe the film formulation

- 1. Solvent casting method
- 2. Hot Melt Extrusion
- 3. Semisolid Casting Method
- 4. Rolling Method

1. Solvent casting method ³³

The most average methodology for assembling ODFs with water dissolvable excipients, polymers, and drugs broke up in de-ionized water is dissolvable projecting; as a result, a homogenous combination is accomplished by utilizing high shear powers produced by a shear processor. The pre-arranged arrangement is poured onto a petri plate and the dissolvable is

permitted to dry by presenting it to high temperatures to create great quality movies. The dissolvable projecting strategy was utilized to make an orodispersible film of tianeptine sodium utilizing different grades of Lycoat and HPMC. In the dissolvable projecting procedure, the film framing polymer is generally absorbed a reasonable dissolvable short-term. In view of basic physicochemical highlights of the API, like softening point, shear responsiveness, and polymorphic structure,³⁴ the kind of API that should be remembered for ODF characterizes the ideal dissolvable. The medication's similarity with the dissolvable and other excipients is considered prior to finishing a detailing. The presence of caught air rises during the detailing system can affect the consistency of the completed film. With the assistance of a vacuum siphon, the blend is deaerated. The dissolvable projecting strategy was likewise utilized to make a mosapride orodispersible film definition.³⁵ In the projecting system, the consistency of the answer for be poured is vital. Pullulan focuses going from 2% to 8% outcome in a low thickness arrangement that makes film projecting basic. Anastrozole quick dissolving films were additionally effectively made utilizing the dissolvable projecting strategy with HPMC (E5) and polyvinyl liquor (PVA).

Figure no: 2 Solvent casting method flow chart

2. Hot Melt Extrusion

In hot-liquefy expulsion, dry parts for the film are warmed and homogenized by an extruder screw until they are liquid and blended. The extrudate is driven into the fundamental film shape by a level expulsion kick the bucket. Lengthening rollers can influence the thickness and strength of the film while it is as yet hot and adaptable. In the wake of cooling and cutting the expelled film, the hot soften expulsion procedure is talked about.³⁶

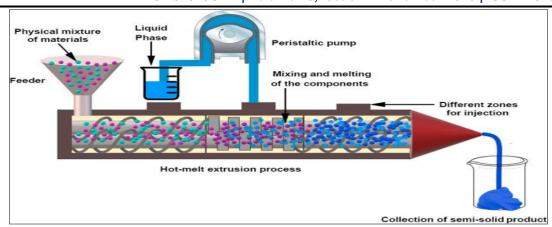


Figure no: 3. Hot Melt Extrusion

3. Semisolid Casting Method

A film-shaping polymer arrangement that is water solvent is made. The resultant arrangement is joined with a polymer arrangement that is corrosive insoluble (for example cellulose acetic acid derivation phthalate, cellulose acetic acid derivation butyrate). To acquire gel mass, an adequate measure of plasticizer is utilized. At last, the gel mass is shaped into the movies or strips utilizing heat-controlled drums. Somewhere in the range of 0.015 and 0.05 creeps of film thickness ought to be utilized.³⁷

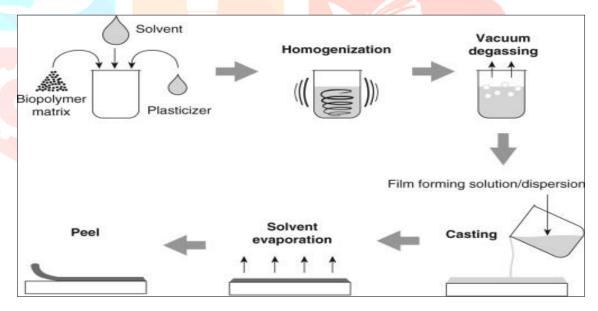


Figure no. 4: Semisolid Casting Method

4. Rolling Method

This strategy includes making a pre-blend, adding a functioning, and afterward producing a film. Set up a pre-blend in with a film-framing polymer, a polar dissolvable, and different added substances (barring a medication) and add it to the expert clump feed tank. A first metering siphon and control valve ought to be utilized to take care of it to either of the first and second blenders. Add the required measure of medicine to the blender you've chosen. Consolidate the drug with the expert cluster pre-blend to get a uniform grid. Second metering siphons convey a foreordained measure of uniform framework to the dish. At long last, the film is framed and

shipped to the help roller on the substrate. The wet film is dried by means of controlled base drying.³⁸ The most generally utilized solvents are water and a combination of water and liquor.

