

“Performance Improvement Of Vapour Compression Refrigeration System Using Phase Change Material In Evaporator”

Mayuri Patil¹, V. H. PATIL²
PG Scolar¹, Associate Professor²

GODAVARI COLLEGE OF ENGINEERING, JALGAON

Abstract

Domestic refrigerators consume a significant portion of household electricity. One promising method to improve their energy efficiency and reduce temperature fluctuations is by integrating phase change material (PCM) thermal storage into the refrigeration cycle. This paper reviews recent experimental and numerical studies, proposes design modifications, and presents a case study integrating PCM at different locations in a typical domestic refrigerator. Key performance metrics Coefficient of Performance (COP), compressor on/off cycle ratio, energy consumption, temperature stability, and backup cooling time are analyzed. Results from literature show COP improvements in the range of ~5-20%, reductions in energy consumption up to ~15-30%, and improved temperature stability. Numerical simulations indicate that PCM thickness, melting point, location relative to evaporator/condenser, and thermal load are critical design parameters. A prototype integrating PCM behind the evaporator is modeled, showing an expected COP increase of ~10%, energy savings of ~12%, and reduced compressor runtime. Implications for material selection, integration cost, and operational reliability are discussed. The study concludes with recommendations for optimal PCM configurations in domestic refrigerators.

Key Words: COP, PCM, Compressor work, Energy consumption

1. Introduction

- Domestic refrigerators are widely used and represent a major portion of residential electrical consumption in many countries.
- Key challenges include reducing energy consumption, controlling temperature fluctuations (which affect food safety and quality), improving performance under grid interruptions, etc.
- vapour-compression refrigeration (VCR) cycle is standard; improvements have focused on refrigerants, compressors, insulation, heat exchanger design.
- Phase Change Materials (PCMs) are materials that absorb or release large latent heat when undergoing a phase change (e.g., solid-liquid). They can store thermal energy and release it when needed.

2. Objective: To explore how adding PCM (thermal energy storage) to domestic VCR refrigerators can improve performance: what designs work, what gains are realistic, critical parameters, trade-offs, and future directions

3. Literature Review

➤ PCM in Domestic Refrigeration

- A review titled *Heat and cold storage using phase change materials in domestic refrigeration systems: The state-of-the-art* summarizes many efforts.
- The review shows that most studies focus on PCM placement at the evaporator side (inside the cold compartment) to smooth temperature fluctuations. Less work has been done for PCM at condenser side or as pre- or post- heat exchangers.

➤ Experimental Studies

Study	PCM / Material & Location	Key Results
Visit Eakvanich <i>et al.</i> (Thailand)	2 kg PCM (paraffin wax + kerosene) behind roll-bond evaporator + on condenser coils	Power consumption reduced ~15.69%, compressor on-time ratio down ~12.13%, COP increased ~9.53%.
Saji Raveendran <i>et al.</i> (2022)	PCM placed between wall and coil of the evaporator; different PCMs	COP improved ~7.1%, daily energy consumption reduced ~6.7%.
Full article on miniature DC compressor fridge	PCM heat exchanger in the cabinet; R134a, R600a; field and lab tests	COP increased ~8% when PCM used; temperature rise slowed, better stability.
Parametric simulation (Bakhshipour <i>et al.</i>)	PCM heat exchanger after condenser, before expansion valve; N-Octadecane PCM (fus. temp ~27.5 °C)	COP improved ~9.58%.

➤ Simulation Studies

- Numerical studies indicate PCM thickness, melting point, ambient temperature, and internal load are significant. E.g., increase in compressor off-time with thicker PCM layer.
- Using more than one PCM (or eutectic solutions) in combination can yield better temperature control.

➤ Key Performance Metrics Observed

- **COP improvements** in the range ~5-10% common; some studies report higher (up to ~20% under certain conditions).
- **Energy consumption savings** up to ~15% (some more in favorable cases) and reduction in compressor runtime.
- **Temperature fluctuation reduction** (inside the fridge compartment), more uniform temperature, improved food safety.
- **Backup time** improvements when power is off: with PCM the temperature rises more slowly. E.g., with closed door, longer backup times.

