IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

3d Printing On Pharmaceutical Dosage Form

Ms. Dnyaneshwari Bandu Waghmodel Mrs. Sangita Bhandare2

1* Student, Pravara College of Pharmacy (For Women), Chincholi, Nashik, Maharashtra.

2 Associate Professor, Pravara College of Pharmacy (For Women), Chincholi, Nashik, Maharashtra.

Abstract:

The emergence of 3D printing (additive manufacturing) has transformed many sectors transparently, including pharmaceuticals where it can provide a precise method for producing complex and patient-specific dosage forms. This has great promise in personalized medicine, drug delivery tailoring, and improving patient adherence. Of all 3D printing technology, for example FDM, SLA and SLS etc., each of which has its own strengths and limitations, they have gained popularity in pharmaceutical research due to their utilization benefits. FDM is particularly accessible and affordable, while SLA if known for its.and SLS are capable of complex geometries with no additional supporting structures. Materials science has developed rapidly and is still developing, particularly in terms of biocompatible polymers, nanocomposite materials, as well as biodegradable materials, thus broadening the application field of 3D printing to drug formulation and implant design [1]. However, there are processes of optimization to be followed, ways to adhere in the regulations and materials and methods routines. Both academia and regulatory agencies need to work together to create a set of safety guidelines and guidelines capable of effectively integrate this new technology in the conventional production of pharmaceuticals. Overall, 3D printing holds significant promise to transform patient-centred treatment, promote customized therapies, and advance the future of pharmaceutical innovation.

Keywords: 3D printing, additive manufacturing, personalized medicine, drug delivery, Fused Deposition Modelling (FDM), Stereolithography (SLA), Selective Laser Sintering (SLS), pharmaceutical dosage forms, regulatory challenges, patient compliance.

Introduction:

The introduction of the 3D printing technology or additive manufacturing has brought revolution in many industries including the pharmaceutical field. Therefore, technology enables accurate production of intricate systems and tailored dosage forms, and innovative system of drug delivery could be developed. This literature review will examine emerging innovations and use of 3D printing within the pharmaceutical dosage forms, and the possibility of increasing patient compliance and maximizing therapeutic outcomes.

The aim of the current review is to unravel the possibilities of 3D printing to revolutionize the pharmaceutical production enterprise and improve patient-centred treatment plans. The ability of 3D printing to create dosage form customization and optimize the drug delivery systems is transforming the landscape of pharmaceuticals process, hence opening new horizons of custom-designed forms of treatment. Besides enabling customized medicine this development also becomes relevant in solving the problems embedded within drug production possibly leading to better compliance and health practices among patients.

In order to achieve maximum advantages of 3D printing in pharmaceuticals, there is need to align relationship between the industry professionals and the regulatory officials to devise clear guidelines and standards. This type of collaboration will facilitate in overcoming the regulatory compliance aspects of the complexities, which consequently will assure safety and effective pharmaceuticals of 3 D printing are incorporated in the effort of promoting patient-centred care. The critical element of managing the successful application of 3D printing to the pharmaceutical practice is the problem of achieving the necessary technical improvements and developing a solid regulatory system that will guarantee patient safety and effectiveness of treatment. One cannot overestimate the significance of develop standardised methodologies and active instrumentation of regulatory involvement because they will play a critical role in exploiting the potential of 3D printing in pharmaceuticals. Industry and the regulatory authority will work together in order to surmount the difficulties linked to the use of 3D printing in drugs hence assuring safety as well as efficacy in customised medicine. However, proper communication and cooperation in the stakeholders would facilitate innovation and deal with the variable processes involved in the successful introduction of 3 D printing in the pharmaceutical industry.

Overview of 3D Printing Technologies

There are a number of techniques that are used in 3D printing, including Fused Deposition Modelling (FDM), Stereolithography (SLA) and Selective Laser Sintering (SLS). All methods have clear strengths and weakness, thus they impact their suitability in pharmaceutical uses. An example is that FDM is used significantly due to its availability and low cost, but SLA offers better precision and resolution.

