IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Traditional Indian Water Systems: Engineering, Culture and Sustainability

Chandra Shekhar Singh¹, Deepak Kumar Chaurasia², Nishant Kumar Singh³, Narendra Kumar Rana⁴, Vishwambhar Nath Sharma⁵

¹Research Scholar, Department of Geography, T.D. College, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India.

^{2&3}Research Scholar, Department of Geography, Banaras Hindu University, Varanasi.

^{4&5}Professor, Department of Geography, Banaras Hindu University, Varanasi.

Abstract

India's ancient water management systems are a complex mixture of engineering skill, ecological equilibrium, and cultural devotion. Covering various geographic and climatic regions, these systems range from stepwells (baolis), tanks, johads, kunds, canals, and rooftop rainwater harvesting structures discovered and perfected over centuries to serve the household, agricultural, and religious requirements of societies. This research examines the various dimensions of traditional Indian water systems by viewing them through the filters of indigenous engineering, socio-cultural practices, and paradigms of sustainability.

The study explores the structural and functional dynamics behind these systems, shedding light on how local materials, geomorphology, and hydrology were cleverly combined into decentralised, community-led designs. The stepped geometry of Gujarat's vavs, tank cascade systems of South India, and the Northeast's bamboo drip irrigation are examples of water technologies that show incredible resilience, flexibility, and affordability attributes that are becoming increasingly pertinent in the era of contemporary water crises and climate change.

In addition to their engineering importance, these systems were integral to the socio-religious life of Indian society. Water bodies tended to be associated with temples, festivals, and rituals, which strengthened stewardship through cultural norms. Such blending promoted sustainable water use practice based on collective responsibility and spiritual ethos.

Over the last few decades, though, numerous traditional water systems have gone out of use or been deconstructed as a result of urbanisation, abandonment, and centralised water infrastructure development. In a multi-disciplinary analysis involving field surveys, archival work, and interviews with stakeholders, this article weighs the ecological and cultural costs of such decline. It also provides nascent examples of resurgence frequently initiated by local communities and civil society groups where traditional systems are being renewed and hybridised with contemporary technology.

The results posit in favour of the revalorization of India's water heritage in modern water governance and urban planning. By reconciling ancient knowledge with modern innovation, ancient Indian water systems present replicable models for sustainable and equitable water management in the age of Anthropocene.

Keywords: Indian Water System, Sacred Water Bodies, Groundwater, Sustainability, Artificial Groundwater Recharge.

1. Introduction

Water was both a lifeline and a sacred substance in Indian civilisation from ancient times. Indigenous Indian water systems are classic examples of native engineering and sustainable resource utilisation, firmly entrenched in the subcontinent's rich ecological regions and cultural terrains. Established centuries prior to the arrival of mechanised water facilities, these systems display an impressive insight into hydrology, geology, and climatology, melted perfectly into the social fabric using ritual, architecture, and communal governance [1, 2, 8, 15 & 30]

India's natural and climatic variability ranging from the dry Thar Desert to the humid Gangetic plains and the hilly tracts of the Northeast has long required localised solutions for managing water. Ancient societies countered this need with an impressive array of innovative systems, ranging from stepwells, tanks, canals, and rainwater harvesting structures, each suiting regional requirements, and endowments. These facilities were not stand-alone utilities but an integral part of the socio-economic and religious culture of the populace. They aided agriculture, maintained urban centres, checked flooding, and offered resilience during dry spells, as well as being places for social gathering and spiritual practice [3 &4].

At the heart of these systems is a philosophy that sees water not as a commodity, but as a common and sacred resource. This perspective bred community involvement in construction, maintenance, and fair sharing. The water bodies were revered and defended by customary law and ritual responsibility, making conservation a communal moral obligation. Thus, traditional water systems were democratic and sustainable by nature, and they have lessons to impart on equity, decentralisation, and long-term ecological planning. Yet, the applicability of these systems diminished under colonial times, when revenue-oriented policies and state-organised irrigation canals disturbed community-based practices [5&6].

Post-independence emphasis on piped water supply, large dams, and urban water models further kept the traditional knowledge out of the mainstream. This has resulted in a lot of traditional water bodies and systems being ruined or abandoned, increasing problems such as water scarcity, groundwater exploitation, and vulnerability to floods [7].

In the backdrop of modern environmental issues particularly the increasing impacts of climate change, unpredictable monsoons, and water stress the ancient systems have seen renewed interest due to their resilience, adaptability, and minimal ecological footprint. The revival of indigenous water knowledge combined with new science and policy approaches can facilitate more sustainable and equitable water management strategy development [8].

This research paper explores the engineering concepts, cultural aspects, and ecological advantages of ancient Indian water systems. It seeks to record their diversity, understand the reasons for their decline, and assess attempts at their revival. It further contends that water governance in India needs to be reimagined by contextualising ancient wisdom with modern sustainability imperatives.

2. Historical Context and Evolution

The Indian history of water management goes back a long way and is complex in its scope, starting with prehistoric settlements and on into the present. Its development can be explained sequentially as follows:

2.1. Prehistoric and Indus Valley Civilisation (c. 2500–1900 BCE)

Organised water management existed from a very early time as evidenced by the Indus Valley Civilisation. Urban centers such as Mohenjo-Daro and Dholavira had advanced water supply and drainage systems in the form of covered drains, baths for individual households, wells, and great reservoirs [9]. The Great Bath at Mohenjo-Daro reflects the significance of water in public and ceremonial life. Dholavira possessed a

unique network of water channels and storage tanks excavated in rock, providing year-round water supply in an arid environment [10].

2.2. Vedic and Epic Period (1500–500 BCE)

During the Vedic era, water was sacred and was very much a part of Rigveda hymns. Rivers were personified, and water conservation was promoted through rituals and moral law. Textual references indicate that ponds (sarovars), wells (kuṇḍas), and early canals were utilised. The settlements were strategically located along rivers and perennial streams [1&4].

2.3. Mauryan and Early Historic Period (321 BCE-300 CE)

State-sponsored irrigation and public water works developed during the Mauryan Empire, especially during Ashoka's reign. Kautilya's Arthashastra refers to the building of canals, embankments, and sluices. Tanks (pushkarinis) and dams were built to aid agriculture and long-distance trade. Rock edicts show the emperor's interest in providing drinking water for humans and animals [11].