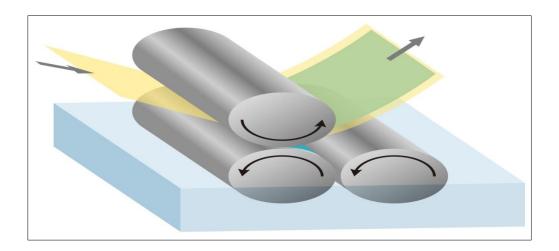


Figure no. 5: Rolling Method

Evaluation Parameters

- 1. Thickness Test
- 2. Tack Test
- 3. Youngs Modulus
- 4. Tail flick Test
- 5. Thermodynamic Stability Study
- 6. Drug Content
- 7. Viscosity
- 8. Tensile Strength
- 9. Folding Endurance
- 10. Weight of films
- 11. % Elongation
- 12. Swelling Properties
- 13. Disintegration Time
- 14. Surface pH
- 15. Content Uniformity
- 16. Dissolution test

Table no. 1: Marketed Preparation of Mouth Dissolving Film

Product	API	Manufacturer	Use
Listerine	Cool Mint	Prfizer	Mouth Ulcer
Benadryl	Diphenylhydramine HCL	Prfizer	Antiallergic
Suppress	Menthol	InnoZen,® Inc	Cough Suppressant
Klonopin wafers	Clonazepam	Solvay Pharmaceutical	Antianxiety
Theraflu	Dextromethorphan	Novartis	Antiallergic
Orajel	Menthol/Pectin	Del	Mouth Freshner

REFERENCE

- 1. Ali M.S et.al 'Formulation and Evaluation of Fast Dissolving Oral Films of Diazepam' Jr of Pharmacovigilance, 2016 vol 4(3), p.no 1-5.
- 2. Alka Tomar et.al 'Formulation and Evaluation of Fast Dissolving Oral Film of Dicyclomine as potential route of buccal delivery' Int Jr Dr De &Res Jun 2012, vol 4(2), p.no 408-417.
- 3. Anjum Pathan et.al 'Formulation and Evaluation of Fast Dissolving Oral Film of Promethazine hydrochloride using different surfactant' Int Jr Ph &Bio Sci, 2016 vol 3(1), p.no 74-84.
- 4. Aulton ME, Wells TI, pharmaceutics: the science of dosage from design. London, England: churchil; livingstone; 1998.
- 5. Bhyan B., Jangra S, Kaur M, Sing H. Orally Fast Dissolving Films: Innovations In Formulation and Technology. International Journal of Pharmaceutical Sciences Review and Research, 2011, 9: 50-56.
- 6. British Pharmacopoeia. Electronic Edition, Crown Inc., London, 2007.
- 7. Buchi. N et.al 'Development and Evaluation of Fast Dissolving Films of Sumatriptan Succinate for better therapeutic efficacy' Jr App Ph Sci, Aug 2013 vol 3 (8), p.no 161-166.
- 8. Chen, M., Tirol, et.al "Film Forming Polymers In Fast Dissolve Oral Films" AAPS Annual meetingsposters and papers, T3200, 2006.
- 9. PATEL M. Dasharath * and Dharmendrasinh V. Dabhi. Development and Characterization of Oral Dissolving Film For Promethazine HCL 2014, 4728-4740.
- 10. Deepthi.A et.al 'Formulation and Evaluation of Fast Dissolving Thin Films.
- 11. Desai.P et.al 'Design and evaluation of fast dissolving film of Domperidone' Int Res Jr Ph 2012, 3(9), P.NO 134-135.
- 12. Patel M.Dipal et.al 'Formulation and Evaluation of Fast Dissolving Film Of Cetirizine & Dextromethorphan' Int Jr Ph Sci &Nanotech, 2016, vol 9 (3) p.no 3305-3311.
- 13. Dr D. Nagendrakumar et.al 'Formulation and Evaluation of Fast Dissolving Oral Film Of Metoprolol Succinate' Int Jr En & App Sci, 2015, vol 6 (4) p.no 28-36.