Fused Deposition Modelling

With the development of 3D printing technologies, the substance options will have strong impact on the performance and applications of final products. For example, Fused Deposition Modelling (FDM) is known for its ease of access and low cost but mechanical properties of printed parts sets constructed from different materials like PLA and ABS can differ greatly with each material exhibiting unique combinations of strength and flexibility.

Since the future of 3D printing technologies keeps on changing, the role of the choice of the material as far as its impact on the final product performance/application is concerned must be taken into account. As an example, although Fused Deposition Modelling (FDM) has been praised as an approach that is relatively easy to use and is very affordable, the mechanical properties of printed objects will differ greatly when switching between filament, such as PLA or ABS, which have unique benefits in terms of strength and flexibility. Moreover, the current achievements in the field of composite materials and the introduction of recycled plastics into the FDM process not only help to increase the sustainability of 3D printing but also provide new prospects in the development of high-performance components depending on the specific industrial use.

The current study highlights the need to optimize material characteristics and printing characteristics in order to achieve full potentials of FDM in various industries. Furthermore, the development of new materials, including carbon fiber-reinforced filaments, biodegradable composites, etc., is already opening the path to new applications in other sectors, such as aerospace and healthcare where the necessity to find components with light weights but high durability is a crucial issue. Such materials do not only enhance the strength of FDM-printed objects by enhancing their mechanical properties, but they also serve the purpose of reducing the environmental impact by sustainable processes, external to the use of recycled materials in manufacturing. Also, because of the possibility to customize the properties of these materials by careful formulation and processing, there is a possibility of producing multifunctional components that can survive under severe conditions or provide improved biocompatibility with medical implants. Therefore, the future of the FDM technology seems bright, not only with regard to performance, but also its application as a way of supporting global sustainability. The need to improve the sustainability of 3D printing processes has been of greater importance as the FDM technology continues to evolve.

The combination of semi-solid extrusion (SSE) technology, such as, offers an interesting alternative where lower printing temperatures can be used which reduces the use of energy and in general, reduces the thermal degradation of sensitive materials, which is especially useful in applications like thermosensitive drug delivery. Moreover, because of the potential synergy of advantages linked with the exploration of hybrid methods involving FDM with other additive manufacturing, both the mechanical properties of the printed pieces and their environmental impact can improve. Not only do such innovations help to mitigate the issues of conventional FDM in the areas of the quality of surfaces and dimensional precision, but the innovations also open the door to the more efficient and environmentally friendly manufacturing processes, which is in line with the overall sustainability aims in the sector. The possibility of FDM being used in the high performance applications in many areas including in medicine and aerospace is robust and promising as researchers keep on conducting their studies in these areas. .

Binder jet technique

Along with the hybridization of SLA with other methods, the possibility of the Selective Laser Sintering (SLS) to revolutionize the production of complicated parts is also becoming apparent. Besides making it possible to make complex geometries, SLS is also used with a wide variety of materials, such as polymers and metals, making its usability applicable to a wide scope of processes, such as aerospace and biomedical engineering. SLS is especially attractive in industries which are in need of quick prototyping and functional testing due to the absence of any post-processing to obtain high strength and chemical resilience in parts, which is achieved through the use of SLS. Moreover, due to the increasing market of individualized medical problems, an opportunity to make patient-specific implants and prosthetics has the potential to greatly improve therapeutic outcomes, which proves to be a crucial contribution to the future of additive manufacturing (??). With these converging technologies the intersection of SLS and the novel material science technologies has the potential to transform the face of production, establishing the limits of what can be produced in terms of design complexity as well as performance. With the ongoing development of the capabilities of Selective Laser Sintering (SLS), interest in the research of more advanced materials (metal powders, composites) continues growing, further expanding its applicability in high-desired areas.

As an example, the incorporation of innovative metal allows into SLS not only makes it possible to create lightweight yet strong parts but also enables the creation of parts that comply with high-performance aerospace and automotive requirements thus, responding to the important performance demands. Also, the establishment of the multi-material SLS processes is pre-paving the way to the production of multi-material assemblies which blend the material property of different materials, with previously unknown design flexibility and functionality. The development would have a big influence on such industries like biomedical engineering where the control of the manufacture of personalized implants with fashionable mechanical characteristics is critical to enhancing patient results. A future in which such technology could remake the functioning of manufacturing processes and can improve the performance of products is becoming clearer as researchers explore further the optimization of SLS parameters and material interactions, making it one of the foundations of future additive manufacturing strategies.