2.4. Classical and Medieval Period (4th–16th Century CE)

During the Gupta, Chola, Vijayanagara, and other local dynasties, water management set new records. Tamil Nadu's Cholas refined the tank cascade system for multi-season irrigation and flood prevention [5]. In Rajasthan, the Rajputs constructed baolis, kunds, and johads, frequently elaborately carved and connected with temples [4]. Mughals brought in Persian-style garden with running water channels (charbagh), besides stepwells and canal systems within urban agglomerations of Agra, Delhi, and Lahore. This time witnessed a greater integration of aesthetics, engineering, and spiritual symbolism in water structures [12].

2.5. Community Governance and Cultural Stewardship

In all regions, water management was highly community-based. Panchayats, village councils, temple trusts, and local kings controlled and regulated access to water. Most water bodies were constructed as acts of charity or religious merit and serviced through local taxes or voluntary efforts. This provided a sense of shared ownership and ecological balance [1].

2.6. Colonial Period (18th–20th Century CE)

Large-scale irrigation of canals and centralised water control, focusing on cash crops and revenue, were brought in by the British colonial government. As a result, community management systems declined and were neglected, and regional hydrology was ignored. Most traditional wells and tanks deteriorated, and water access became less equitable. Accounts of the time indicate heightened reliance on externally controlled systems, eroding traditional resilience [6&7].

2.7. Post-Independence to the Modern Period

After independence, India turned its attention to mega-projects such as dams and tube wells to cope with increasing needs. Although these yielded short-term gains, they also increased the rate of groundwater depletion, river contamination, and exclusion of traditional knowledge systems [13]. But in recent decades, there has been a revival movement initiated by environmental emergencies and mass movements towards the rehabilitation of traditional systems for decentralised and sustainable water management [2]. It is important to understand this rich historical path for creating water policies that are ecologically healthy, culture-based, and socially equitable.

3. Types of Traditional Indian Water Systems

India's civilization heritage contains a rich collection of traditional water systems that evolved over millennia. The systems are intricately associated with the geography, climate, social fabric, and faith of the region. Locally adapted and cleverly designed, the systems provided water for drinking, irrigation, domestic uses, and religious rituals. Their variety indicates the resourcefulness of native communities in

sustainably controlling and utilising water in varied ecological environments. The following is a comprehensive description of the major categories of ancient water systems prevalent throughout India:

3.1. Stepwells (Baolis, Vavs, Pushkarnis)

Geographic prevalence: Gujarat, Rajasthan, Madhya Pradesh, Karnataka

Stepwells are architectural wonders that inspired both form and function. Designed deep within the ground, stepwells include a sequence of steps leading down to the water level, providing year-round access to groundwater. Stepwells served as a means of water storage, social meeting places, and shelter from the heat in dry regions. Baolis (in Delhi and Rajasthan) and Vavs (in Gujarat) are typically richly carved [4]. Pushkarnis, which are generally found in temple tanks of South India, also serve as stepwells. Such structures reflect a rich knowledge of groundwater hydrology and climate adaptation, especially in semi-arid and arid zones [3].

3.2. Tanks (Kunds, Talabs, Cheruvus, Eri)

Geographic prevalence: Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra, Rajasthan

Tanks are man-made reservoirs constructed to harvest surface runoff during monsoon rains. Frequently linked by cascaded networks, they have several uses such as irrigation, aquifer recharge, and domestic consumption. Eris in Tamil Nadu and Cheruvus in Andhra Pradesh are components of irrigation systems dating back centuries [5]. Kunds and Talabs in Rajasthan and Gujarat are generally smaller and stone-lined to reduce seepage in desert areas. These tanks are the backbone of rural life in peninsular India, usually communally managed [1].

3.3. Johads and Khadins

Geographic prevalence: Rajasthan, Gujarat

These are rainwater harvesting and watershed management-based systems. Johads are earthen check dams constructed to impound and allow percolation of rainwater into the soil. They are prevalent in Alwar and Jaipur districts of Rajasthan and contribute heavily to groundwater recharge. Khadins, created by the Jaisalmer Paliwal Brahmins, are earthen banks built at the field's lower end to catch runoff, which seeps into the ground, rendering it cultivable. These structures demonstrate advanced understanding of slope, runoff, and soil-water dynamics in dry regions [14].

3.4. Ahars and Pynes

Geographic prevalence: Bihar (particularly the Gaya and Patna districts)

This combined irrigation system includes: Ahars, retention tanks that catch rainwater. Pynes, which are irrigation canals that convey water from rivers or ahars to farms. It is best adapted to the flood-prone and flat topography of the Indo-Gangetic plains. It allows water storage during rainy periods and supply during dry seasons, improving farm resilience [15].

3.5. Zabo and Apatani Systems

Geographic spread: Nagaland and Arunachal Pradesh (Northeast India)

These systems demonstrate eco-sensitive water management in hills and forests. Zabo system (Nagaland): Combines water harvesting with forest management, animal husbandry, and agriculture. Rainwater is harvested on the hill slopes and stored in ponds for irrigation [16]. Apatani system (Arunachal Pradesh): Comprises canal-based irrigation, bamboo check dams, and paddy-cum-fish farming. It is a model of sustainable water and land use supported by UNESCO. They are integrated systems that combine traditional knowledge with environmental conservation [1].

3.6. Karez System

Geographic prevalence: Deccan Plateau (particularly Bidar in Karnataka and Maharashtra)

The Karez system is a Persian-inspired underground aqueduct-based water supply system. It is a system of underground canals supplied by a mother well, relying on gravity to transport water to surface outlets. Conserves water from evaporation and contamination. Aids agriculture and urban settlements in semi-arid plateaus. This system shows trans-cultural knowledge transfer and innovation in the transportation and storage of water [17].

3.7. Bamboo Drip Irrigation

Geographic distribution: Meghalaya and other northeastern regions

A time-tested engineering solution to irrigation in hill slopes, the bamboo drip irrigation employs hollow bamboo tubes to channel water from streams to hillside fields. Provides controlled release of water drop by drop. Sustainable, biodegradable, and resource-frugal. It is an example of precision irrigation with natural products and local engineering [18].

3.8. Sacred Water Bodies (Temple Tanks, Kunds, Sarovars)

Geographic distribution: Pan-India, particularly Tamil Nadu, Kerala, Uttarakhand, Uttar Pradesh.