- 14. Dr. Arunakumari et.al 'Design and Evaluation of Losartan Potassium Fast Dissolving Films' Int Jr Inn Ph Res, 2014, vol 5 (4) p.no 431-439.
- 15. Fadden, D., Kulkarni, N. and Sorg, A. "Fast Dissolving Orally Consumable Films containing a modified starch for improved heat and moisture resistance." WO/2004/096193, 2004.
- 16. Farhana Sultana et.al 'Preparation and Evaluation of Fast Dissolving Oral Thin Films Of Caffeine' Int Jr Ph &Bio Sci, 2013, vol 3(1) p.no 152-161.
- 17. Fast Dissolving Film of Salbutamol Sulphate." Drug Development and Ind. Pharm. 2005, 31, 25-34.
- 18. Gavaskar, B., Vijayakumar, S. and Sharan, G., "Overview On Fast Dissolving Films." Int. J. pharm. Pharma. Sci. 2010, 2(3), 29-33
- 19. P. Harshal ashok, swati, ramesh R.K.Development and Evaluation Of Mouth Dissolving Film of Ondansetron HCL using HPMC E5 in combination with Taro Gum and other commercially available gums ,2017 ,journal of molecular pharmaceutics & organic process research 10.4172/2329-9053.1000138
- 20. Jani G.K, Shah D.P, Prajapati V.D, Jain V.C (2009) Gums and mucilages-versatile excipients for pharmaceutical formulations. AJPSR 4: 308-322.
- 21. J.Julie Mariam et.al 'Formulation of Propranolol Hydrochloride Oral Thin Films For Migraine Prophylaxis' Int Jr Ph Sci Rev &Res, 2017, vol 42 (1) p.no 8-14.
- 22. K.Senthilkumar et.al 'Formulation Development and Mouth dissolving film of Etoricoxib for pain management' Adv in ph, 2014, Vol 2015, Isssue No. 702963,
- 23. U.Kamalesh et.al 'Formulation and Evaluation of Mouth Dissolving Films of Paracetamol' Int Jr Ph &Sci, 2014, vol 6(5), p.no 200-202.
- 24. Komaragiri sasi deepthi et.al 'Formulation and Characterization of Atenolol Fast Dissolving Films' In Jr Ph Sci Res 2012, vol 2 (2) p.no 58- 62.
- 25. Kumar Kranthi et.al 'Formulation And Evaluation Of Carvedilol Fast Dissolving Films' Int Jr Ph &An Res, jun 2015, vol 4(2), p.no 116-128.
- 26. Leon lachman, Herbert A, liberman and joseph L.King: the theory and practice of industrial pharmacy p.no 293-303.
- 27. Lin H, Huang AS (1993) Chemical Composition and Some Physical Properties of A Water-Soluble Gum In Taro (Colocasia Esculenta.). Food Chemistry 48: 403–409.
- 28. Rakesh D. Tiwle, Research Scholar (Pharmacy), Enhancing Dissolution Rates in Fast-Dissolving Tablets of Antiemetic Agents: Formulation Strategies, International Advance Journal of Engineering, Science and Management (IAJESM) July-December 2023, Submitted in November 2023
- 29. Mukherjee B, Mahapatra S, Gupta R (2005) A comparison between povidone- ethylcellulose and povidone-eudragit transdermal dexamethasone matrix patches based on In vitro skin permeation. Eur J Pharm Biopharm 59: 475-483.
- 30. Narayana Raju.p et.al 'Formulation and Evaluation of Fast Dissolving Films of Loratidine by Solvent Casting Method' The Ph Inn, 2013 vol 2(2), p.no 31-34.
- 31. Pavani.S et.al 'Formulation development of taste masked disintegrating films of Atenolol' Inn Int Jr Med Ph Sci, 2017 vol 2 (2) p.no 1-3.

- 32. Poonam A. Padmavar et.al 'Formulation and Evaluation of FastDissolving Oral Film of bisoprolol fumarate' 2015, vol 6 (1) p.no 135-142.
- 33. Poonam phoste et.al 'Mouth Dissolving Film: A novel approach to delivery of Lisinipril' Int Jr Ph Sci&Res, 2015, vol 6(2) p.no 398-405.
- 34. Pravin Kumar Sharma et.al 'Development and Evaluation of Fast Dissolving Oral Film of poorly water drug Felodipine' A Jr Ph, 2018, vol 12(1) p.no 256-267.
- 35. Priyanka S Patil et.al 'Formulation and Evaluation of Fast Mouth Dissolving Films of Metoprolol Succintae' W Jr Ph & Ph Sci, 2017, vol 6 (7) p.no 657-669.
- 36. Raghavendra rao N.G et.al 'Design and development of fast dissolving thin films of Losartan pottasium' Int Jr Ph Sci Dr Res, 2016, vol 8(1) p.no 1-6.
- 37. Rajeshwar V et.al 'Formulation and evaluation of rapid dissolving films of pravastin sodium' Int Jr Biomed & Adv Res, 2015, vol 6(8) p.no 594- 598.
- 38. Ralele Swathi et.al 'Formulation and evaluation of mouth dissolving films of Almotriptan malate' Jr Ph &Bio Sci, 2015, vol 3, p.no 42-52.