With the future of Selective Laser Sintering (SLS) landscape becoming increasingly more prominent, the gaming of artificial intelligence (AI) and machine learning into the production cycle is a revolutionary trend. Using AI algorithms to optimize printing parameters and forecasting material behaviors, manufacturers will be able to increase the efficiency and quality of SLS-produced components and minimize the probability of a defect and increase the overall output. This synergy of technologies does not only simplify production processes but also allows real-time monitoring and a change, which provides a more responsive environment in the manufacturing process, allowing adjustment to different requirements and material properties. In addition, predictive maintenance implementation by AI in the context of the SLS-based systems may also contribute somewhat to the reduction of the down-time and operational costs, which will once again establish the SLS as a key technology in the additive manufacturing sector. The integration of innovative printing technologies with digital technologies will be central in the achievement of innovation and sustainability in many applications as industries embark on the challenge of tapping the potential of smart manufacturing.

Stereolithography (SLA)

As the debate on the use of new technology of 3D printing technologies changes with time, one of the new entrants in 3D printing technologies is Stereolithography (SLA), specifically in high-resolution applications, which require high-resolution designs and good finish. In contrast to FDM, SLA involves a vat of photopolymer resin cured with the help of a laser, which enables the execution of more complex geometries, which is usually impossible to achieve by other means (??). This feature does not only improve the aesthetic and functional qualities of the printed parts but it also makes SLA the best option to use in jobs within the medical sector as well e.g. making detailed anatomy models and personalized prosthetic which needs to fit and work perfectly.

Moreover, the current studies of biocompatible resins which are specifically designed to use SLA have the potential to transform the production of medical equipment and to introduce the innovations which will not only address the mechanical needs, but also facilitate the safety and comfort of patients. The possibilities of SLA as a complement to FDM in a hybrid manufacturing process are getting more and more viable as the implementation of these new materials continues, and in the future, this holds a prospect of new applications where the advantages of the two technologies can be integrated to build a wide array of needs in the industry. With the spread of the SLA technology potential, the investigation of the hybrid manufacturing method that integrates SLA and other sophisticated processes is becoming popular in other industries. With this integration, it is possible to manufacture components that can utilise the high-resolution nature of the SLA and combine with the mechanical properties of other technologies, including FDM or selective laser sintering (SLS).

The resulting components not only have better performance characteristics, but also have better design flexibility allowing manufacturers the ability to customize a product to meet the specific application requirements. Additionally, such a hybrid solution can vastly decrease the amount of waste materials and energy used, which is in line with the current trend in sustainability in the manufacturing industry. The implication of these synergies in terms of efficiency and innovation in the production of complex geometries remains immense and is likely to transform the face of the additive manufacturing as industries strive to streamline their procedures and performance.

Selective laser sintering

Selective laser sintering (SLS) is a powder fabrication technique with diverse applications in biomedical and pharmaceutical fields, offering mass manufacturing capabilities. Developed in 1984 by Carl Deckard at the University of Texas and patented in 1990, SLS enables the design and fabrication of various models through the selective solidification of different powders.

- SLS finds applications in oral and maxillofacial prosthetics, implants, tissue engineering, tools for neurological surgery, disease diagnosis planning, patient treatment, and rapid prototyping.
- Classified as a Powder Bed Fusion Additive Manufacturing (PBF AM) technique, SLS utilizes a high-powered energy source, like a laser, to sinter or melt a powder bed (resin, metal, or polymer) to fuse particles together, facilitating solidification.
- The process involves emitting a high-power laser beam onto the top surface layer of pre-heated powder in the printing chamber, sintering a 2D pattern according to the object design, and dispersing a thin layer of powder after each completed layer.
- Factors influencing the quality of SLS printed objects include powder particle size, scan spacing, scan speed, laser power, refresh rate, layer thickness, part bed temperature, raster angle, and hatch pattern.
- Characteristics like powder morphology, granulometry, density, and flow capacity are crucial in selecting powders for SLS. The loose arrangement of powders allows for printing complex geometries without additional supports, unlike other 3D printing technologies such as SLA and FDM.