These are bodies of water usually associated with temples and religious complexes. They are used for ritualistic, spiritual, and practical purposes: Temple tanks in South India (e.g., Meenakshi Temple, Madurai). Sarovars (e.g., Amrit Sarovar in Punjab).Kunds (e.g., Surya Kund, Pushkar Kund). These water bodies are also used as zones of groundwater recharge and community reservoirs while reflecting the sacred nature of water in Indian cosmology [19].

3.9. Nadi, Talai, and Bandha Systems

Geographic prevalence: Rajasthan, Madhya Pradesh, Chhattisgarh

Nadi: Rainwater storage ponds for livestock and drinking purposes in villages. Talai: Mini surface depressions in hill slopes that harvest runoff. Bandha: Mini earthen dams or bunds for diverting and storing monsoon runoff for irrigation [20].

4. Engineering Principles and Innovations

The Indian traditional water systems are not just vestiges of cultural heritage these are astounding models of sustainable engineering, developed through experience-based knowledge and ecological wisdom. These systems were moulded through a keen understanding of hydrology, geology, climate fluctuation, soil response, and socio-economic requirements. Without the availability of contemporary computing methods or mechanised construction practices, these native systems demonstrate high-level engineering reasoning and ingenious design adjusted to local conditions. The main engineering concepts and technologies that formed the basis of the construction, operation, and upkeep of ancient Indian water systems are discussed in this section.

4.1. Site-Specific Design and Geo-Climatic Adaptation

Perhaps one of the most essential engineering strengths of traditional systems is their geo-climatic adaptation and suitability to local topography, geology, and climate. In desert regions (e.g., Rajasthan), Johads, Kunds, and Baoris were designed to reduce evaporation through deep storage and small surface area. In coastal and deltaic areas, for instance, West Bengal and Odisha, ponds and tanks were shallow and broad, constructed to capture surface runoff with ease of desilting. For hilly areas, such as the northeast, water courses were constructed with graded controlled slopes to avoid erosion, as the case is with bamboo drip irrigation and Zabo systems. For flood-prone plains (for example, Bihar), Ahar-Pyne systems permitted diversion and storage of water without the use of extensive embankments. These systems reveal a sophisticated way of handling water engineering that is inherently location-sensitive [1].

4.2. Gravity-Based Flow Systems

One of the innovations of many traditional systems is the application of gravity flow to transport water, reducing energy input and allowing for long-term functionality. Pynes, canals, and stepwells rely on natural slope to direct water flow. Karez systems of Bidar employ a sub-surface gravity-flow channel system to transport water from a mother well to the surface over distances. Land levelling on contours in Zabo and Apatani systems facilitates free downhill flow of water through zones of multiple cropping. The design of such systems necessitated accurate knowledge of gradient, slope stability, and hydraulic behaviour without any formal surveying equipment [15].

4.3. Sustainable Construction Materials and Techniques

Traditional water structures were typically built using locally available, sustainable materials that matched the geotechnical characteristics of the region: Stone masonry was widely used in stepwells, tanks, and embankments in semi-arid regions for durability and thermal insulation. Laterite blocks and lime mortar were used in coastal and plateau regions (e.g., Goa, Maharashtra). Earth embankment and clay-lined tanks were utilised in areas where suitable soil types existed to minimise seepage (e.g., Khadins in Rajasthan, Tanks in Tamil Nadu). Lightweight, abundant, and pliable bamboo was cleverly utilised in the northeast for water transmission systems. In the majority of instances, manual, community-based construction processes were used, which facilitated local area knowledge transfer and skill acquisition [4].

4.4. Hydraulic Engineering and Storage Optimisation

Ancient engineers closely monitored hydraulic dynamics to maximise storage of water, avoid losses, and regulate sedimentation. Stepwells were equipped with baffle-like steps, lowering turbulence and enabling controlled percolation into aquifers. Tanks and Talabs frequently featured sluice gates, outlets, and spillways to regulate overflow and regulate irrigation release [21]. Check dams and bunds were built with low slopes and curvature to withstand hydraulic pressure and minimise scouring. Sediment traps and inlet filters were combined for longevity and water quality improvement. These are indicative of a good understanding of water behaviour, flow mechanics, and sediment transport [14].

4.5. Groundwater Recharge and Aquifer Integration

Some ancient systems were designed by themselves to recharge groundwater:

Johads, Kunds, and Baoris provided percolation through porous bottoms, particularly following monsoon. Stepwells served both as water abstraction points and recharge wells, subject to seasonal variation. Tanks in peninsular India tended to be connected to open wells and aquifers, creating a hybrid surface-subsurface system. Such designs antedate contemporary hydrogeological mapping and provide models for meeting present water table deficits with managed aquifer recharge [22&23].

4.6. Multi-Functional and Modular Design

Ancient water systems were multi-functional, integrating utility with social, ecological, and religious functions:

Temple tanks and Kunds served for ritual bathing, drinking water, and aquifer recharge. Ponds fulfilled the needs of livestock, irrigation, bathing, and fisheries at the same time. Systems tended to be modular in nature, where smaller tanks supplied larger tanks or the reverse to facilitate water exchange across communities and seasons. This approach to design guaranteed resilience, redundancy, and fairness in the distribution of water [5&19].

4.7. Community-Centric Maintenance and Engineering Procedures

The success of these systems depended not only on building but on routine maintenance. Engineering was coupled with social systems that controlled maintenance via community norms:

Desilting calendars were harmonised with agricultural calendars. Water sharing customs, usually formalised through village councils or caste panchayats, regulated usage rights and disputes. In most areas, tank bunds and canals were constructed communally, and labour donations (shramdaan) formed an integral

part of local responsibility. This model of participation converted water engineering into a socially embedded activity, decreasing reliance on outside agencies [2&5].

4.8. Water Harvesting and Conservation Innovations

Conventional engineers came up with creative designs and methods to optimise water collection and reduce loss:

Percolation pits, filter chambers, and sunken ponds enhanced infiltration. Contour trenches, rock dams, and vegetative barriers regulated erosion and maximised runoff storage in hills. Bamboo-pipe regulators in drip irrigation facilitated flow modulation without the use of valves. Sacred groves and forest catchments were maintained around springs and tanks to maximise yield and minimise siltation. These innovations made water available with minimum ecological perturbation [24].

