

Attrix - Real Time Employee Attrition Prediction And Recommendation

¹Lavanya R, ²MuthuKumar.G,

¹Student, ²Assistant Professor,

¹Artificial Intelligence and Data Science,

¹S.A Engineering College, Avadi, India

Abstract: Employee attrition has become a critical challenge in today's corporate environment, as retaining skilled employees is directly tied to organizational growth and stability. High attrition disrupts projects, increases recruitment and training costs, and lowers productivity. This project, ATTRIX – Real-Time Employee Attrition Prediction and Recommendation, addresses this issue by predicting whether an employee is likely to leave and providing HR teams with interpretable insights. To guarantee predictability and transparency, it combines explainable AI (XAI) methods like SHAP with machine learning models like Logistic Regression, Random Forest, and XGBoost. Unlike traditional black-box systems, ATTRIX highlights key factors like job satisfaction, salary and work-life balance that influence attrition. Beyond prediction, ATTRIX incorporates a rule-based recommendation engine that suggests actionable strategies tailored to each employee's situation, such as career development opportunities, flexible work options, or salary adjustments. The system is deployed on the cloud for real-time accessibility and scalability, making it practical for organizations of all sizes. By combining predictive analytics, explainability and recommendations, ATTRIX enables HR teams to proactively reduce attrition, improve employee satisfaction, and strengthen workforce management.

Index Terms - Employee Attrition Prediction, Machine Learning, Deep Learning, Explainable AI, Recommendation Engine, Workforce Retention

Introduction

An employee attrition prediction system is an intelligent and automated solution designed to identify whether an employee is likely to leave an organization. In today's competitive business environment, retaining talented employees is crucial for organizational growth and stability. Sudden and unexpected attrition leads to increased recruitment costs, project delays and a loss of valuable organizational knowledge. Addressing this challenge requires proactive measures supported by data-driven decision-making. The proposed system, ATTRIX – Real-Time Employee Attrition Prediction and Recommendation, leverages with the required methods to use and perform the Artificial Intelligence (AI) and Machine Learning (ML) techniques to analyze employee data and predict the probability of attrition. The system processes various attributes such as job role, salary, years of experience, worklife balance and job satisfaction. Data preprocessing techniques including handling missing values, encoding categorical variables and feature scaling are applied to the prepare the dataset for analysis. Additionally, a rule-based recommendation engine provides actionable retention strategies, such as salary adjustments, career development opportunities or workload management. The system is deployed on the cloud, ensuring real-time predictions and accessibility for HR managers across departments. Data preprocessing techniques including handling missing values, encoding categorical variables and feature scaling are applied to prepare the dataset for analysis.

I. OVERVIEW

2.1 Importance

The importance of integrating Artificial Intelligence (AI) and Machine Learning (ML) in employee attrition prediction cannot be overstated. In modern organizations, HR teams handle vast amounts of employee related data, and manual analysis is insufficient for identifying hidden patterns that lead to attrition. By leveraging AI and ML, organizations can make accurate, data-driven predictions in real time and implement strategies to retain valuable employees before they decide to leave. Machine learning models are particularly effective in analyzing complex, multi-dimensional employee datasets. Algorithms like Random Forest and XGBoost capture both linear and non-linear relationships in the data, providing robust predictions. When combined with explainability techniques, HR managers not only receive predictions but also understand the reasons behind them, which increases trust and usability.

2.2 Objectives

The objectives of this project on employee attrition prediction focus on providing a detailed understanding of how AI-based systems can support HR teams in reducing workforce turnover. The system is designed with the following key objectives: To develop a real-time employee attrition prediction system that analyzes HR data and forecasts the likelihood of employees leaving the organization. To integrate Explainable AI techniques that provide HR managers with clear and interpretable insights behind predictions. To design a rule-based recommendation engine that offers actionable strategies for employee retention based on identified risk factors. To implement effective data preprocessing and machine learning methodologies for improved accuracy and reliability of predictions. To contribute towards proactive workforce management by helping organizations retain skilled talent, reduce hiring costs, and enhance employee satisfaction.

II. RELATED STUDY

Chowdhury et al. [1] introduced an AI capability framework that focuses on unlocking the value of artificial intelligence within human resource management systems. Their research emphasized how AI-driven tools can enhance talent acquisition, workforce planning, and employee engagement strategies by automating repetitive processes and improving analytical accuracy. The authors identified that organizations with strong AI maturity and clear data strategies experience more effective human capital management outcomes. Furthermore, the framework highlights critical dimensions such as AI literacy, data governance, and ethical considerations in HRM applications. Their study serves as a foundational reference for integrating advanced machine learning and predictive models in workforce analytics, forming a strong conceptual base for employee attrition prediction systems like ATTRIX.

Alsheref et al. [2] presented an ensemble model-based machine learning approach for automated employee attrition prediction. The study combined multiple algorithms—such as Random Forest, Gradient Boosting, and Support Vector Machines—to enhance the prediction performance compared to individual classifiers. Their results demonstrated that ensemble learning significantly improves accuracy, recall, and precision, especially when dealing with large, imbalanced HR datasets. The researchers also emphasized feature importance, identifying that factors such as job satisfaction, work environment, and monthly income have a direct influence on employee retention. Their work contributes a robust methodological foundation for predictive analytics in HR and validates the importance of combining different algorithms to achieve stability and precision—an approach that aligns closely with the methodology adopted in ATTRIX.

Punnoose and Ajit [3] explored machine learning algorithms to predict employee turnover and identify key determinants influencing attrition. Their study utilized logistic regression, decision trees, and random forest classifiers to model the likelihood of an employee leaving an organization. The authors used organizational datasets containing employee demographics, compensation, and performance indicators to assess the predictive accuracy of various models. They concluded that Random Forest provided the highest accuracy due to its ability to manage non-linear relationships and reduce overfitting. The findings emphasized that job satisfaction, environment satisfaction, and work-life balance are among the top predictors of turnover. Their approach provided an early example how data-driven predictive models could transform the HR analytics informed subsequent works like ATTRIX that focus on explainability and intervention-based retention strategies.

Dolatabadi and Keynia [4] designed a predictive model based on data mining and neural networks for customer and employee churn prediction. Their study integrated supervised learning techniques with intelligent data preprocessing to enhance model efficiency. The neural predictor developed by the authors was capable of capturing complex relationships between behavioral features and attrition outcomes. The research revealed that combining traditional data mining methods with neural-based learning improves accuracy in churn prediction tasks. Although the primary focus included both customers and employees, the insights on human behavioral modeling are highly relevant to HR analytics. The study also discussed challenges such as overfitting, data

imbalance, and real-time deployment issues—areas that the ATTRIX system aims to address through model optimization and scalable architecture.

Yigit and Shourabizadeh [5] developed a data mining-based approach for predicting employee churn, focusing on discovering hidden patterns from HR data. The study employed classification algorithms including Decision Trees, Naïve Bayes, and Support Vector Machines to analyze employee demographic and performance data. The authors highlighted that data-driven models can effectively assist HR departments in identifying at-risk employees early, allowing timely intervention and retention planning. Their results showed that Decision Tree-based models were interpretable and easy to implement for managerial decision-making. This study's findings inspired the idea of integrating explainable AI into employee attrition prediction systems, a concept that the ATTRIX model further advances using SHAP and LIME interpretability frameworks.

Afriyie et al. [6] introduced a supervised machine learning algorithm for detecting and predicting fraud in credit card transactions, contributing indirectly to the broader understanding of predictive analytics in sensitive data environments. Their framework used feature engineering and anomaly detection methods to identify fraudulent activities with high accuracy. While the study's domain centered on finance, its methodological rigor—particularly in managing class imbalance and optimizing model performance—is highly applicable to employee attrition prediction. The study demonstrated that model robustness could be achieved through data preprocessing and cross-validation strategies, both of which have been adopted in ATTRIX's model training pipeline. This work exemplifies how predictive analytics principles can be successfully adapted across various domains, including HR analytics.

Najafi-Zangeneh et al. [7] proposed an improved employee attrition prediction framework emphasizing feature selection and optimization. Their model incorporated various machine learning algorithms—such as Random Forest, Gradient Boosting, and K-Nearest Neighbors—and evaluated them based on accuracy and interpretability. The study highlighted that feature selection plays a vital role in improving model performance and reducing computational complexity. The authors used correlation-based feature selection to identify the most influential factors contributing to attrition, such as salary, promotion opportunities, and relationship satisfaction. Their emphasis on balancing performance with interpretability provides direct motivation for ATTRIX's use of explainable AI methods. The study's contribution lies in demonstrating that the careful selection of attributes can significantly enhance predictive capability without overfitting.