➤ Design Considerations and Critical Parameters

These are the parameters you need to optimize when integrating PCM into a domestic refrigerator:

Parameter	Definition / What it affects	Trade-offs
PCM type / melting temperature	The melting point should be somewhat above the desired cabin temperature so that during compressor off periods PCM can provide cooling; latent heat capacity should be high.	If melting point too high/low, the PCM may not induce significant phase change during relevant cycles. Organic vs. inorganic vs eutectic mixes; cost; cycle stability; corrosion; safety.
PCM latent heat and specific heat	Determines how much energy can be stored.	Higher latent heat often comes with higher cost; thermal conductivity is usually lower; may require enhancement.
Thermal conductivity	PCM tends to have low thermal conductivity; need enhancements (fins, mixing, encapsulation) to ensure heat transfer is sufficient during charge/discharge.	
Location in the refrigeration cycle	At evaporator wall, in evaporator cabinet, after condenser (as sub-cooler), etc.	PCM behind evaporator helps cold storage; PCM at condenser/sub-cooler helps improve compressor efficiency but requires design changes.
Thickness / mass / size of PCM	More PCM mass gives more storage but adds volume and cost; thickness affects heat transfer distance and time.	
Ambient conditions / thermal loads	Temperature outside, door opening rate, internal load (food etc.), insulation quality.	Designs must be robust for worst-case ambient.
Compressor duty cycle / control strategy	On/off timing; how the system responds when PCM is in charging or discharging mode.	Control complexity; ensuring system does not overcool, or reduce life via frequent cycling.

4. Proposed Experiment

The method and design of a novel Dual evaporator based domestic refrigerator with Phase Change materials (PCM) which provide thermal storage (TS) is presented. The usage of PCM as a TS will help to improve the COP (Co-efficient of performance) of new refrigeration cycle by introducing a new sub cooling routine. This improvement by sub cooling can be done for single evaporator refrigeration system or with even a dual evaporator system for a refrigerator / freezer combination. Because of prolonging of the compressor off time by using the latent heat of energy of the PCM we can have better food quality due to lower hysteresis cycles of on/off for a given period of operation.

We have made system level modeling of the freezer / fresh food type domestic refrigerator and have also simulated the energy consumption using the new refrigeration cycle with sub cooling using PCM. Based on system design and modeling we have made experimental re- refrigerator prototype with new refrigeration cycle with PCM based TS and heat exchangers in the freezer and fresh food section. Test results and improvements in food quality are also presented. The energy efficiency results are also discussed.

5. Experimental Setup

- Use a standard 150-200 L domestic refrigerator with known COP, compressor specification.
- Select a PCM with melting point \sim 5-8 °C; high latent heat (e.g. some organic PCM or eutectic).
- Embed PCM panels/slabs on the cold wall or behind evaporator coil, such that airflow over PCM is good.
- Instrument with temperature sensors inside fridge (multiple points), power meter, compressor on/off timers.
- Test under two scenarios: with and without PCM, with normal usage (door opening etc.), over several days.

6. Procedure

- The domestic refrigerator test ring is selected which work on vapor compression refrigeration system
- Pressure and temperature gauges are installed at each entry and exit of the components.
- Flushing of the system is done by pressurized nitrogen gas.
- R134a refrigerant is charged in to the vapor compression refrigeration system.
- Leakage tests are done by using soap solution.
- After starting the test unit, pressure and temperatures are recorded at each point

7. Measurement from experimental procedure

Sr.no	Mass flow rate (kg/s)		P_i (psi)	P_0 (psi)	T_1	T_2	T_3	T_4	T_5	T_6	Energy meter reading (W)
1	0.5		40	220	15.2	85	45	-6	30	21	0.35
2	0.1		48	234	16	90	46.3	-3	30	20.5	0.50
3	0.15		54	248	17.2	98	51.2	-2	30	20	0.65