5. Cultural and Religious Significance

Water in India has never been viewed only as a physical requirement; it has been considered a sacred entity, impregnated with deep cultural, spiritual, and symbolic significance. Water in Indian civilisation has long been viewed as life-giving, pure, and divine. Consequently, India's conventional water systems were not only engineering masterpieces but also cultural icons and spiritual sites, deeply rooted in the nation's spiritual culture, social tradition, and daily life. These systems are quintessential expressions of the Indian philosophy of coexisting with nature and have been core to the formation of community values and preservation of collective identity. This part describes how the classical Indian water systems were influenced by, and influenced the country's religious beliefs, cultural values, and social practices over centuries.

5.1. Sacredness of Water in Indian Philosophy

In Hinduism and other Indian faiths like Buddhism, Jainism, and Sikhism, water is counted as one of the five Panchamahabhutas (five great elements), denoting life, purity, and spiritual transformation. Its religiousness is recognised in religious texts and ritualistic practices in all denominations.

Rivers such as the Ganga, Yamuna, Saraswati, and Godavari are revered as goddesses and are considered to wash away sins and bring moksha (emancipation). Water forms a central part of rituals like snana (ritual bath), achamana (purification before prayer), and arghya (offering water to gods), both in temples and homes. The system of Tirtha (pilgrimage) is inexorably connected with sacred water bodies travelling to holy rivers, lakes, and kunds is said to erase karmic debts. This sacred worldview has traditionally promoted water conservation, ritual cleansing, and judicious use throughout Indian society [25&26].

5.2. Temple Tanks and Ritual Ponds: Water as a Sacred Space

Water systems in the traditional period were frequently built alongside temples and shrines, both for spiritual and practical ends. These sacred ponds and tanks were ritualistic and architectural centers of temple complexes. Pushkarnis and Kalyanis in South India served as temple tanks for ceremonial bath prior to worship. Buildings such as the Surya Kund at Modhera and Amrit Sarovar at the Golden Temple in Amritsar evolved into pilgrimage sites on their own. Water bodies were assumed to be blessed by divine visitation and often referred to in texts like the Ramayana, Mahabharata, and Puranas. Their religious status guaranteed protection and periodic upkeep, even in times of socio-political instability, underlining the cultural endurance of these systems [27&28].

5.3. Festivals, Seasonal and Religious Around Water

India's water bodies have always been focal centers of religious festivals, fairs, and seasonal festivities, strengthening their position on the cultural calendar and guaranteeing periodic maintenance. Chhath Puja in Bihar revolves around worshipping the Sun God while standing in rivers, ponds, or tanks. Millions of pilgrims visit sacred rivers and confluences during Magh Mela, Kumbh Mela, and other snan (ritual bathing) festivals [29]. In South India, the South Indian float festival, Theppotsavam, is a festival where

deities are brought across temple tanks on decorated boats. Such celebrations not only reassert the sacred nature of water but also rally communities around the cleaning, maintenance, and celebration of traditional water systems [30].

5.4. Social Cohesion and Community Identity

In addition to religious aspects, traditional water systems were also social institutions that promoted interaction, solidarity, and mutual responsibility among communities. Village wells and ponds were used as everyday meeting points, especially among women, who drew water, did laundry, and shared news, thereby solidifying kinship [2]. Stepwells (Vavs, Baolis) were shaded spots for passersby and natives alike, acting as resting places, performance grounds, and unofficial courts. Even in caste-stratified societies, where water bodies were controlled on occasion, water systems still functioned as collective resources for community rituals, festivals, and work [4]. These structures thus became part of local identity, oral traditions, and intangible heritage.

5.5. Patronage, Symbolism, and Status

The building and upkeep of water structures were seen as religious merit (punya) and social status activities. Rulers, nobles, merchants, and even temple benefactors commissioned tanks, stepwells, and ghats as part of their dharmic obligations. Epigraphy on temple walls, kunds, and pillars frequently documented the patron's name and the religious reasons for their gifts. Water works were frequently patronised (Rani ki Vav) or named after gods (Vishnu Kund), highlighting their spiritual and symbolic status. Philanthropic acts were thought to bestow blessings in both the material and spiritual worlds, strengthening a tradition where public welfare was equated with divine service [31].

5.6. Cosmological and Architectural Integration

Traditional water systems were designed in consonance with cosmic principles, sacred geometry, and Vastu Shastra. Buildings were built according to mandala layouts and astral alignments to balance energy flows and celestial rhythms. Stepwells such as Chand Baori and Adalaj Vav were not only feats of engineering but also metaphysical concepts life, death, and rebirth, symbolised through their descent into the ground. Several tanks and wells were aligned to sunrise or solstice locations, reaffirming the cycles of time and nature. This combination of utility, spirituality, and cosmology expressed a holistic worldview, which regarded water as a source and an expression of the cosmos [3&32].

5.7. Folk Beliefs, Oral Traditions, and Ritual Taboos

Local legends, ritual taboos, and folk beliefs surrounded traditional bodies of water, most of which contributed to their protection. Certain tanks were regarded as homes for serpents or spirits (Nag Kunds) and revered during celebrations such as Nag Panchami. Rivers, wells, and ponds were revered during festivals such as Ganga Dussehra and Navaratri, frequently as a way of summoning rain, fertility, or wealth. Oral traditions tended to associate water bodies with sages, saints, or mythology, weaving a story of reverence and protection. These belief systems served as the uncodified environment codes, with community respect and guardianship [27].

5.8. Water and Ecology in Religious Texts

Ancient Indian texts on ethics and scripture urge both the spiritual and ethical aspects of water. Rivers are worshipped as divine mother figures, and the Manusmriti and Arthashastra detailed all the involvement and guidelines related to the management of water, that is, making wells, tanks, and irrigation channels. The Puranas, Upanishads, and Bhagavad Gita all highlight the cyclical nature of water, its relationship with karma, and the need to preserve ecological harmony. These texts provided the philosophical basis for managing water as something that is not a commodity, but rather a sacred trust (Dharma) [33].

6. Decline and Marginalisation

With the advent of British colonial rule and the introduction of large-scale canal irrigation, many indigenous systems were neglected or dismantled. Post-independence development strategies further

marginalised these systems in favour of centralised, technology-driven water supply models. Urbanisation, pollution, and land-use changes have led to the deterioration of many traditional water bodies.