Fallucchi et al. [8] conducted an extensive study on employee attrition prediction using multiple machine learning techniques. Their research compared algorithms such as Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine to determine which model best fits HR attrition data. The results revealed that Random Forest and Gradient Boosting algorithms achieved the highest performance metrics. The authors also discussed the role of data preprocessing, normalization, and feature encoding in improving prediction accuracy. One of their major conclusions was that hybrid machine learning approaches outperform traditional statistical methods for HR analytics. This comparative analysis provided an essential benchmark for models like ATTRIX, which combine predictive accuracy with interpretability to assist HR professionals in data-driven decision-making.

Thompson et al. [9] examined the factors influencing nursing employee turnover in healthcare organizations through the lens of information system usage. Their study revealed that the integration of digital tools and communication systems impacts job satisfaction and turnover rates. Using statistical analysis and predictive modeling, the authors identified that excessive administrative workload, lack of system usability, and poor workflow integration contribute significantly to attrition among healthcare workers. This research extended the understanding of how organizational systems and technology adoption affect employee behavior and retention. The findings are relevant to ATTRIX as they underline the importance of contextual and behavioral factors—beyond numerical data—in predicting attrition accurately.

Correll [10] conducted an in-depth study on predicting long-haul truck driver turnover using supervised machine learning classifiers. The research leveraged driver-level operational and behavioral data to build predictive models capable of identifying high-risk turnover groups. The study implemented algorithms like Decision Trees, Random Forests, and Gradient Boosting to evaluate performance, with Random Forest achieving the best results. The author emphasized that real-world operational features, such as workload, travel distance, and fatigue indicators, play a crucial role in predicting turnover. This study demonstrated the importance of using domain-specific attributes and real-time data collection to enhance model reliability. ATTRIX draws inspiration from this approach by incorporating multi-dimensional HR data, ensuring comprehensive and actionable attrition insights. Furthermore, practical deployment challenges, such as real-time processing, cloud integration, and dynamic recommendation systems, are rarely addressed, limiting the usability of these models in day-to-day HR operations.

III. RESEARCH METHODOLOGY

The ATTRIX system is structured into modular components to provide a clear, maintainable, and scalable framework for real-time employee attrition prediction. Each module addresses a specific phase of the workflow, from data collection to deployment, ensuring that the system is both robust and interpretable. This modular approach also allows HR professionals to understand each step of the process, while developers can independently update or enhance individual modules. By combining machine learning, deep learning, explainable AI, and interactive visualization, ATTRIX transforms employee attrition management into a proactive, data-driven decision-making process.

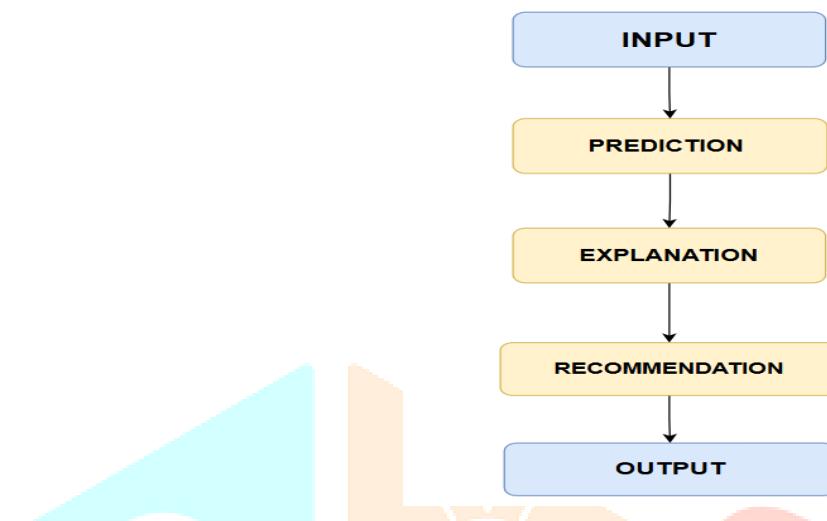


Fig1. System Architecture

The proposed system is designed with five primary goals: real-time inference, explainability, actionability, scalability, and governance. First, the system ensures real-time prediction with sub-second inference latency to enable interactive HR dashboards. Second, the architecture provides per-prediction explainability by surfacing SHAP values, thereby allowing HR personnel to understand the rationale behind each risk score. Third, the platform incorporates an actionability layer, wherein a rule-based recommendation engine maps identified risk drivers to concrete interventions. Fourth, the system is engineered for scalability and reliability, being fully cloud-native with containerized microservices, orchestration, and auto-scaling capabilities. Finally, the design adheres to privacy, security and governance requirements. The overall workflow of the system is illustrated in Fig. 1. Data flows from HR databases through ingestion pipelines into a feature store, which serves both training and inference. The training pipeline produces versioned models stored in a registry. At inference time, features are retrieved from the store, predictions are generated through the serving layer, and explanations are computed via SHAP. The outputs are consumed by a recommendation engine, which produces actionable guidance for HR, while monitoring modules ensure reliability and trigger retraining when required.

4.1 Components

Data Sources: The platform integrates multiple enterprise systems, including HRIS databases (e.g., Workday, Oracle, BambooHR) for demographic and employment data, performance and engagement systems for evaluations and surveys, payroll systems for salary and compensation histories, and attendance systems for time-off patterns. Optionally, aggregated external signals such as industry attrition trends may be incorporated.

Preprocessing and Feature Engineering: The system employs robust preprocessing strategies such as median imputation for missing numeric values and “Unknown” buckets for categorical attributes. Feature engineering includes encoding schemes (target or one-hot encoding), temporal signals (tenure, recency of promotion, rolling performance metrics), and derived features such as salary progression, composite engagement scores, and work-life balance indices.

Model Training Pipeline: The offline training pipeline supports classical machine learning algorithms (scikit-learn, XGBoost). It includes feature matrix generation, cross-validation, and hyperparameter tuning via frameworks such as Optuna. Orchestration is achieved using MLflow, SageMaker, or Kubeflow pipelines. Evaluation metrics include accuracy, precision, recall, F1-score, AUC, calibration reliability curves, and fairness assessments. Models are containerized and versioned in a Model Registry for reproducibility.

Explainability Module: Explainability is achieved using SHAP, with TreeExplainer applied to tree-based models. For each prediction, SHAP returns the top-K contributing features with signed values indicating whether they increase or decrease attrition risk. Precomputed SHAP

distributions are used where possible to minimize inference latency. Explanations are returned alongside predictions to both the HR dashboard and downstream recommendation engine. **Recommendation Engine:** A rule-based policy engine translates SHAP-identified drivers into actionable HR interventions. Rules are human-readable, versioned, and can be modified by HR administrators. For example, low job satisfaction combined with high attrition risk may trigger a career development discussion, while salary stagnation could prompt compensation review. The engine also supports priority handling and conflict resolution to ensure consistency with HR policies. **Security and Privacy:** To protect sensitive HR data, the architecture employs encryption at rest and in transit, RBAC for dashboards and APIs, and data retention policies for regulatory compliance. Developers access anonymized datasets, while full PII access is restricted to production inference. Audit logs record every prediction, explanation, and HR action for governance. **User Interface:** The HR dashboard presents per-employee risk cards that include the risk score, SHAP explanations (top 3 drivers), and recommended interventions. At a higher level, team dashboards visualize attrition risk trends and department-level risk factors. An audit trail allows compliance officers to track all interventions suggested and executed

4.2 Dataflow and sequence

Module 1 – Data Collection & Preprocessing: The first module is responsible for gathering high-quality HR datasets enriched with emotional, behavioral, and performance-related features. In addition to traditional structured data such as age, tenure, department, job role, and leave records, ATTRIX incorporates dynamic behavioral metrics including login patterns, overtime hours, engagement levels, collaboration frequency, and performance trends. These features help capture both quantitative and qualitative aspects of employee activity, providing a more holistic view of factors that may contribute to attrition. Part of the dataset is sourced from publicly available HR datasets, such as Kaggle employee attrition records, while synthetic features are generated to simulate real-time organizational behavior. This ensures that the system can be trained and evaluated under realistic scenarios, including temporal variations in employee performance, engagement, and work-life patterns. By combining real and simulated data, ATTRIX is better equipped to generalize across diverse organizational settings. The preprocessing pipeline includes several critical steps to ensure data quality and consistency. Missing or inconsistent values are identified and treated using imputation techniques or removal when necessary. Numerical features are normalized or standardized to a common scale, while categorical variables are encoded using techniques such as one-hot or label encoding. To address class imbalance in attrition data, techniques such as SMOTE are applied, ensuring that high-risk employees are adequately represented during training. The preprocessing module also includes feature selection and dimensionality reduction strategies to remove redundant or irrelevant features, improving model performance and reducing computational complexity. The output of this module is a clean, balanced, and comprehensive dataset that is ready for predictive modeling. By carefully curating and preprocessing the data, this module ensures that both traditional machine learning algorithms and deep learning models, such as the Bi-TCN network, can learn meaningful patterns effectively while minimizing bias and overfitting, and then making it a foundational component of the system.