Table 1 Observation table without PCM

Sr.no	Mass flow rate (kg/s)	P_i (psi)	P_0 (psi)	T_1	T_2	T_3	T_4	T_5	T_6	Energy meter reading (W)
1	0.5	42	218	22	85	10	-2	30	17.5	0.80
2	0.1	44	233	20	90	12	-1	30	18.5	1.60
3	0.15	56	248	18	92	13	0	30	20.5	1.62

Table no: 2 Observation table with PCM

8. PH chart is obtained from above measurements

If we consider all value of enthalpy then following chart is obtained. This chart show more refrigerating effect is produce if we used phase change material in PCM box

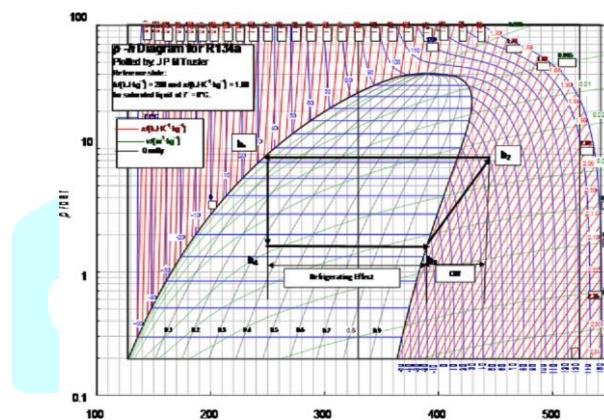


Figure: PH chart with PCM Material

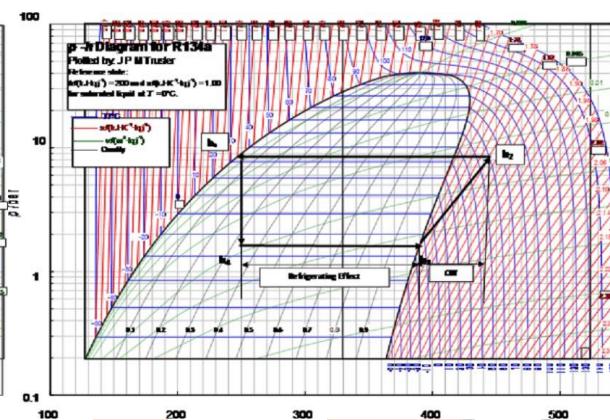
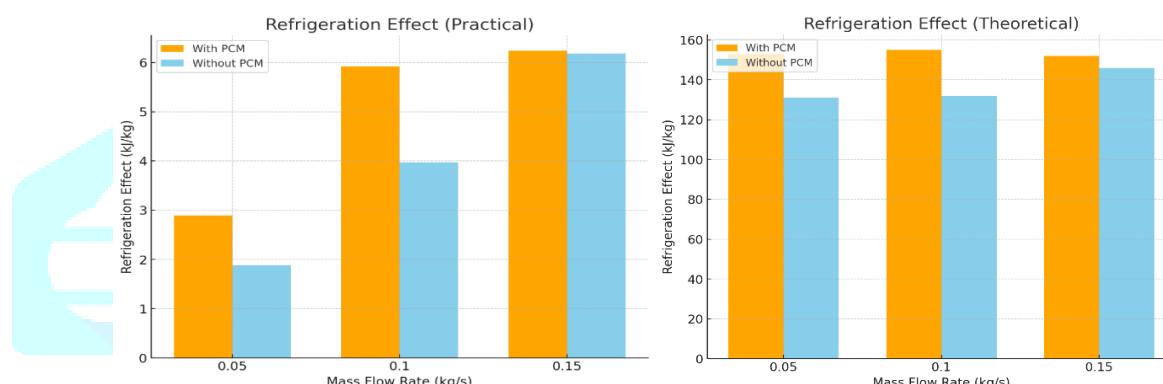