Even though they are ecologically smart, culturally meaningful, and sustainable, old Indian water systems started weakening and losing importance during the colonial and post-colonial eras. This weakening was not because of technical ineffectiveness, but due to a mix of socio-political changes, alterations in administrative paradigms, pressures of urbanisation, and increasing prevalence of modern, centralised water systems. Their marginalisation was a profound shift in the way water came to be understood, controlled, and used in Indian society.

6.1. Colonial Disruption and Imposition of Centralised Models

The advent of British colonial domination saw a turning point in the destiny of indigenous water systems. The colonial government focused on generating revenue and controlling decentralised, community-centred systems. British engineers considered traditional water structures, particularly tanks, stepwells, and canals to be unscientific and inefficient, frequently disregarding their socio-cultural and ecological values. Consequently, the colonial government implemented large-scale canals for irrigation, dam projects, and municipal water supply systems that were centrally controlled, bureaucratically regulated, and capital-based. Revenue policies like Bengal's Permanent Settlement Act and southern India's Ryotwari broke the customary rights and duties of local communities to manage water bodies. These policies separated water stewardship from village panchayats and local landholders, undermining the incentives and frameworks that had previously guaranteed maintenance and collective care. Desilting, repair, and cleaning of tanks and ponds, which were once community responsibilities, were neglected in most areas [6&7].

6.2. Post-Independence Neglect and Decline in Water Governance

With independence, India adopted a modernist vision of development with emphasis on quick industrialisation, urban growth, and technological strides. The state's priority turned to mega-developments like big dams (e.g., Bhakra Nangal, Hirakud) and piped water supply programs, downgrading traditional systems in planning as well as finance. Conventional water structures were viewed more and more as outmoded, time-consuming, and not equipped to cater to the needs of a rising population and urban economy. Hence, they were left out of national water policies, engineering education, and institutional favour. Government schemes gave top priority to groundwater exploitation by borewells and tube wells, frequently under subsidised electricity, which resulted in overexploitation and a reduction in dependence on surface water bodies such as tanks, ponds, and baolis.

In addition, local knowledge systems, customary water rights (e.g., phad or kul systems), and community-based management practices were disregarded in the top-down strategies pursued by water authorities, resulting in extensive institutional alienation and water-related heritage loss [13].

6.3. Urbanisation, Encroachment, and Land Conversion

Urbanisation in a rapid pace has been the principal cause of the physical loss and deterioration of conventional water systems. With the growth of the city, tanks, lakes, and ponds were usually filled up, encroached, or converted into housing, roads, shopping complexes, or dumps. In Delhi, Bengaluru, and Hyderabad, there are hundreds of lakes and tanks that have either disappeared or got highly contaminated [34]. Thus, many water bodies lost their legal identity and were no longer recorded in revenue or municipal records because of poor enforcement of environmental and heritage protection laws. In urban master plans, traditional water structures were often seen as obstacles to development rather than as ecological assets. Additionally, conventional water harvesting systems in the countryside also suffered as a result of the outmigration of young people to urban centres, altering lifestyles, and an increasing desire for deep tube wells compared to community-managed tanks or open wells [35].

6.4. Cultural Disconnection and the Loss of Collective Responsibility

Traditional water systems also declined due to a deeper cultural alienation from nature and communal existence. As societies in cities and rural areas became more individualistic and market-oriented, the collective culture underpinning the maintenance and respect for water bodies collapsed. With the

introduction of household taps, borewells, and bottled water, the people's direct contact with natural water bodies decreased to a significant extent. Festivals, rituals, and social events that originally revolved around tanks, wells, and rivers started losing their popularity. Most younger generations developed without an experiential knowledge of these systems or their cultural value [2]. Also, caste-based exclusions and gendered labour divisions linked to traditional use of water helped create negative attitudes towards them in certain locations, especially in a contemporary context that values equality and privacy. This too, helped accelerate the decline of such buildings [36].

6.5. Environmental Degradation and Pollution

When traditional water systems lost their position of prominence, most of them were left uncared for and exposed to contamination. Industrial effluents, sewage disposal, plastic litter, and pesticide runoff flowed into these erstwhile unpolluted water bodies. Lacking periodic desilting, catchment management, or buffer zone maintenance, most tanks and ponds became disease breeding grounds or completely dried up [37]. Stepwells, which were previously hubs of architectural elegance and ecological efficiency, became receptacles for trash or garbage bins. Sacred tanks, devoid of spiritual respect and local maintenance, experienced algae outbreaks, infestations of invasive weeds, and deteriorating water quality. Such degradation further dissuaded use, perpetuating a cycle of abandonment [38].

6.6. Decline of Traditional Knowledge and Skills

With the disappearance of these water systems came the erosion of associated traditional knowledge. Skills related to tank desilting, stepwell construction, water-divining, and community water governance began to vanish. The expertise of mistris (artisans), kulkarni (water accountants), and panchayats (village councils) was no longer passed down. Modern water engineers and planners trained in Westernised institutions were unfamiliar with these traditional systems, leading to a further disconnect between policy and place-based knowledge [39].

7. Revival and Modern Relevance

The recent interest in ancient Indian water systems during the past several decades indicates an increased appreciation that these heritage structures are not merely antiquated relics, but vibrant solutions to some of the most critical contemporary environmental and socio-economic problems. With the challenges of climate change, water scarcity, urban flooding, and groundwater depletion, these decentralised, ecologically resilient systems provide lessons and models that contemporary infrastructure tends to neglect. Reviving them is not simply a cultural gesture; it is a strategic move to sustainably manage water.

7.1. Drivers of Revival

The modern revival of ancient water systems is driven by a confluence of environmental, hydrological, and cultural factors. Rising temperatures, erratic rainfall, and recurring droughts have exposed the limitations of large-scale, centralised water projects, prompting renewed interest in traditional systems that capture rain locally, recharge aquifers, and moderate seasonal extremes. Groundwater depletion caused by over-extraction through borewells has further emphasised the value of tank-based recharge structures, open wells, and stepwells in restoring aquifer health [8]. Simultaneously, rapid urbanisation has increased impervious surfaces, reducing natural infiltration and intensifying flooding, making the restoration of urban lakes, temple tanks, and ponds a vital strategy for stormwater management and biodiversity conservation. Complementing these practical needs is a cultural renaissance, as communities re-establish their heritage by reviving festivals and rituals around waterbodies, thereby restoring the social and spiritual significance that once anchored these systems in daily life [13].