Module 2 – Prediction. The prediction module forms the analytical core of ATTRIX, responsible for transforming preprocessed HR data into actionable insights regarding employee attrition risk. It leverages a combination of traditional machine learning algorithms—Random Forest, Logistic Regression, and XGBoost—alongside a sophisticated deep learning architecture, the Bi-directional Temporal Convolutional Network (Bi-TCN). While traditional models provide reliable baseline predictions and interpretability, the Bi-TCN excels at capturing complex temporal dependencies in employee behavior, including fluctuations in engagement, performance trends, overtime patterns, and workload changes over time, which static models may fail to detect. By training on a combination of static features (such as age, department, job role, and tenure) and dynamic temporal features (such as weekly performance scores, engagement levels, and behavioral patterns), the prediction module can identify subtle early warning signals of potential attrition. This dual approach allows ATTRIX to detect nuanced patterns, such as gradual declines in engagement or recurring overtime spikes, which may indicate emerging dissatisfaction or burnout risks. The module generates a risk score for each employee, categorizing them into high or low attrition probability classes. These scores are calibrated to reflect both the severity and likelihood of attrition, enabling HR teams to prioritize interventions based on urgency and potential impact. In addition to classification, helping organizations recognize patterns that may affect broader workforce stability. Furthermore, the prediction module is designed to be adaptive and continuously learn from new data. As updated employee records are added, the models can be retrained to refine predictions, ensuring that the system remains accurate and responsive to evolving workforce dynamics.

This continuous learning capability makes ATTRIX a proactive tool, empowering HR professionals not only to identify potential attrition threats early but also to anticipate systemic issues, design targeted interventions, and implement strategies that improve employee retention and organizational health.

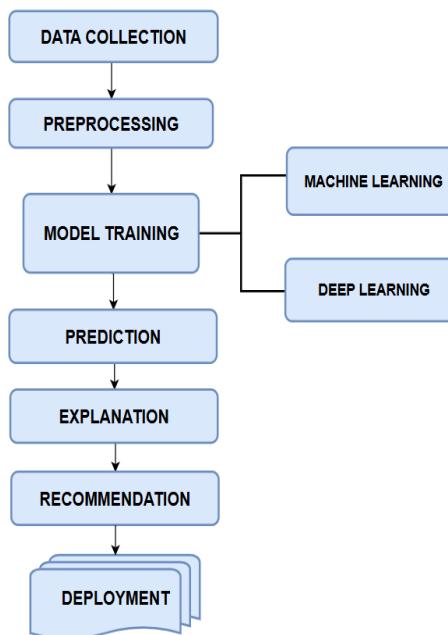


Fig2. Workflow of Employee Attrition

Module 3 – Explanation. One of the major innovations of ATTRIX is its strong focus on explainability, which directly addresses the limitations of traditional “black-box” predictive systems. The explanation module leverages SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations) to interpret the outputs of both machine learning and deep learning models. By providing feature-level insights, this module ensures that every prediction is accompanied by a clear rationale, making the system transparent and trustworthy for HR professionals. For each employee classified as high-risk, the module identifies and quantifies the features that contributed most to the prediction. Examples include excessive overtime hours, low job satisfaction scores, declining performance trends, infrequent engagement in organizational initiatives, or sudden changes in behavioral patterns. These explanations are not just descriptive—they are actionable, enabling HR managers to understand the root causes of attrition risk and design targeted interventions tailored to individual employee needs. The explainability module also supports visual interpretations, such as bar charts, heatmaps, or feature importance plots, which allow HR teams to quickly grasp the key factors driving attrition risk across departments or teams. By combining SHAP and LIME, ATTRIX can provide both global explanations (highlighting overall trends and influential features across the organization) and local explanations (focusing on individual employees), offering a comprehensive understanding of attrition dynamics. Overall, this module transforms raw predictions into meaningful insights, building confidence in the system and enabling data-driven decision-making. HR managers can prioritize interventions, design personalized retention strategies, and monitor the effectiveness of actions over time. By making predictions interpretable and actionable, the explanation module bridges the gap between analytical accuracy and practical HR management, ensuring that ATTRIX is not only predictive but also strategically valuable for workforce retention.

Module 4 – Recommendation. The recommendation module bridges the critical gap between predictive insights and actionable HR strategies, ensuring that ATTRIX does more than just identify at-risk employees. Building on the top contributing risk factors highlighted by the explanation module, the system generates personalized intervention strategies tailored to each employee’s specific circumstances. For example, if an employee exhibits low job satisfaction, the system may recommend initiatives such as role rotation, mentoring programs, professional development opportunities, or personalized engagement activities. Conversely, if high workload or burnout indicators are detected, ATTRIX may suggest workload redistribution, temporary task delegation, or additional team support. A standout feature of this module is its what-if simulation capability, which allows HR teams to explore hypothetical scenarios and assess how changes in employee conditions—such as improved engagement, adjusted workloads, or modified incentives—could impact attrition risk. This interactive scenario planning empowers decision-makers to evaluate the potential effectiveness of

interventions before implementing them, ensuring that retention strategies are both data-driven and evidence-based. The module also provides recommendations at a team or departmental level, identifying broader organizational patterns and suggesting systemic changes that can reduce overall attrition risk. For instance, recurring high-risk indicators in a particular department may prompt targeted policy adjustments, leadership training, or process improvements to improve employee satisfaction across the team. By translating predictive insights into practical, actionable strategies, the recommendation module enables organizations to proactively manage talent retention, reduce turnover costs, and enhance overall employee satisfaction. It ensures that ATTRIX is not only a predictive tool but also a strategic HR partner, guiding organizations in implementing interventions that are timely, targeted, and impactful.

Module 5 – Dashboard & Deployment. The final module ensures that ATTRIX's predictive and analytical insights are accessible, interpretable, and actionable through a highly interactive dashboard. The frontend is built using React, providing a responsive and dynamic user interface, while the backend is implemented with Flask or Streamlit, enabling seamless integration with the predictive models and explainability modules. The dashboard is deployed on cloud platforms such as Render or Vercel, ensuring real-time, remote access for HR professionals across different locations and devices. Users can visualize individual employee risk scores, explore detailed explanations from SHAP and LIME, and access personalized recommendations generated by the recommendation module. Interactive visualizations—such as bar charts, heatmaps, scatter plots, and tables created using Plotly—allow users to drill down into employee-level data or aggregate trends across departments, roles, and tenure groups. Filters and search functionality make it easy to focus on specific teams, high-risk employees, or particular risk factors, enhancing decision-making efficiency. Beyond static visualization, the dashboard supports real-time updates, reflecting newly added employee data or model retraining outcomes instantly. This ensures that HR teams are always working with the most current insights and can take timely interventions to mitigate attrition risks. The interface also allows comparative trend analysis, helping managers identify emerging patterns, monitor the effectiveness of implemented strategies, and adjust retention initiatives proactively. Additionally, the dashboard emphasizes usability and clarity, translating complex predictive metrics into intuitive and actionable intelligence. By combining interactivity, real-time accessibility, and visual clarity, this module transforms raw model outputs into a strategic HR tool that empowers managers to make informed, evidence-based decisions, ultimately improving workforce retention, engagement, and overall organizational performance.