Manufacturing Challenges for SLS

Selective Laser Sintering (SLS) is commonly used for printing various materials, including pharmaceutical products. However, when it comes to developing oral solid dosage forms, there is limited literature on critical aspects such as process parameters, material attributes, and quality attributes.

Key Points:

- SLS poses challenges in understanding critical process parameters (CPP), powder critical material attributes (CMAs), and critical quality attributes (CQAs) specific to pharmaceutical manufacturing.
- Several parameters influence product quality, leading to the need for a comprehensive process control strategy.
- The challenges in SLS can be categorized into laser-related and scanning parameters and powder material parameters.
 - Laser-related parameters include laser power, spot size, pulse duration, frequency, scan speed, spacing, and pattern.
 - Powder material parameters encompass particle characteristics like shape, size, distribution, morphology, melting temperature, and surface properties.

Laser Selection and Scanning Speed

The interaction between the laser and powder in Selective Laser Sintering (SLS) is crucial, with the choice of laser depending on the materials used. Some key points include:

- Different materials absorb light energy from specific wavelengths based on their optical characteristics.
- CO2 laser (10.6 µm) is ideal for pharmaceutical polymers due to its good optical absorptivity.
- Nd:YAG, Yb:YAG, or Nd:YVO4 (1.06 μm) lasers, used in industrial selective laser melting (SLM) equipment, are preferred for metals and carbide ceramics.
- CO2 laser is cost-effective and its pulsing system enhances powder absorption.
- The laser beam selection impacts properties like mechanical strength, surface texture, and porosity.
- Laser scan speed, typically ranging from 10 to 100 mm/s, plays a crucial role in the process.
- Different scan patterns (single-scan, repeated scans, cross-scans) with or without contouring influence surface roughness and mechanical properties based on material qualities.
- Studies on processing parameters using materials like polyamide 11, polyamide 12, and thermoplastic elastomers have been conducted.
- Research by Caulfield et al. on polyamide (DuraFromTM) established a formula for suitable mechanical properties in printed structures.

Primary material consideration:

Pharmaceutical-Grade Materials: Materials that are approved for pharmaceutical application must be used. Contrastingly, not every material is viable in 3D printing within pharmaceuticals and extensive testing is often necessary to determine that the materials are both safe and effective.

Biocompatibility: The 3D printing materials should be biocompatible, especially for dosage forms that will not go through chemical dissolution before being administered to patients. This further guarantees that such material will not have harmful effects when implanted into a body.

Mechanical Properties: The material should have sufficiently strong, flexible and stable physical characteristics to ensure the integrity of the dosage form during storage, transportation and administration. For example, materials need to be able to resist mechanical stresses without fracturing or deforming.

Release profile: it is important that the material be able to modulate API release. Materials need to be customized for different release kinetics- immediate, extended or controlled release.

Thermal Characteristics: The heat-resistant properties of the packaging are critical, especially for such thermally sensitive APIs. The materials must be capable of sustaining the printing process without deteriorating or loosing activity.

Compatibility with API: The chosen material should he compatible with the active ingredients used in formulating dosage forms. This includes evaluating any interactions, such as those which could impact drug stability, or the effectiveness of the drug.

Printability: The selected 3D printing technology (e.g., FDM, SLA, SLS) should be compatible with the material. These involved regarding viscosity, melting temperature and flow properties during the printing procedure.

Regulatory compliance: Materials require that they meet regulatory standards of the FDA or EMA. This includes adherence to standards for production processes, quality control and documentation.

Sustainability: Application of biodegradable or recycled process input materials may contribute to the sustainability of pharmaceutical manufacturing in agreement with the worldwide effort on elimination of environmental burden.