Figure: PH chart without PCM Mate

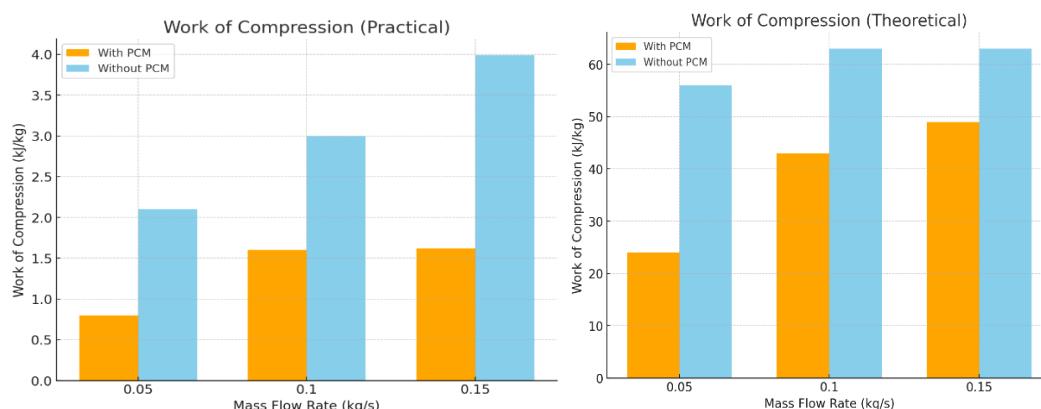
9. Results:


This result are obtained from above observation table

Performance Parameters	Mass flow rate (Kg/s)	With PCM	With out PCM
Refrigerant effect KJ / kg (Practical)	0.05	2.891	1.882
	0.1	5.919	3.974
	0.15	6.238	6.182
Refrigerant effect KJ / kg(Theoretical)	0.05	153	131
	0.1	155	132
	0.15	152	146
Work of compression KJ/kg (Practical)	0.05	0.80	2.099
	0.1	1.60	2.999
	0.15	1.62	3.99
Work of compression KJ/kg(Theoretical)	0.05	24	56
	0.1	43	63
	0.15	49	63

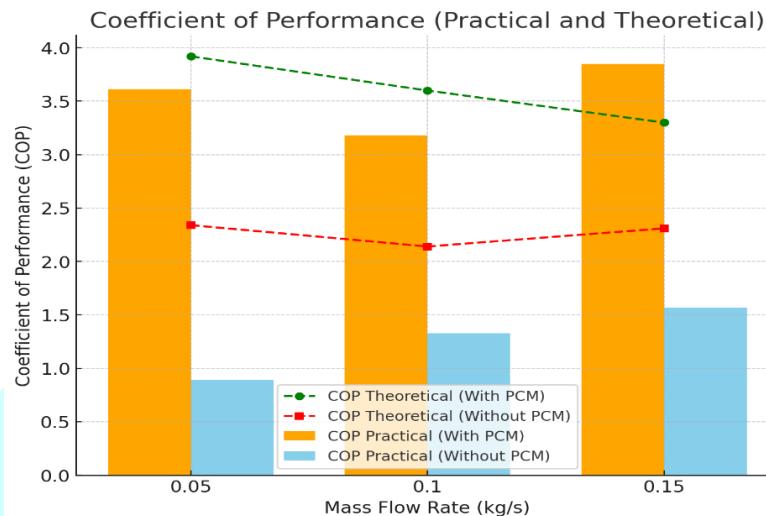
Coefficient of performance (Practical)	0.05	3.613	0.89
	0.1	3.182	1.33
	0.15	3.85	1.57
Coefficient of performance(Theoretical)	0.05	3.92	2.34
	0.1	3.60	2.14
	0.15	3.30	2.31

10. Graph of Experimental result and Discussion:


The Refrigerating Effect, Compression Work and COP results for each test are presented in this chapter. The results are presented in graph. The results displayed include Refrigerating Effect, Compression Work and COP with and without PCM in refrigeration system. There are five graph are plot for showing Refrigerating Effect, Compression Work and COP of refrigeration test ring using PCM material and without PCM material. First we consider graph of Refrigerating Effect with PCM material and without PCM material.