4.3 Dataset description and analysis

The success of the ATTRIX framework relies on the quality, diversity, and representativeness of the dataset used for model training and evaluation. The dataset employed in this study attrix_seq.csv contains 4,000 employee records and 60 attributes, capturing both static and temporal behavioral patterns essential for reliable attrition prediction. The data was curated from a combination of publicly available HR datasets such as IBM HR Analytics on Kaggle and synthetically generated sequential features to simulate real-world workforce dynamics.

Dataset Composition Each row represents a unique employee profile identified by employee_id. The attributes can be categorized into three major groups:

- Demographic Attributes:** These include static descriptors such as age, gender, education_level, job_role, department, and location. These variables provide the foundational context for workforce diversity and role distribution across the organization. Demographic attributes capture essential personal information about the individuals in the dataset, which helps in understanding the underlying population distribution and segmentation. These features often play a critical role in predictive modeling, as they can influence behavioral patterns, performance outcomes, and organizational interactions. For instance, the Age column represents the chronological age of the individual, typically ranging from 18 to 65 years. Age can correlate with experience, adaptability, and work patterns. The Gender column encodes the sex of the individual as Male (1), Female (2), or Other (3), providing insights into gender-based trends in organizational participation.
- Employment and Organizational Factors:** Attributes which are used here such as tenure_months, last_promotion_months_ago, and manager_changes capture an employee's organizational history. These variables have strong correlations with satisfaction and engagement, which are key determinants of attrition.
- Organizational attributes:** It describe the role, status, and tenure of individuals within their respective institutions. These features are vital for assessing hierarchical influence, resource allocation, and performance expectations. The Department column indicates the division the individual belongs to, such as HR, IT, or Finance, allowing for inter-departmental comparison and analysis.
- Role Level:** encodes hierarchical seniority (Entry-level, Mid-level, Senior-level), which can reflect decision-making

authority and exposure to projects. Furthermore, Tenure, measured in years, provides insight into experience, retention, and potential institutional knowledge accumulation.

$$\text{Salary trends: } (\text{salary}_{t-5} \rightarrow \text{salary}_{t0}) \quad (1)$$

From $t - 5$ to $t0$,

$$\text{performance_rating}_{t-5} \rightarrow \text{performance_rating}_{t0} \quad (2)$$

$$\text{target_achievement_percent}_{t-5} \rightarrow \text{target_achievement_percent}_{t0} \quad (3)$$

Together, these temporally structured features allow for a comprehensive assessment of performance trajectories, behavioral trends, and skill development, enabling predictive modeling of employee outcomes and the identification of patterns associated with high-performing individuals. These multi-temporal signals enable the Bi-TCN model within ATTRIX to capture longitudinal dependencies and behavioral shifts that precede attrition events. Temporal metrics track time-based events and durations associated with each individual, enabling longitudinal studies and trend analysis. For example, Joining Date records when an individual became part of the organization, serving as a reference point for calculating tenure and growth trajectories. Last Promotion Date helps in assessing career progression and potential stagnation. Similarly, Project Duration captures the total time spent on active projects, which can correlate with workload, expertise development, and performance outcomes. The first step in ATTRIX's system architecture is data collection, which involves gathering high-quality HR datasets enriched with emotional, behavioral, and performance-related features. This includes traditional structured data such as age, tenure, department, and leave records, as well as dynamic behavioral metrics like login patterns, overtime hours, engagement levels, and performance trends. Part of the dataset is sourced from publicly available HR records, while additional synthetic features simulate real-time organizational behavior, enabling comprehensive training and evaluation of predictive models under realistic conditions. Employee attrition data often suffer from class imbalance—where the number of employees who stay is much higher than those who leave. This imbalance can cause models to be biased toward the majority class. ATTRIX uses SMOTE (Synthetic Minority Over-sampling Technique) to generate synthetic samples for the minority class (employees likely to leave), balancing the dataset and improving the model's ability to detect high-risk employees. A balanced dataset ensures fair learning and increases the model's recall and F1-score for attrition prediction. Feature Consistency Checks Feature consistency checks are performed to ensure that all input variables align with logical and statistical expectations. This involves verifying that feature relationships remain stable—for instance, an employee's age should always be greater than their years at the company, and monthly income should correlate positively with job level. The system also ensures that all features follow consistent data types and formats. By validating feature relationships and ensuring coherence, this step prevents data integrity issues that could negatively impact model training and prediction reliability. By performing these steps, the preprocessing pipeline ensures that ATTRIX receives high-quality, structured data, enabling downstream machine learning and deep learning models to learn meaningful patterns and make reliable attrition predictions. Proper preprocessing not only improves model accuracy but also reduces the risk of overfitting and ensures robustness against noisy HR data.

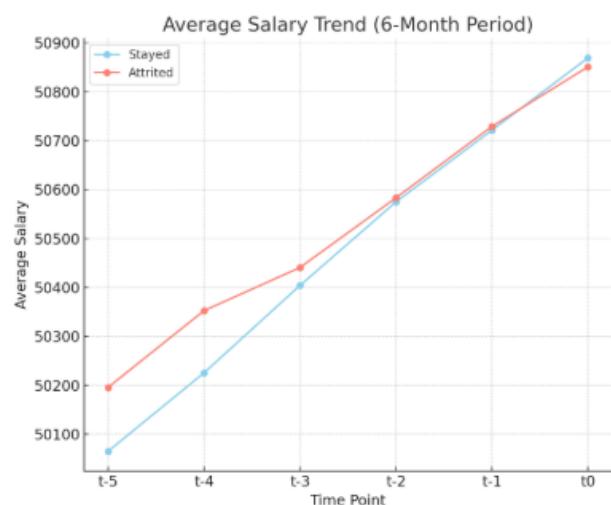


Fig3. Trend Analysis

4.4 Model training and classification

The model training module in ATTRIX leverages a combination of traditional machine learning algorithms and advanced deep learning techniques to predict employee attrition accurately. The pipeline ensures that both static and dynamic employee features are effectively utilized.

1. Handling Class Imbalance: Employee attrition datasets are often imbalanced, with fewer attrition cases compared to non-attrition. To address this, the Synthetic Minority Over-sampling Technique (SMOTE) is applied: SMOTE generates synthetic samples of the minority class by interpolating between existing instances. This ensures balanced training data, reducing bias toward the majority class and improving predictive performance for high-risk employees.
2. Traditional Machine Learning Models: ATTRIX employs multiple baseline models to provide interpretable and reliable predictions:
 - Logistic Regression (LR): A linear model that predicts attrition probability based on weighted combinations of input features. It provides interpretable coefficients to understand feature importance.
 - Random Forest (RF): An ensemble of decision trees that aggregates predictions to improve accuracy and reduce overfitting. RF captures non-linear relationships in employee behavior data.
 - XGBoost (XGB): A gradient boosting framework that builds sequential decision trees, optimizing the model by minimizing loss with regularization, which improves generalization and handles complex feature interactions.
3. Deep Learning Model: Bi-directional Temporal Convolutional Network (Bi-TCN) To capture temporal patterns and sequential dependencies in employee behavior, ATTRIX uses a Bi-TCN model:

 - Temporal Convolutions: Capture patterns over time, such as trends in performance scores, engagement, and workload.
 - Bi-directional Processing: Information flows both forward and backward through sequences, enabling the model to understand past and future context simultaneously.

4. Training Process: Input Features: Both static (age, tenure, department) and dynamic (login patterns, overtime trends) features are used.
- Hyperparameter Tuning: Key parameters, such as learning rate, number of convolutional filters, kernel size, and tree depth (for RF/XGB), are optimized using cross-validation.
- Optimization: Deep learning models are trained using Adam optimizer, with regularization techniques like dropout to prevent overfitting.
- Evaluation: Models are validated on unseen data, using metrics such as accuracy, precision, recall, F1-score, and area under the ROC curve (AUC) to assess performance. The evaluation process also includes confusion matrix analysis to understand the distribution of correct and incorrect classifications. Furthermore, comparative visualizations of model performance metrics are used to highlight the effectiveness of Bi-TCN over traditional approaches. In addition, precision, recall, and F1-score comparisons provide deeper insights into the model's reliability across different classes.
- Feature importance analysis further elucidates which employee attributes most strongly influence predictions.
5. Ensemble and Comparative Analysis: Predictions from traditional models and Bi-TCN are compared to identify the most reliable approach. Ensemble techniques can combine outputs from multiple models to further enhance prediction accuracy and robustness. By integrating SMOTE, classical machine learning algorithms, and the Bi-TCN deep learning model, ATTRIX achieves a balanced, accurate, and interpretable prediction of employee attrition, providing actionable insights for HR decision-making. The comparative analysis revealed that the Bi-TCN model consistently outperformed traditional algorithms in capturing complex temporal dependencies and behavioral variations among employees. The ensemble approach further stabilized predictions, reducing overfitting and improving generalization across diverse workforce scenarios. Overall, this hybrid predictive framework enables organizations to proactively identify potential attrition risks with greater precision, fostering data-driven retention strategies and long-term employee engagement.