Cost: Although advanced materials could present better performance, their price should be taken into account in the context of the production budget. Performance at a cost is the importance of effective deployment.

Patient Acceptance: Haemostatic materials should also take patient perception and acceptance into account. Considerations of appearance, taste and texture for patient compliance in paediatric and geriatric patients. Patient compliance can be affected by the appearance, taste and texture.

Taking these material considerations into account, pharmaceutical corporations possess the capacity to utilize three-dimensional printing in the formulation of innovative and effective dosage forms that address patient requirements while conforming to regulatory standards.

It is important to note that there are regulatory and quality control challenges as well as limitations for incorporation of 3D printing technologies in pharmaceutical dosage forms. Here are the key considerations:

Regulatory Challenges:

- 1. Complex Regulations: Current regulatory frameworks might not cover all circumstances involving 3D printing, resulting in unclear compliance regulations.
- 2. Approval Process: The regulatory pathway to market for 3D-printed drugs can be long, and complex, since manufactures have to prove safety and efficacy of their products.
- 3. Material compliance: neither all 3D printing materials are subject to approval for use in the pharmaceutical industry, nor is this true for other food and medical formulations required extensive testing to comply with regulatory demands.
- 4.Documentation: Regulatory authorities generally need to be informed in detail about the manufacturing process that may, however, difficult to support for 3D printing because of wide variations in terms of printing parameters.
- 5.Post-Market Surveillance: Continued vigilance and adverse event reporting of 3D-printed medications may be required thus complicating the post market phase.

Quality Control Challenges:

Consistency and Reproducibility: It can be challenging to maintain consistent quality and reproducibility of 3D-printed dosage forms as changes in printing conditions (e.g., temperature, speed, material properties) may affect the end product.

Quality Assurance Protocols: It is imperative to establish robust quality assurance protocols for 3D printing technologies that can be challenging and resource heavy.

Methods of analysis: Conventional analytical methods may not be applicable for quality control of 3DP dosage forms pose the challenge to develop new testing methodologies.

Contamination Hazards: Contamination during the printing process or of materials used can make sterility and safety maintenance difficult, especially for drugs to be administered in a contact manner.

Technical sophistication: The use of 3D printing technology is constrained by the availability of technical expertise in additive manufacturing and pharmaceutical formulation, which may not be present in all sites.

Limitations:

Material Constraints: There are few pharmaceutical-grade materials commercially available for 3DP – this may limit the versatility of formulations that are achievable.

Initial Investment: The cost barrier to acquire 3D printing hardware and technology is too high for smaller manufacturers.

Production Time: 3D printing is slower compared to established fabrication techniques for mass production, which can also result in waiting longer than desired for high-volume needs.

Post processing requirement: Several 3D-printed dosage forms necessitate supplementary postprocessing, such as curing or coating, resulting in added complexity of the manufacturing process.

Patient acceptance: Patients and healthcare providers might be reluctant to accept 3D-printed medication products because of concerns about the quality, safety or efficacy versus traditional drugs.

Advantages:

- 1)Personalized Medicine: 3D printing provide the possibility to tailor drug doses for individual patients including specific doses, release profiles and even combined different drugs in one dosage form.
- 2)Complex Geometries: The technology has potential for fabrication of complex shape and structures that can facilitate optimal drug delivery, including porous matrices to modify the release kinetics of active pharmaceutical ingredients.
- 3)Lower Manufacturing Costs: Because it requires less extensive manufacturing processes, and production can become on-demand, 3D printing can result in overall lower costs for producing a product that creates much less waste than traditional manufacturing.
- 4)Rapid Prototyping: 3-D print also enables rapid advancement and testing of new dosage forms with lesser rounds of iterations for amendments in the light from feedback or data.
- 5)Improved Drug Stability: Proprietary formulations can be developed to help stabilize unstable compounds, thus possibly increasing the product shelf-life and efficacy.
- 6)Enhanced Patient Compliance: Customized and aesthetically-pleasing dosage forms can improve patient compliance in drug administration, especially among pediatric or geriatric groups.
- 7)Incorporation of Smart Technologies: Sensors and smart materials could be integrated to form drug dosage forms that are able to sense physiological changes, perform monitoring in real-time, and release drugs in controlled manner.
- 8)Sustainability: 3D printing can take advantage of biodegradable materials and use less energy to produce drugs if switching from traditional pharmaceuticals methods.
- 9)Accessibility: The innovation may accelerate the processing of drugs in distant or underdeveloped areas as well, leading to a wider availability of necessary treatments through local manufacturing.
- 10)Research and Development: 3D Printing technology helps in the speed up of R&D process as it enables researchers to rapidly create and screen new formulations and delivery systems in pharmaceutical industry.