7.2. Revival Strategies

Revival strategies for traditional water systems are emerging through a combination of government schemes, community efforts, corporate social responsibility (CSR) initiatives, and NGO-led projects. Physical rehabilitation forms the first step, involving desilting, embankment repairs, spillway reconstruction, and removal of encroachments, as seen in Rajasthan, where restored stepwells (baoris and jhalras) now serve both as tourist attractions and functioning reservoirs. Equally critical is the protection

of catchment areas through afforestation, contour bunding, and regulated grazing to enhance infiltration and reduce siltation. Many projects integrate modern technology such as GIS mapping for heritage water body documentation, water quality monitoring sensors, solar-powered pumps, and digital dashboards for community-based water allocation to improve efficiency and oversight. Policy support has been instrumental, with states like Tamil Nadu, Andhra Pradesh, and Gujarat implementing targeted rehabilitation programs under schemes such as Jal Shakti Abhiyan, Amrit Sarovar Yojana, and Mission Kakatiya, blending heritage conservation with climate resilience and rural employment generation. Central to these efforts is the revival of community-led governance, empowering village water user associations, temple committees, and panchayats to manage operations, ensure equitable distribution, and prevent pollution, thereby restoring the social and ecological vitality of these systems [40].

7.3. Modern Relevance

Traditional water systems align closely with modern sustainability principles and global environmental frameworks by offering decentralised water security through local storage and management, thereby reducing dependence on distant sources and large-scale conveyance while saving costs and energy. Their role in groundwater recharge, particularly via ponds, stepwells, and tanks, helps stabilise water tables in drought-prone and over-exploited regions. In urban contexts, restored tanks and lakes mitigate heat island effects, support aquatic and terrestrial biodiversity, and create green-blue spaces that enhance livability. These systems also contribute to disaster mitigation by absorbing excess rainfall in floodplain tanks and village ponds, reducing flood risks. Beyond ecological benefits, they strengthen cultural continuity and social cohesion by reviving rituals, fostering community stewardship, and reinforcing a shared sense of place. Importantly, their restoration advances multiple UN Sustainable Development Goals, including SDG 6 (Clean Water and Sanitation), SDG 11 (Sustainable Cities and Communities), SDG 13 (Climate Action), and SDG 15 (Life on Land) [41].

7.4. Challenges in Revival

Although they have immense potential, the restoration of traditional water systems is challenged by a range of factors, including encroachment and uncertain land ownership, lack of long-term funding for maintenance, contamination from untreated sewage and industrial effluents, lack of coordination between engineering agencies and heritage conservation departments, and the imperative of capacity building in both technical ecological realms among local communities. In fact, successful case studies show what is Rajasthan, possible: in Alwar, social activist Rajendra Singh has restored more than 8,000 johads, rejuvenating rivers such as the Arvari and enhancing groundwater and agriculture; in Bengaluru, Karnataka, citizens' groups such as Paani of Lakes have restored urban lakes such as Kaikondrahalli Panchayat and Friends Jakkur, transforming them into biodiversity centers and rainwater harvesting points; and in Hampi, Karnataka, ancient canals and temple tanks have been revived for tourism purposes while also improving groundwater recharge in nearby villages. [15, 34 & 42].

8. Case Studies

8.1. Johads of Alwar, Rajasthan

Johads of Alwar, Rajasthan, are small check dams made of earth built across sloping terrain to harvest and conserve rainwater, an enduring practice embedded in the area's rural traditions and perpetuated through community-managed water management for centuries. Locally procured clay and stones are used to build these semicircular embankments that have spillways allowing excess water to flow out, and these are cleverly structured to capture monsoon runoff as well as replenish groundwater aquifers by percolation. Traditionally maintained under the auspices of village panchayats and linked with local festivals celebrating the monsoon season, johads were important community assets. But with the onset of the Green Revolution, their importance waned because of the proliferation of borewells, piped water supply, and abandonment, coupled with encroachment and siltation that reduced their potential. In the 1980s, efforts for revival led by Rajendra Singh and the NGO Tarun Bharat Sangh revived more than 8,000 johads, resulting in the rejuvenation of five seasonal rivers: Arvari, Ruparel, Sarsa, Bhagani, and Jahajwali. This

revival helped raise groundwater levels by 6–8 meters, appreciable increases in agricultural productivity, less migration, and improved community ownership and control over water resources [42 & 43].

8.2. Step-wells of Gujarat – Rani ki Vav, Patan

Rani ki Vav in Patan, Gujarat, constructed during the 11th century by Queen Udayamati in remembrance of King Bhimdev I, is an architectural wonder of the Solanki era that marries functionality with artistry, a classic representation of sophisticated water engineering during that era. With a stepped multi-story design to facilitate access to water throughout the year, elaborate stone filter walls, and an east—west orientation to trap sunlight and prevent the growth of algae, the stepwell was also used as a ritual purification site, embellished by elaborate carvings of Vishnu's avatars and celestial entities to represent the purity of water. Its decline commenced with overflooding of the Saraswati River, resulting in heavy siltation, burying it and leaving it out of use for centuries before being excavated and restored by the Archaeological Survey of India in the 1980s–90s, culminating in its recognition as a UNESCO World Heritage Site in 2014. The resuscitation increased heritage tourism, motivated restoration of stepwells in other towns, and rekindled public interest in traditional stepwell hydrology as a model for decentralised urban water storage [3 & 31].