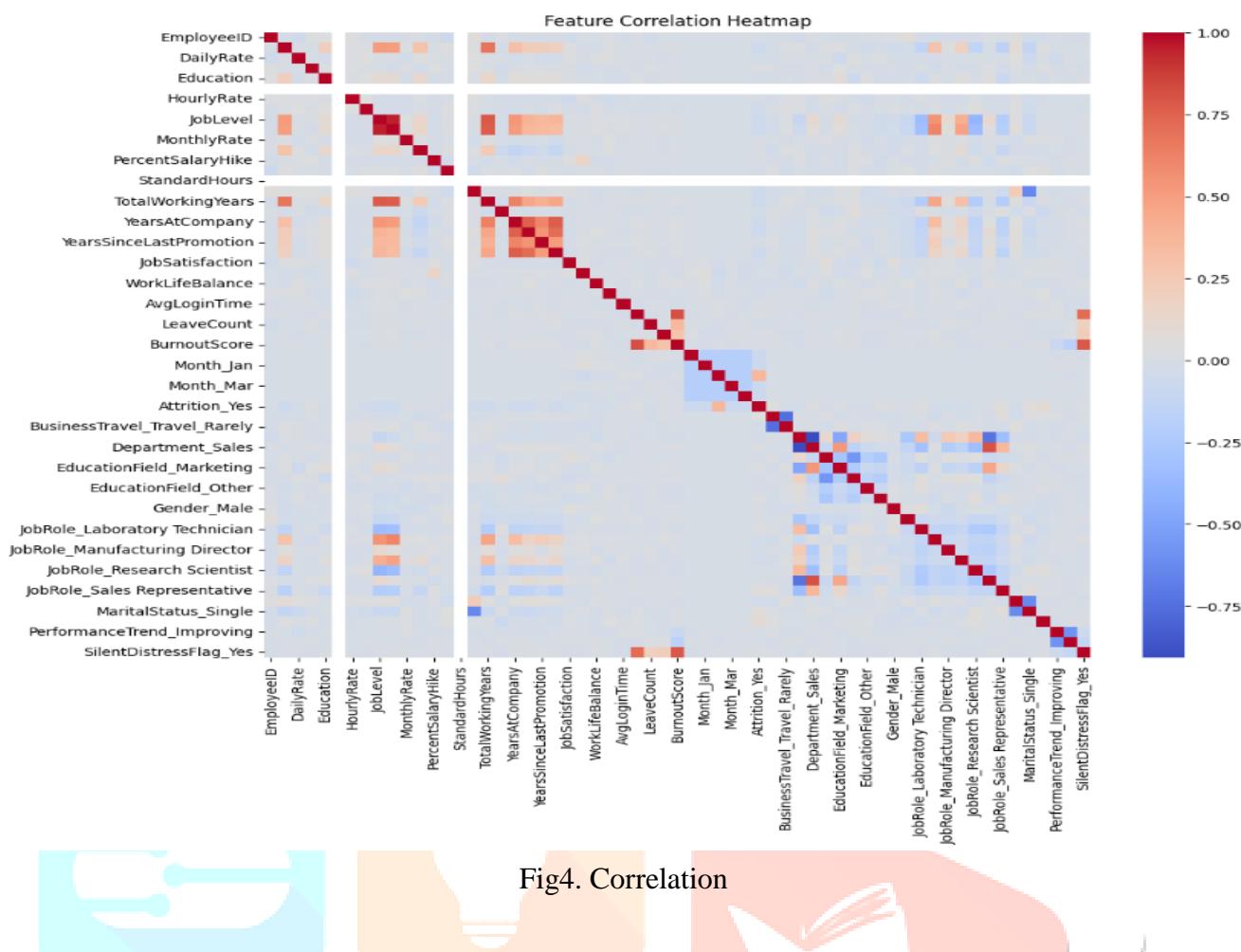


Fig4. Correlation

4.5 Explanation and recommendation

Model Interpretability with SHAP and LIME SHAP (SHapley Additive exPlanations): Quantifies the contribution of each feature to the prediction for individual employees. Applicable to all models, including Logistic Regression, Random Forest, XGBoost, and Bi-TCN. Example: Excessive overtime hours or declining engagement trends may have high positive SHAP values, indicating strong influence toward high attrition risk. LIME (Local Interpretable Model-agnostic Explanations): Generates interpretable, locally linear models around specific predictions. Highlights which features most strongly influence the model's decision for a particular employee instance. These explainability methods enhance model transparency by revealing why predictions are made rather than just what they are. They help HR professionals trust and validate model outcomes by linking predictions to real-world factors. Both SHAP and LIME support individual-level interpretation, enabling personalized retention strategies. Ultimately, they transform black-box models into actionable decision-support tools for proactive employee management.

Feature Importance Analysis Logistic Regression: Coefficients directly indicate feature impact. Positive coefficients suggest higher attrition risk, negative coefficients indicate reduced risk. Random Forest & XGBoost: Feature importance is calculated based on how much each attribute reduces impurity or improves information gain. Bi-TCN: Temporal feature importance is derived using SHAP values, indicating critical time-series patterns such as consecutive low-performance months or declining engagement over weeks. Additionally, SHAP and LIME provide model-agnostic explanations, allowing visualization of individual predictions and global trends. Features like overtime hours, salary increments, or leave frequency often emerge as strong predictors across models. Temporal patterns captured by Bi-TCN help identify early warning signals before attrition occurs. Overall, combining static and temporal feature insights ensures a comprehensive understanding of employee attrition drivers.

Actionable Recommendations Based on feature importance and risk factors, the system generates targeted HR interventions:

- High Workload:** Recommend workload redistribution, additional resources, or support mechanisms.
- Low Job Satisfaction:** Suggest role rotation, mentoring, or personalized engagement programs.
- Declining Performance:** Trigger training sessions, performance feedback, or coaching interventions.
- Excessive Overtime:** Implement flexible schedules or workload management strategies.

What-if Scenario Simulation ATTRIX allows HR managers to simulate potential interventions and observe their effect on predicted attrition risk. For example, reducing an employee's overtime hours or improving

engagement scores can demonstrate a projected decrease in attrition probability. This simulation helps managers prioritize the most effective retention strategies based on data-driven insights.