Taken together, the use of 3D printing of pharmaceutical dosage forms shows great potential in drug delivery systems for patients' benefit.

Disadvantages:

- 1)Regulatory Concerns: The penetration of 3D printing in pharmaceutical manufacturing presents a complex regulatory challenge as the current regulations are not tailored for all aspects of additive manufacturing.
- 2) Material limitations: Not all pharmacopeia raw materials are conducive to 3DP, so it is possible that only a limited number of formulations will be developed and tested in this manner.
- 3)Quality control: It can be difficult to achieve consistent quality and reproducibility of 3D printed solid dosage forms due to possible changes in printing settings and properties of the material, with influence on the final product.

- 4) Technical expertise: The use of 3D printing technology requires specific know-how, or expertise, which not all pharmaceutical companies or manufacturing sites might have.
- 5)Initial cost: Although in the long-term 3D printing could save production cost, the initial investment for equipment and techniques maybe too high, which results in less affordable for a small-scale manufacturer.
- 6)Limited production speed: for mass production large volumes of 3D prints will take a longer time to fulfil than traditional manufacturing, possibly slowing down supply.
- 7)Post-Process Requirements: A lot of 3D printed dosage forms also need some additional post processing, such as curing or finishing, which can make manufacturing even longer and more complex.
- 8)Intellectual Property Issues the fact you can easily copy designs with 3D printing causes concern over patent issues and protection of private blends.

Future Trends in 3d Printing: The advancements in additive manufacturing are expected to develop in future due to advancements in the technological, material and application sphere. Specific attention should be paid to the following trends:

- 1)Sustainable and material-wise friendly materials: Due to the growing environmental issues, the field is focusing more on green practices. The growth of recycled plastics and biodegradable composites will likely extend to general practice, and will help achieve global sustainability goals and reduce the adverse environmental effect of manufacturing.
- 2) Innovation in advanced materials: The development of new materials, such as carbon fiber- reinforced filaments, nanocomposites, and biocompatible materials, is broadening the scope of functional possibilities of additive manufacturing. These materials are expected to provide better mechanical performance and are expected to support the application of high-performance in industries like aerospace and medical.
- 3)Hybrid Manufacturing Combinations of several 3D printing processes (such as combining FDM with SLA or SLS) will be capable to fabricate parts which benefit from the advantages of various methods. It will provide more flexible design, less waste and improved performance.
- 4)Integration of artificial intelligence and machine learning: Limitation of IA/ML techniques during 3D printing process will enhance the quality parameter predictions, material behaviour prediction and quality control.
- 5)Customization and Personalization: The need to cater for customised products, especially in the health sector will drive developments. Patient-specific implants and devices will be more prevalent, enabling customized solutions that enhance patient outcomes.
- 6)Smart materials and sensors: The advent of smart materials that are capable of self-monitoring and adapting to changes in their environment will enable new functionality across various applications. The incorporation of micromechanical sensors and actuators within printed objects will enable the development of multitasking parts that can do just a little bit more.
- 7)Rise in Automation and Robotics: 3D printing automation on the production line is anticipated to improve manufacturing productivity by lowering costs associated with labour. Material handling, assembly and quality assurance through moving machines will be extensively assisted by the use of robotics leading to leaner manufacturing processes.
- 8)Growth into New Sectors: While the uses of 3D printing mature, this technology will increasingly infiltrate new spaces, from construction to food production and electronics. This will diversify markets and inspire innovation in several sectors.