8.3. Temple Tanks of Tamil Nadu – Kalyani at Madurai Meenakshi Temple

Temple tanks, integral to Dravidian temple complexes for over a millennium, are exemplified by the Golden Lotus Tank (Potramarai Kulam) at Madurai's Meenakshi Temple, featuring a square granite-lined structure with steps, underground spring connections, overflow channels leading to irrigation canals, and a sand filtration bed that preserves water clarity. As sites for holy baths, rituals, and festivities, the tanks are sacred places that carry significant religious meanings, with the waters being thought to cleanse and uplift. With the passage of time, encroachment, decreased spring flow as a result of urban groundwater abstraction, and pollution due to illegal disposal of waste contributed to their degradation, but restoration endeavors such as desilting, spring reconstruction, granite step repairs, and publicity campaigns sponsored by temple trusts and government heritage programs have revived their cultural and religious uses during festivals such as the Float Festival (Theppotsavam), enhanced local groundwater recharge, and enriched tourist activity. [5 & 44]

8.4. Ahar-Pyne System of South Bihar

The Ahar-Pyne system, more than one thousand years old and previously core to agriculture in floodplains along the Ganga and its tributaries, consists of rectangular catchment basins (ahars) for water retention and man-made conduits (pynes) that capture monsoon floodwaters into these basins and distribute the stored water among fields in dry months, assisted by silt traps to minimise sedimentation. Typically controlled by traditional custom and rotational irrigation timetables, and being culturally associated with agrarian celebrations such as Chhath Puja, the system deteriorated following increases in mechanised irrigation, political exclusion of traditional management committees, and progressive siltation. Since the 2000s, organisations like Megh Pyne Abhiyan, along with community organisations, have restored numerous Ahar-Pyne systems through GIS mapping for planning restoration and monitoring water flows, which has meant increased dry-season irrigation capability, decreased dependence on diesel pumps, and robust community-based water management [15].

9. Integration into Contemporary Water Policy

The integration of historic Indian water systems into contemporary water policy is a strategic approach for confronting the parallel issues of water scarcity and climate resilience while preserving cultural heritage. India's centuries-long tradition of decentralised, community-managed water systems such as stepwells, johads, temple tanks, and canal-based irrigation systems provides engineering cleverness, environmental sensitivity, and social governance structures highly applicable to the 21st century. To integrate these systems into modern policy systems, one would need a multifaceted intervention through legal empowerment, monetary incentives, technical innovation, and inclusive governance. At the policy level, to begin with, one would mainstream traditional water systems into national and state-level water management schemes.

The Ministry of Jal Shakti, for instance, has focused on rejuvenating local water bodies under initiatives such as Jal Shakti Abhiyan and Atal Bhujal Yojana. Such initiatives may specifically mention traditional systems as priority assets, with the provision of funds, technical support, and guidelines for restoration being made specific to their respective designs and functions. Policies must also ensure integration into urban and rural planning, where municipal authorities are required to map, conserve, and maintain such heritage water structures as part of stormwater management, groundwater recharge, and climate adaptation planning [23 & 45]. Technical integration is the practice of merging traditional designs and modern hydrological science. For example, johads can be fitted with hydrometric sensors for measuring water level and quality, stepwells can be integrated with rooftop rainwater harvesting networks, and conventional tanks can be retrofitted with enhanced filtration systems. Such hybrid systems can increase efficiency without undermining cultural authenticity. The policy framework also needs to facilitate knowledge transfer, where engineers, heritage professionals, and local communities come together to document construction practices, operating conventions, and maintenance guidelines [22]. A key policy aspect is community ownership and participation.

Historically, several traditional systems succeeded due to collective responsibility, supported by customary rights and social norms. Contemporary policy needs to reinstitute and codify such arrangements through the establishment of local water user associations or panchayat-based water committees with statutory powers for decision-making, upkeep, and fair water allocation. Training courses and awareness drives need to be built into policy implementations to instil stewardship among future generations [15 & 22]. Legal frameworks are also significant. Policies must provide for safeguarding under heritage conservation legislation, stopping encroachment and illegal tampering. Concurrently, laws of water can identify customary systems as conserved water resources, qualifying them for government subsidy, restoration aid, and tax relief to communities or private owners who are responsible for their upkeep [5]. Lastly, mainstreaming traditional water systems into modern policy needs to be articulated as a component of India's climate resilience and SDG agenda. Their well-documented function in groundwater recharge, flood moderation, and drought mitigation relates closely with SDG 6 (Clean Water and Sanitation), SDG 11 (Sustainable Cities and Communities), and SDG 13 (Climate Action). By integrating traditional systems in climate action plans, disaster risk reduction strategies, and sustainable agriculture programs, policymakers can make sure that these old innovations will still be providing ecological, social, and economic benefits nowadays [36 & 45].

10. Conclusion

The research on Traditional Indian Water Systems: Engineering, Culture and Sustainability unveils that these native inventions are much more than antiques; they are living testimonies to India's holistic philosophy towards water management, combining engineering mastery, ecological balance, and cultural significance. From the accuracy of stepwells to the durability of johads, to the sacred meaning of temple tanks and the community management of the Ahar-Pyne networks, these systems exist in an equilibrium of science, society, and religion that contemporary infrastructure often cannot equal. Their practices, based on regional geomorphology and climate sensitivity, express a kind of intrinsic knowledge of water as cyclical and communal, controlled not just for use but for replenishment and equilibrium.

The degradation of these systems in the past century through mechanised irrigation, urban growth, abandonment of community management, and transition toward centralised models of water supply has resulted in both environmental stress and cultural loss. However, renewed interest in reviving them, backed by grassroots movements, non-governmental bodies, and state-driven initiatives, is a testament to their ongoing salience. Restoration initiatives have not just enhanced water security and farm productivity but also rekindled social unity, cultural identity, and ecological resilience.

With the escalating challenges of climate change, groundwater loss, and unpredictable rainfall, the inclusion of historic water systems in modern policy and practice holds the key to sustainable water management. They offer decentralised storage capacity, improve groundwater recharge, mitigate flood hazards, and ensure ecological variety while keeping architectural heritage intact and supporting cultural

continuity. Their success relies on seeing them as dynamic, responsive infrastructures, which can be aligned with contemporary technology and effectively embedded in climate action strategies.

In the end, India's water security might just rest on a return to fundamentals, not nostalgically, but through a practical recognition of time-honoured wisdom. By appreciating old water systems as both heritage and living resources, India can develop a model of water management that is technically efficient, socially equitable, and ecologically resilient, so that these ancient lifelines may still sustain both land and soul for generations to come.