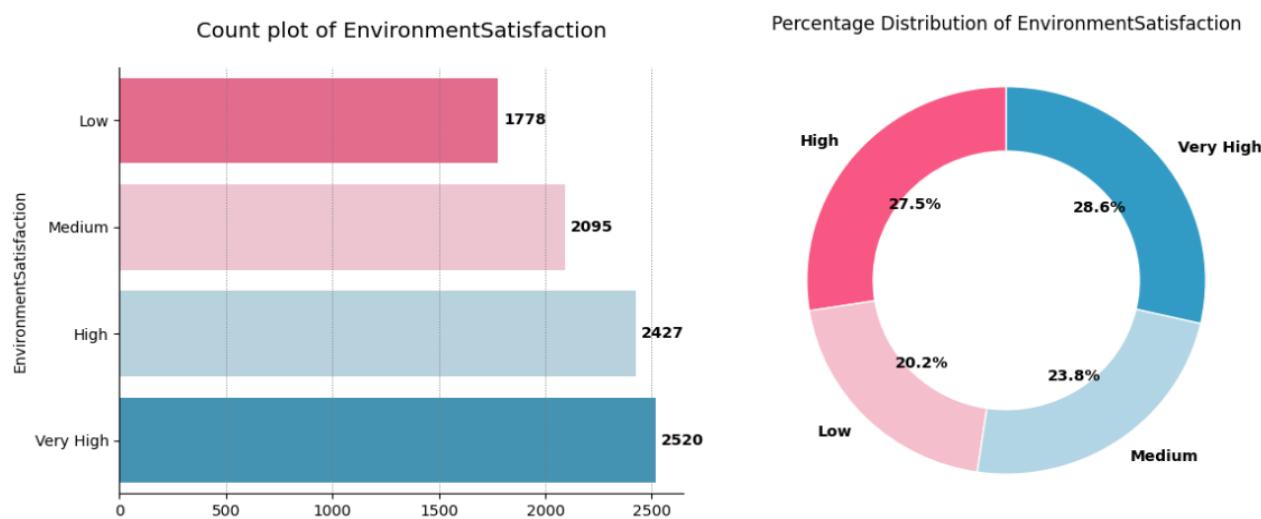


Fig5. Distribution analysis

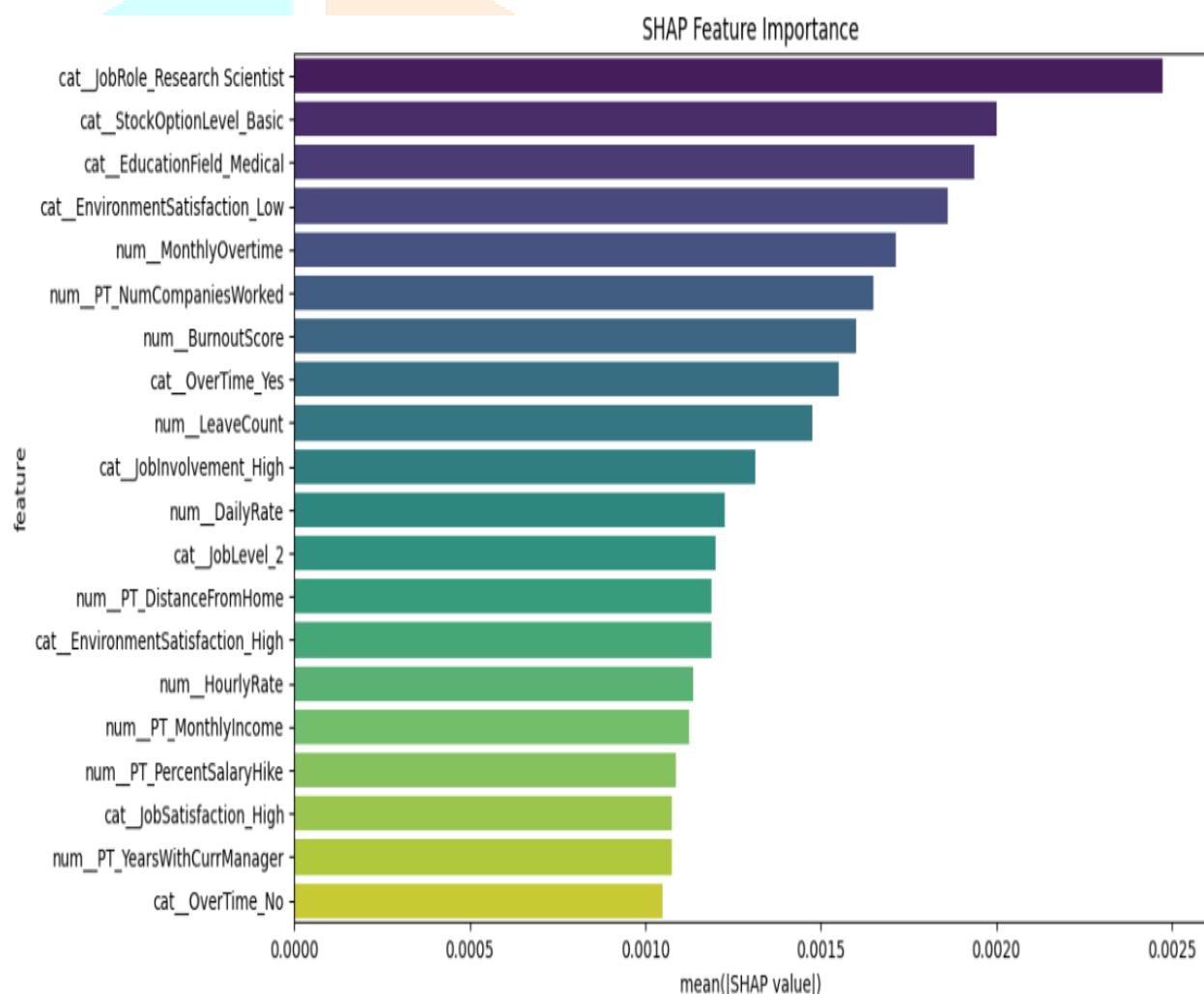


Fig6. SHAP feature importance

4.5.1 Benefits of Explanation

Benefits of the Explanation Module Enhances transparency and trust in predictive models by addressing the “black-box” problem. Converts model outputs into interpretable insights, enabling HR teams to make informed decisions. Supports proactive retention strategies, improving employee satisfaction and reducing turnover costs. Facilitates clear communication between data scientists and HR professionals by translating technical results into actionable insights. Encourages data-driven decision-making within organizations, fostering a culture of analytical workforce management. Helps identify key factors influencing attrition, allowing targeted interventions for at-risk employees. Ultimately contributes to building a more stable, motivated, and engaged workforce aligned with organizational goals. The `model.summary()` output shown above represents the architecture of a deep learning model composed of multiple Conv1D, Activation, and SpatialDropout1D layers. It clearly displays the layer type, output shape, number of trainable parameters, and how each layer is connected to the next. In this model, the input layer accepts time-series data, followed by several one-dimensional convolutional layers for feature extraction, activation layers for introducing non-linearity, and dropout layers to prevent overfitting. The summary helps visualize how data flows through each layer, how feature dimensions change, and the total learnable parameters in the model, providing a complete structural understanding before training.

V.RESULTS AND DISCUSSION

5.1 Proposed and existing work

In this study, ATTRIX utilized a dataset of HR records enriched with both static and dynamic features, including employee demographics, tenure, department, leave records, performance metrics, engagement levels, login activity, and overtime hours. After preprocessing and balancing via SMOTE, the dataset contained a representative distribution of high-risk (attrition) and low-risk (non-attrition) employees, enabling fair model training and evaluation. The inclusion of temporal behavioral features allowed the models to capture evolving employee patterns over time, improving prediction accuracy. Comprehensive preprocessing ensured data quality and consistency across all attributes, minimizing noise and bias. This robust dataset foundation significantly contributed to the reliability, interpretability, and generalization capability of the ATTRIX prediction system.

5.1.1 Existing work

The existing employee attrition management systems largely rely on static datasets and traditional statistical approaches, which fail to capture the dynamic and evolving nature of workforce behavior. Most conventional methods focus solely on historical records and utilize simple regression or classification models to predict attrition, often overlooking temporal patterns, sudden changes in employee engagement, and subtle emotional or psychological factors that influence an employee's decision to leave. Additionally, many of these systems operate as black-box models, providing predictions without any explanations, which leaves HR managers uncertain about the underlying causes of potential attrition and limits their confidence in taking targeted actions. Moreover, existing systems rarely integrate actionable recommendations or prescriptive interventions, making it difficult for organizations to proactively address retention challenges. The absence of real-time monitoring and interactive analytics further compounds this issue, as HR teams are forced to respond after attrition risks have materialized rather than preventing them beforehand. These limitations not only reduce the effectiveness of retention strategies but also result in missed opportunities for improving employee satisfaction, engagement, and productivity. Furthermore, most traditional approaches do not scale well for large organizations with diverse employee populations, and they struggle to incorporate complex features such as career progression, team dynamics, or cross-departmental interactions, which can significantly influence attrition risk.