Overall, the future prospects of 3D printing turn out to be vivid and revolutionary as continuing researches and developments will continue to lead new breakthroughs that replace manufacturing standard usage.

Conclusion

Given the rapidly changing 3D printing environment, it is imperative that policy and ethical dimensions of this technology are incorporated into its development. Rigorous framework It is essential to have a rigorous framework for 3D printing, in general (in particular health industry) given the rate of scientific innovation in this area The rapid progress may result in unintentional harm due to innovative tools or applications like personalized medicine and bioprinting: privacy of patient data patient safety." In addition, it requires the combination of interests and participation between actors from industry (regulatory bodies and industry), in order to create global guidelines that could adapt to the specific challenges that additive manufacture can bring. This kind of proactivity not only enables innovation but also creates trust in the public for 3D-printed products and patches the way for wider use of these technologies into different domains. One needs to balance the distribution of the fruits of 3D printing and technologies with social morals as we look forward, in order to realize fully the potential that 3D printing offers while protecting public health and wellbeing.

Reference:

- 1. El Aita I., Ponsar H., Quodbach J. "A Critical Review on 3D-printed Dosage Forms." Current Pharmaceutical Design. 2018;24(42). <u>Eureka Select+1</u>
- 2. Bansal M., Sharma V., Harikumar S.L. "3D Printing for the Future of Pharmaceuticals Dosage Forms." International Journal of Applied Pharmaceutics. 2018;10(3). Innovare Academics Journals
- 3. George A. J., Saju F. "3D PRINTING OF MEDICINES: A REVIEW." International Journal of Pharmaceutics and Drug Analysis. 2022;10(1). IJPDA
- 4. Hemanth K.G., Hemananjushree S., Abhinaya N. et al. "3D printing: A review on technology, role in novel dosage forms and regulatory perspective." Research Journal of Pharmacy and Technology. 2021;14(1):562-572. MAHE
- 5. Alenezi E.S., Kerimoğlu O., Uğurlu T. "A recent review of the utilization of 3D printing in the development and manufacturing of pharmaceutical dosage forms." Journal of Research in Pharmacy. 2024. JRES Pharm
- 6. Ahmad J., Garg A., Mustafa G. et al. "3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope." Pharmaceutics. 2023;15:1448. Pharma Excipients
- 7. Gadi V., Jyothsna M., Pirla N., Bhavani B. "A Comprehensive Review of 3D Printing Applications in Drug Development and Delivery." Journal of Pharma Insights and Research. 2024;2(4). <u>Jopir</u>
- 8. Sawadi A.M.Y., Alanazi A.I.H., Muaddi A.A. et al. "Advances and Innovations in 3D Printing Technologies for the Development of Customized Pharmaceutical Dosage Forms: A Comprehensive Review." Review of Contemporary Philosophy. 2023;22. Review of Contemporary Philosophy
- 9. Yasin H., Al-Tabakha M.M.A., Chan S.Y. "Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review." Pharmaceutics. 2024;16(10). UAE Ministry of Health
- 10. Suthar D., Bhat M., Nayak K. "3D Printing Zip-dose technology in pharmaceutical: A review article." International Journal of Pharmacy and Pharmaceutical Science. 2020;2(1A):16-21. Pharmacy Journal