11. References

- 1. Agarwal, A., & Narain, S. (1997). Dying wisdom: rise, fall and potential of India's traditional water harvesting systems.
- 2. Mishra, A. (1993). Aaj bhi khare hain talab. Prabhat Prakashan.
- 3. Jain-Neubauer, J. (1981). The stepwells of Gujarat: In art-historical perspective. Abhinav Publications.
- 4. Livingston, M. (2002). Steps to water: the ancient stepwells of India. Princeton Architectural Press.
- 5. Mosse, D. (2003). The rule of water: statecraft, ecology and collective action in south India (pp. xiii+344).
- 6. D'Souza, R. (2006). Drowned and dammed: colonial capitalism and flood control in Eastern India. Oxford University Press.
- 7. Gilmartin, D. (1994). Scientific empire and imperial science: colonialism and irrigation technology in the Indus basin. *the journal of Asian Studies*, 53(4), 1127-1149.
- 8. Pandey, D. N., Gupta, A. K., & Anderson, D. M. (2003). Rainwater harvesting as an adaptation to climate change. *Current science*, 46-59.
- 9. Jansen, M. (1989). Water supply and sewage disposal at Mohenjo-Daro. World archaeology, 21(2), 177-192.
- 10. Bisht, R. S. (1999). Dholavira and Banawali: two different paradigms of the Harappan Urbis forma.
- 11. Allchin, F. R., & Erdosy, G. (1995). The archaeology of early historic South Asia: the emergence of cities and states. Cambridge University Press.
- 12. Koch, E. (2001). Mughal art and imperial ideology: collected essays. (No Title).
- 13. Shah, T. (2010). Taming the anarchy: Groundwater governance in South Asia. Routledge.
- 14. Kolarkar, A. S., Murthy, K. N. K., & Singh, N. (1983). 'Khadin—A method of harvesting water for agriculture in the Thar Desert. *Journal of Arid Environments*, 6(1), 59-66.
- 15. Sengupta, N. (1985). Irrigation: traditional vs modern. *Economic and Political Weekly*, 1919-1938.
- 16. D'Souza, R. (2006). Water in British India: the making of a 'colonial hydrology'. *History Compass*, 4(4), 621-628.
- 17. Mays, L. W. (2010). A brief history of water technology during antiquity: Before the Romans. In Ancient water technologies (pp. 1-28). Dordrecht: Springer Netherlands.
- 18. Sharma, U. C., & Prasad, R. N. (1995). Socio-economic aspects of acid soil management and alternative landuse systems for north eastern states of India. In *Plant-Soil Interactions at Low pH: Principles and Management: Proceedings of the Third International Symposium on Plant-Soil Interactions at Low pH, Brisbane, Queensland, Australia, 12–16 September 1993* (pp. 689-695). Dordrecht: Springer Netherlands.
- 19. Eck, D. L. (1999). Banaras, city of light. Columbia University Press.

- 20. Mishra, A. (1995). Rajasthan ki rajat bunden. *The radiant raindrops of Rajasthan. Gandhi Peace Foundation, New Delhi*.
- 21. Pandey, D. N. (2002). Traditional knowledge systems for biodiversity conservation. *Organization of the United Nations (FAO) Forestry Paper. FAO, Rome, Italy*, 22, 41.
- 22. Kulkarni, H., Shah, M., & Shankar, P. V. (2015). Shaping the contours of groundwater governance in India. Journal of Hydrology: Regional Studies, 4, 172-192.
- 23. Shah, T. (2020). Climate change and groundwater: India's opportunities for mitigation and adaptation. In *Water resources policies in South Asia* (pp. 213-243). Routledge India.
- 24. Malhotra, K. C., Gokhale, Y., Chatterjee, S., & Srivastava, S. (2001). Cultural and ecological dimensions of sacred groves in India. *INSA*, *New Delhi*, 1-30.
- 25. Eck, D. L. (2012). India: A sacred geography. Harmony.
- 26. Feldhaus, A. (1995). Water and womanhood: Religious meanings of rivers in Maharashtra. Oxford University Press.
- 27. Michell, G. (1988). *The Hindu temple: An introduction to its meaning and forms*. University of Chicago Press.
- 28. Hegewald, J. (2022). Water architecture in South Asia: A study of types, developments and meanings (Vol. 24). Brill.
- 29. Maclean, K. (2008). Pilgrimage and power: the Kumbh Mela in Allahabad, 1765-1954. Oxford University Press.
- 30. Tully, M. (2008). *India's Unending Journey*. Random House.
- 31. Mankodi, K. (1991). The Queen's stepwell at Patan. (No Title).
- 32. Kramrisch, S. (1976). The hindu temple (Vol. 1). Motilal Banarsidass Publ.
- 33. Dwivedi, O. P. (2000). Dharmic ecology. Hinduism and ecology, 3-22.
- 34. Nagendra, H. (2016). *Nature in the city: Bengaluru in the past, present, and future*. Oxford University Press.
- 35. Lele, S., Srinivasan, V., Jamwal, P., Thomas, B. K., & Eswar, M. (2013). Water management in Arkavathy basin: A situation analysis. Environment and Development Discussion Paper No. 1.
- 36. Shiva, V. (2016). Water wars: Privatization, pollution, and profit. North Atlantic Books.
- 37. Centre for Science, & Environment (New Delhi, India). (1999). *The State of India's Environment: A Citizens' Report*. Centre for Science and Environment.
- 38. Singh, M. R., & Gupta, A. (2016). Water pollution-sources, effects and control. *Centre for Biodiversity, Department of Botany, Nagaland University*, 1-16.
- 39. Gadgil, M., Berkes, F., & Folke, C. (1993). Indigenous knowledge for biodiversity conservation. *Ambio-Stockholm-*, 22, 151-151.
- 40. Roy, S. M., Dheeraja, C., Chimankar, D. A., Palla, A., Pammi, R. K., & Kumar, G. N. (2023). Envisaging Development Through Amrit Sarovars: A Study of Mann Ki Baat Cases for Revamping Water Storage and Conservation. *Journal of Rural Development*, 20-34.
- 41. Ortigara, A. R. C., Kay, M., & Uhlenbrook, S. (2018). A review of the SDG 6 synthesis report 2018 from an education, training, and research perspective. *Water*, 10(10), 1353.
- 42. Guha, A. (2015). Listening to Waterman of Rajasthan and the Leftists of West Bengal: Narratives of Rainwater Harvesting. *J. Indian Anthrop. Soc*, 50, 5-14.

- 43. D'Monte, D. R. (2005). Water management in Rajasthan. Innovative Communities: People-centred Approaches to Environmental Management in the Asia-Pacific Region, 292.
- 44. Ganesan, M. (2008). The temple tanks of Madras, India: rehabilitation of an ancient technique for multipurpose water storage. *Indian journal of science and technology*, 1(7), 1-8.
- 45. Rout, S., & Kattumuri, R. (2022). Urban water supply and governance in India. Springer.