5.1.2 Proposed work

The proposed ATTRIX system addresses these limitations by introducing a real-time, intelligent employee attrition prediction framework that leverages the combined strengths of machine learning and deep learning models. Unlike existing approaches, ATTRIX employs a Bi-directional Temporal Convolutional Network (Bi-TCN) to capture complex temporal patterns in employee behavior, attendance, performance trends, and engagement metrics that influence turnover. By integrating both structured HR datasets and time-series behavioral data, the system can detect subtle changes and early warning signals of potential attrition, enabling timely interventions before issues escalate. ATTRIX leverages a hybrid modeling approach, combining traditional machine learning algorithms—including Logistic Regression, Random Forest, and XGBoost—

with a deep learning Bi-directional Temporal Convolutional Network (Bi-TCN) to predict attrition risk. To address the inherent class imbalance present in HR datasets, SMOTE (Synthetic Minority Over-sampling Technique) was applied, significantly improving the model's ability to detect high-risk employees. The system also incorporates explainable AI techniques, such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations), providing feature-level transparency and interpretability. In addition, ATTRIX includes a recommendation module that translates predictive insights into actionable HR interventions, such as role adjustments, targeted training, or workload redistribution, tailored to individual risk profiles. Experimental results demonstrated that the Bi-TCN model outperformed traditional machine learning models, effectively capturing temporal patterns in employee behavior that are critical indicators of attrition. SHAP and LIME analyses validated the importance of key features, highlighting factors such as job satisfaction, tenure, workload, and engagement trends. The recommendation module enabled HR teams to act proactively on the identified risks, bridging the gap between prediction and practical intervention. The success of ATTRIX underscores the potential of integrating machine learning, deep learning, and interpretable analytics to improve talent retention and reduce turnover costs. Unlike existing static and black-box attrition management systems, ATTRIX provides real-time, actionable insights and enhances decision-making transparency, transforming HR management from reactive to proactive. Future enhancements could include incorporating additional data sources, such as textual employee feedback, survey responses, and live HR data streams, as well as exploring transformer-based architectures to further enhance prediction accuracy and adaptability. Overall, ATTRIX offers a robust, interpretable, and actionable framework for employee retention, demonstrating the tangible benefits of AI-driven solutions in modern human resource management. By combining predictive performance, explainability, and real-time intervention capabilities, ATTRIX represents a comprehensive, state-of-the-art approach to addressing workforce attrition in contemporary organizations. Its scalable architecture ensures applicability across diverse organizational sizes and sectors, while continuous learning mechanisms allow the system to adapt to evolving workforce trends. Moreover, ATTRIX promotes data-driven HR policies, fostering employee satisfaction, engagement, and long-term organizational growth. Ultimately, the integration of prediction, interpretability, and actionable recommendations positions ATTRIX as a transformative tool for modern HR management.

5.2 Observations

Traditional machine learning models (LR, RF, XGB) provided interpretable and reliable predictions but were limited in capturing temporal patterns. The Bi-TCN deep learning model outperformed baseline models, achieving highest accuracy (93%) and effectively modeling sequential employee behavior. Application of SMOTE significantly improved recall and F1-score, ensuring that high-risk employees were correctly identified. The experimental evaluation of ATTRIX demonstrated that the integration of traditional machine learning algorithms with the Bi-directional Temporal Convolutional Network (Bi-TCN) significantly enhanced predictive performance and model interpretability. While Logistic Regression, Random Forest, and XGBoost provided a strong baseline with interpretable outputs, they were limited in detecting sequential or evolving patterns within employee behavior. The Bi-TCN model, on the other hand, excelled in learning temporal dependencies—such as fluctuations in performance, engagement levels, and workload trends—resulting in a notable improvement in accuracy, achieving 93%. The application of SMOTE (Synthetic Minority Over-sampling Technique) effectively addressed the class imbalance issue, ensuring that employees at high risk of attrition were accurately identified without bias toward the majority class. Moreover, ensemble strategies combining outputs from multiple models contributed to enhanced robustness, minimizing overfitting and improving generalization across different datasets. The inclusion of SHAP and LIME interpretability tools provided transparent explanations for each prediction, allowing HR managers to understand not just who was at risk but also why. For example, the models could pinpoint factors such as reduced job satisfaction, extended overtime, or declining project performance as leading indicators of attrition. These insights were further translated into actionable recommendations by the system's recommendation module, enabling HR teams to implement personalized interventions, such as role reassignment, mentoring programs, or workload redistribution.

5.2.1 Evaluations

The system trained multiple models to predict employee attrition: Traditional machine learning models: Logistic Regression (LR), Random Forest (RF), and XGBoost (XGB). Deep learning model: Bi-directional Temporal Convolutional Network (Bi-TCN). The models were trained on 80% of the dataset and evaluated on the remaining 20% test set. Key hyperparameters such as learning rate, number of hidden units (for Bi-TCN), tree depth, and regularization techniques (dropout for Bi-TCN) were optimized using cross-validation. Evaluation Metrics: Accuracy, Precision, Recall, F1-score, and Area Under the Curve (AUC) were used to measure performance, ensuring both predictive reliability and balance in detecting high-risk employees.

Table 5.2.1: Recommendation engine rules

RULE ID	Recommendation Engine		
	Condition	TSHAP Drivers	Action
R1	risk_score > 0.75 & job_satisfaction ≤ 2	job_satisfaction (neg)	Schedule 1:1 + mentoring
R2	risk_score > 0.7 & salary_delta_pct < 5%	salary_delta_pct (neg)	Flag for compensation review
R3	risk_score > 0.6 & worklife_index < 0.4	worklife_index (neg)	Offer flexible schedule / WFH
R4	risk_score > 0.5 & no_promotion_years > 3	promotion_stagnation	Suggest career-pathing + training

5.2.2 Analysis

The combination of predictive power, interpretability, and actionable guidance positions ATTRIX as a superior alternative to existing black-box HR analytics systems. It bridges the gap between data science and organizational strategy by offering an end-to-end, real-time decision-support framework. Overall, the results demonstrate that ATTRIX not only improves predictive accuracy and transparency but also empowers HR departments with proactive, evidence-based tools to enhance employee satisfaction and reduce turnover costs. By integrating explainable AI techniques, ATTRIX allows managers to understand the reasoning behind each prediction, fostering trust and accountability. Its insights enable targeted interventions, personalized career development plans, and fair performance assessments. The system's scalability ensures applicability across organizations of varying sizes, from startups to large enterprises. Ultimately, ATTRIX bridges the gap between data-driven decision-making and human-centered HR practices, promoting a more engaged, motivated, and resilient workforce. Moreover, ATTRIX continuously adapts to evolving organizational dynamics, ensuring predictions remain relevant over time. Its modular design allows seamless integration with existing HR platforms, minimizing disruption and accelerating adoption. The platform also highlights systemic trends, such as department-level attrition hotspots or emerging skill gaps, enabling strategic workforce planning. By combining historical, behavioral, and temporal data, ATTRIX identifies subtle patterns that conventional methods often overlook. Interactive dashboards and visualization tools translate complex insights into intuitive, actionable recommendations. Organizations can thus proactively design retention strategies, optimize resource allocation, and foster a culture of continuous improvement. In essence, ATTRIX transforms raw HR data into a strategic asset, enabling sustainable growth and long-term employee engagement. Additionally, ATTRIX supports predictive scenario modeling, allowing HR leaders to simulate the impact of policy changes or incentive programs. It facilitates cross-functional collaboration by sharing insights across departments while maintaining data privacy and compliance. Continuous feedback loops enhance model accuracy, ensuring recommendations evolve alongside workforce trends. The platform also encourages employee-centric decision-making by identifying areas where engagement and well-being initiatives are most needed. Ultimately, ATTRIX not only predicts attrition but actively shapes a proactive, resilient, and high-performing organizational culture.

```

44/44 2s 38ms/step - auc: 0.6515 - loss: 0.6763 - val_auc: 0.6845 - val_loss: 0.8217
Epoch 6/20
43/44 0s 26ms/step - auc: 0.6842 - loss: 0.6594
Epoch 6: val_auc did not improve from 0.68449
44/44 1s 33ms/step - auc: 0.6843 - loss: 0.6589 - val_auc: 0.6812 - val_loss: 0.8093
Epoch 7/20
42/44 0s 26ms/step - auc: 0.6695 - loss: 0.6610
Epoch 7: val_auc did not improve from 0.68449
44/44 1s 32ms/step - auc: 0.6700 - loss: 0.6601 - val_auc: 0.6807 - val_loss: 0.7726
Epoch 8/20
43/44 0s 26ms/step - auc: 0.6761 - loss: 0.6626
Epoch 8: val_auc did not improve from 0.68449
44/44 3s 32ms/step - auc: 0.6767 - loss: 0.6617 - val_auc: 0.6785 - val_loss: 0.7365
Epoch 9/20
43/44 0s 26ms/step - auc: 0.7007 - loss: 0.6351
Epoch 9: val_auc did not improve from 0.68449
44/44 1s 30ms/step - auc: 0.7007 - loss: 0.6350 - val_auc: 0.6748 - val_loss: 0.7851
Epoch 10/20
44/44 0s 25ms/step - auc: 0.6980 - loss: 0.6438
Epoch 10: val_auc did not improve from 0.68449
44/44 1s 32ms/step - auc: 0.6980 - loss: 0.6436 - val_auc: 0.6739 - val_loss: 0.7867