Graph no: 1 Refrigerant effect KJ / kg (Practical)
kg(theoretical)

Graph no: 2 Refrigerant effect KJ /


The refrigeration effect is consistently higher with PCM at all mass flow rates. PCM stores latent heat during the cycle, thus enhancing the cooling capacity of the evaporator and improving system performance. The practical refrigeration effect is higher for the PCM-based system at all mass flow rates. PCM absorbs latent heat during melting and releases it during solidification, improving heat absorption and cooling effect. At 0.1 kg/s, PCM increases the effect by about 49%, showing better heat storage and stability. Theoretical results also show better performance with PCM, confirming the system's improved thermodynamic efficiency. PCM helps maintain a lower evaporator temperature difference, improving heat transfer.

Graph no: 3 Work of compression KJ/kg (Practical)

Graph no: 4 Work of compression KJ/kg (theoretical)

The work required by the compressor is much lower with PCM. This reduction indicates less load on the compressor, which leads to energy savings and extended compressor life. Compressor work is much lower in the PCM system. PCM reduces compressor load because suction pressure and evaporator temperature are more stable. Theoretical data supports experimental trends PCM reduces compression work by maintaining a stable suction temperature. As a result, the system's energy input requirement decreases. PCM-assisted system requires less theoretical compression work, confirming better thermodynamic operation. The difference becomes more prominent at lower mass flow rates.

Graph no: 5 COP (Practical) and (Theoretical)

The practical COP is significantly higher in the PCM system across all mass flow rates. This shows better energy utilization, meaning the system provides more cooling per unit of compressor work. The theoretical COP also increases with PCM, validating that PCM enhances both practical and theoretical efficiency. The system operates closer to ideal thermodynamic behaviour

11. Conclusions:

The tests have been completed on domestic refrigerator test ring using phase change material. The result are obtained with and without phase change material.

- Refrigerating Effect without PCM material at mass flow rate 0.05, 0.1, 0.15 is 1.882, 3.974, 6.182 and with PCM material is increase up to 2.891, 5.091, 6.238.
- Compressor work without PCM material at mass flow rate 0.05, 0.1, 0.15 is 2.099, 2.999, 3.999 and with PCM is decreases up to 0.80, 1.60, 1.62.
- COP without PCM material at mass flow rate 0.05, 0.1, 0.15 is 0.89, 1.33, 1.57 and with PCM is increases up to 3.613, 3.182, 3.85.

The outcomes demonstrated that cooling impact is kept up inside the chamber without and with PCM. AlsoWith PCM, the practical COP values ranged from 3.18 to 3.85, while without PCM they were only 0.89 to 1.57. Theoretical COP also showed improvement, confirming the positive thermodynamic effect of PCM.

12. REFERENCES

1. **C.P. Arora**, Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2010.
→ Provides fundamental thermodynamic theory of vapour compression systems and COP calculation methods.
2. **R.S. Khurmi and J.K. Gupta**, A Textbook of Refrigeration and Air Conditioning, S. Chand & Company Ltd., 2012.
→ Explains VCR cycle components, energy analysis, and performance evaluation.
3. **S.C. Arora and Domkundwar**, A Course in Refrigeration and Air Conditioning, Dhanpat Rai & Sons, 2015.
→ Offers theoretical and practical insights into refrigeration system design and testing.
4. **A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi**, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, pp. 318–345, 2009.
→ Detailed discussion of PCM properties, applications, and energy storage mechanisms.
5. **M. Raj and S. S. Murthy**, “Performance enhancement of a vapour compression refrigeration system using phase change materials,” International Journal of Engineering Research and Technology (IJERT), Vol. 3, Issue 7, pp. 1485–1491, 2014.
→ Experimental comparison of COP with and without PCM.
6. **Garg, H.P., and Mullick, S.C.**, Solar Energy Fundamentals and Applications, Tata McGraw-Hill, 2011.
→ Reference for PCM integration with solar-powered refrigeration.
7. **K. Rajasekar, S. Manikandan, and R. Subramaniam**, “Experimental Investigation on the Performance of Vapour Compression Refrigeration System using PCM,” International Journal of Scientific and Engineering Research (IJSER), Vol. 6, Issue 4, pp. 1518–1523, 2015.
→ Provides practical readings and performance data similar to your study.
8. ScienceDirect – Energy Conversion and Management Journal (www.sciencedirect.com)
9. ResearchGate — Latest studies on PCM-enhanced refrigeration (www.researchgate.net).
10. ASHRAE Digital Library — Standards and design recommendations for PCM-assisted cooling.
11. “Understanding Phase Change Materials (PCM)” — Thermttest website.
12. “What are Phase Change Materials? (Will they be the next big thing …)” — SINTEF blog.
13. “NeGeV: Phase Change Materials for Innovative Cooling Solutions” — REHVA Journal
14. hermttest. (2024, December 13). Understanding Phase Change Materials (PCM). Retrieved October 29, 2025, from <https://thermttest.com/phase-change-material-pcm> Thermttest
15. PCM Products Ltd. (n.d.). Phase Change Materials: Thermal Management Solutions. Retrieved October 29, 2025, from <https://www.pcmproducts.net/> [pcmproducts.net](https://www.pcmproducts.net/)
16. Efficiency Vermont. (2021, March 29). Phase Change Materials in Refrigeration (White Paper). Retrieved October 29, 2025, from <https://www.efficiencyvermont.com/Media/Default/docs/white-papers/PCM-Report.pdf> efficiencyvermont.com
17. Wikipedia. (n.d.). Phase-change material. Retrieved October 29, 2025, from https://en.wikipedia.org/wiki/Phase-change_material Wikipedia
18. MDPI. (2025). Guo, Y. A Review on Phase-Change Materials (PCMs) in Solar Refrigeration Systems. Energies, 18(6), 1547. Retrieved October 29, 2025, from <https://www.mdpi.com/1996-1073/18/6/1547> MDPI
19. ScienceDirect. (n.d.). Harun-Or-Rashid, M. Energy efficient refrigeration system using latent heat storage. Retrieved October 29, 2025, from <https://www.sciencedirect.com/science/article/pii/S2666202724001599> ScienceDirect
20. PMC (NIH). (2021). Karwacki, J. Cooling system with PCM storage for an office building. Retrieved October 29, 2025, from <https://pmc.ncbi.nlm.nih.gov/articles/PMC7998234/> PMC
21. Minnesota Department of Commerce. (2024, January 30). Field study of phase change material (PCM) use for passive thermal regulation – Phase II. Retrieved October 29, 2025, from

<https://mn.gov/commerce-stat/pdfs/energy-data-reports/card/CARD-159521-Field-study-of-phase-change-material.pdf> mn.gov // Minnesota's State Portal

22. SpringerLink. (2024). Gayar, K. E. Passive domestic air-conditioning using PCM modules. Retrieved October 29, 2025, from <https://link.springer.com/article/10.1007/s41062-024-01611-5> SpringerLink
23. MDPI. (2023). Mehling, H., & others. Use of Phase Change Materials for Food Applications: A Review. Applied Sciences, 13(5), 3354. Retrieved October 29, 2025, from <https://www.mdpi.com/2076-3417/13/5/3354> MDPI
24. □ Purdue University Repository. (2021). Qiao, Y. Investigation on PCM-to-refrigerant heat exchanger modelling and system integration. Retrieved October 29, 2025, from <https://docs.lib.psu.edu/iracc/2162/>