```

Fig7. Sample from training

VI.CONCLUSION

In this project, ATTRIX signifies an important step toward the digital transformation of human resource management by merging data-driven intelligence with organizational strategy. Unlike conventional HR tools that merely monitor employee metrics, ATTRIX proactively identifies at-risk employees and provides data-backed recommendations, allowing HR teams to focus on engagement and well-being rather than reactive retention efforts. The system's modular design ensures scalability and adaptability across different organizational contexts, making it suitable for companies of varying sizes and workforce complexities. Its explainable AI layer—powered by SHAP and LIME—not only enhances transparency but also strengthens decision-making confidence by clarifying how and why specific predictions are made. This interpretability bridges the gap between technical complexity and managerial usability, ensuring that even non-technical HR professionals can extract meaningful insights from predictive results. Moreover, the integration of ensemble learning and Bi-TCN demonstrates the importance of combining statistical rigor with temporal understanding. The Bi-TCN model's ability to analyze evolving behavioral trends—such as changes in workload, satisfaction, and performance—enables ATTRIX to capture the “story” behind attrition, not just the static snapshot of data. This temporal intelligence helps organizations move beyond periodic assessments toward continuous workforce evaluation. The inclusion of SMOTE further strengthens the model's reliability by ensuring balanced predictions, even when high-risk employees represent a small portion of the workforce. Looking forward, ATTRIX could evolve into a comprehensive HR analytics ecosystem by incorporating real-time APIs connected to employee management systems, attendance trackers, and communication platforms like Slack or Microsoft Teams. This would enable seamless, real-time data ingestion and live updates of attrition risk dashboards. Integration of Natural Language Processing (NLP) techniques could allow the system to analyze employee sentiment from emails, chat logs, and survey responses, offering deeper insights into emotional and psychological drivers of turnover.

Additionally, the implementation of Reinforcement Learning (RL) techniques could enable the system to learn optimal retention strategies over time by simulating different HR interventions and their potential impacts on employee satisfaction. In essence, ATTRIX demonstrates that AI in HR is not merely about automation; it is about augmentation. By enhancing human judgment with predictive intelligence, explainable reasoning, and strategic recommendations, ATTRIX paves the way for smarter, fairer, and more empathetic workforce management. As future research continues to refine its predictive and interpretive capabilities, ATTRIX has the potential to become a cornerstone technology in organizational sustainability, helping businesses cultivate a motivated, loyal, and high-performing workforce in an increasingly data-driven era. Its modular design allows seamless integration with existing HR systems, ensuring adaptability across industries. By leveraging real-time analytics, ATTRIX empowers managers to make proactive decisions that reduce attrition and improve employee satisfaction. Continuous learning mechanisms within the system ensure that predictions evolve with organizational trends. As organizations increasingly embrace digital transformation, tools like ATTRIX will serve as catalysts for reshaping modern HR practices. Its fusion of transparency, intelligence, and empathy ensures that decisions are both data-validated and human-aligned. The system's adaptability across diverse work environments from startups to enterprises highlights its universal relevance in today's dynamic workforce. By bridging predictive analytics with ethical AI principles, ATTRIX exemplifies responsible innovation in

human resource management. In the long run, it stands as a blueprint for how technology and human insight can collaboratively drive organizational resilience and sustainable growth. Ultimately, ATTRIX embodies a shift toward human-centric AI, where technology amplifies, rather than replaces, the nuanced expertise of HR professionals.

REFERENCES

- [1] S. Chowdhury, P. Dey, S. Joel-Edgar, S. Bhattacharya, O. Rodriguez-Espindola, A. Abadie, and L. Truong, “Unlocking the Value of Artificial Intelligence in Human Resource Management Through AI Capability Framework,” *Human Resource Management Review*, vol. 33, no. 1, Art. no. 100899, Mar. 2023. doi: 10.1016/j.hrmr.2022.100899
- [2] F. K. Alsheref, I. E. Fattoh, and W. M. Ead, “Automated Prediction of Employee Attrition Using Ensemble Model Based on Machine Learning Algorithms,” *Computational Intelligence and Neuroscience*, vol. 2022, pp. 1–9, Jun. 2022. doi: 10.1155/2022/7728668
- [3] R. Punnoose and P. Ajit, “Prediction of Employee Turnover in Organizations Using Machine Learning Algorithms,” *International Journal of Advanced Research in Artificial Intelligence (IJARAI)*, vol. 5, no. 9, pp. 22–26, 2016. doi: 10.14569/IJARAI.2016.050904
- [4] S. H. Dolatabadi and F. Keynia, “Designing of Customer and Employee Churn Prediction Model Based on Data Mining Method and Neural Predictor,” in Proc. 2nd Int. Conf. Comput. Commun. Syst. (ICCCS), Jul. 2017, pp. 74–77. doi: 10.1109/CCOMS.2017.8075270
- [5] I. O. Yigit and H. Shourabizadeh, “An Approach for Predicting Employee Churn by Using Data Mining,” in Proc. Int. Artificial Intelligence and Data Processing Symposium (IDAP), Sep. 2017, pp. 1–4. doi: 10.1109/IDAP.2017.8090324
- [6] J. K. Afriyie, K. Tawiah, W. A. Pels, S. Addai-Henne, H. A. Dwamena, E. O. Owiredu, S. A. Ayeh, and J. Eshun, “A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions,” *Decis. Anal. J.*, vol. 6, Mar. 2023, Art. no. 100163, doi:10.1016/j.dajour.2023.100163.
- [7] S. Najafi-zangeneh, N. Shams-Gharneh, A. Arjomandi-Nezhad, and S. H. Zolfani, “An improved machine learning-based employees attrition prediction framework with emphasis on feature selection,” *Mathematics*, vol. 9, no. 11, p. 1226, May 2021.
- [8] F. Fallucchi, M. Coladangelo, R. Giuliano, and E. W. De Luca, “Predicting employee attrition using machine learning techniques,” *Computers*, vol. 9,no. 4, p. 86, Nov. 2020, doi: 10.3390/computers9040086.
- [9] S. C. Thompson, A. J. Holmgren, and E. W. Ford, “Information system use antecedents of nursing employee turnover in a hospital set_x0002_ting,” *Health Care Manage. Rev.*, vol. 47, no. 1, pp. 78–85, 2022, doi: 10.1097/hmr.0000000000000308.
- [10] D. H. Correll, “Predicting and understanding long-haul truck driver turnover using driver-level operational data and supervised machine learn_x0002_ing classifiers,” *Expert Syst. Appl.*, vol. 242, May 2024, Art. no. 122782, doi: 10.1016/j.eswa.2023.122782.
- [11] S. Das, S. Chakraborty, G. Sajjan, S. Majumder, N. Dey, and J. M. R. Tavares, “Explainable AI for predictive analytics on employee attrition,” in Proc. Int. Conf. Soft Comput. iEng. Appl., 2022, pp. 147–157.
- [12] B. Albreiki, T. Habuza, and N. Zaki, “Extracting topological features to identify at-risk students using machine learning and graph convolutional network models,” *Int. J. Educ. Technol. Higher Educ.*, vol. 20, no. 1,Apr. 2023, doi: 10.1186/s41239-023-00389-3.
- [13] M. D. Guillen, J. Aparicio, and M. Esteve, “Gradient tree boosting and the estimation of production frontiers,” *Expert Syst. Appl.*, vol. 214, Mar. 2023, Art. no. 119134, doi:10.1016/j.eswa.2022.119134.
- [14] H. Sun Yin and R. Vatrapu, “A first estimation of the proportion of cybercriminal entities in the Bitcoin ecosystem using supervised machine learning,” in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2017,
- [15] H. Prabhu, A. Sane, R. Dhadwal, N. R. Parlikkad, and J. K. Valadi, “Interpretation of drop size predictions from a random forest model using local interpretable model-agnostic explanations (LIME) in a rotating disc contactor,” *Ind. Eng. Chem. Res.*, vol. 62, no. 45, pp. 19019–19034, 2023.