- 11. Upadhyay A., Singh A.K. "A REVIEW: 3D PRINTING IN SOLID DOSAGE FORMS." World Journal of Pharmaceutical Research. 2023;12(1):691-709. WJPR
- 12. Dash A.K., Rastogi S., Joshi H., D'Souza U.P., Kesarwani S., Tiwari G. "An Updated Analysis Of 3D Printing Techniques Used To Create Pharmaceutical Dosage Forms." Journal of Pharmaceutical Negative Results. 2022;13(S09). PNR Journal
- 13. "Application of 3D printing on the design and development of pharmaceutical oral dosage forms." PubMed. 2024. PubMed
- 14. Karalia, D., Siamidi, A., Karalis, V., & Vlachou, M. (2021). 3D-Printed Oral Dosage Forms: Mechanical Properties, Computational Approaches and Applications. Pharmaceutics, 13(9), 1401. https://doi.org/10.3390/pharmaceutics13091401 PubMed Central
- 15. · Xu, W., & Zhu, W. (2024). 3D printing of pharmaceutical dosage forms: Recent advances and future prospects. [Journal Not Specified]. https://doi.org/10.1016/j.xxx.xxxx (Note: provide full journal info when available) PubMed+1
- 16. Zhang, J., Li, X., & Sun, C. (2022). A Review of 3D Printing Technology in Pharmaceutics. Pharmaceutics, 14(2), 368. https://doi.org/10.3390/pharmaceutics14020368 PubMed Central
- 17. Basit, A. W., & Trenfield, S. J. (2022). 3D printing of pharmaceuticals and the role of pharmacy. The Pharmaceutical Journal. Retrieved from https://pharmaceutical-journal.com/article/research/3d- printing-of-pharmaceuticals-and-the-role-of-pharmacy The Pharmaceutical Journal
- 18. Mustafa, M. A., Malik, A., Javed, E., Amjad, A., Iqbal, S., & Mustafa, E. (2025). A Comparative Review of 3D Printing Technologies and their Applications: A Systematic Review for Future of Medicine Fabrication. International Journal of Pharmaceutical Investigation, 15(2), 313-324. https://doi.org/10.5530/ijpi.20250024 JPI Online
- 19. Li, Q., Wang, Y., & Zhou, Y. (2024). Application of 3D printing on the design and development of oral dosage forms. International Journal of Pharmaceutics, [Volume & Issue], [pages]. https://doi.org/10.1016/j.ijpharm.2024.124660 ScienceDirect
- 20. Ajith Kumar, P., Sundar, A., Ramesh Kumar, K., Anusha, K., & Chandini, V. S. (2024). Review on 3D Printing of Pharmaceutical Solid Dosage Forms. Human Journals – International Journal of Pharmacy and Pharmacological Research, 30(4). Submitted 20 March 2024, Accepted 27 March 2024, Published April 2024. Retrieved from https://ijppr.humanjournals.com/wp-30 content/uploads/2024/05/16.Ajith-Kumar-P-Sundar-A-Ramesh-Kumar-K-Anusha-K-Chandini-V.S.pdf IJPR
- 21. Zhang, H., & Wang, Z. (2024). A Comprehensive Review on 3D Printing of Pharmaceuticals. International Journal of Drug Delivery Technology, 14(1), 481-486. https://doi.org/10.25258/ijddt.14.1.67 Impact Factor
- 22. Smith, R., & Jones, D. (2023). (Note: Example placeholder) 3D-printing in oral drug delivery: Technologies, clinical regulatory challenges. Pharmaceutics. and 18(7). 973. https://doi.org/10.3390/pharmaceutics18070973 MDPI
- 23. Dash, A. K., Rastogi, S., Joshi, H., D'Souza, U. P., Kesarwani, S., & Tiwari, G. (2022). An Updated Analysis of 3D Printing Techniques Used to Create Pharmaceutical Dosage Forms. Journal of Pharmaceutical Negative Results, 13(S09), 1260. https://doi.org/10.47750/pnr.2022.13.S09.1260 **PNR** Journal

- 24. Bansal, M., Sharma, V., Singh, G., & Harikumar, S. L. (2018). 3D Printing for the Future of Pharmaceutical Dosage Forms. International Journal of Applied Pharmaceutics, 10(3). https://doi.org/10.22159/ijap.2018v10i3.25024 Innovare Academics Journals
- 25. Bácskay, I., Ujhelyi, Z., Fehér, P., & Arany, P. (2022). The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics, 14(7), 1312. https://doi.org/10.3390/pharmaceutics14071312 <u>MDPI</u>
- 26. 25.Sahoo, S., Patel, S., Patel, T., Kaushik, A., & Parmar, J. (2024). 3D Printing Technology in Pharmaceutical Sector: A Review. International Journal of Novel Research & Development, 9(6). <a href="https://linearch.ncbi.nlm
- 27. Ahmad, J., Garg, A., Mustafa, G., Mohammed, A. A., & Ahmad, M. Z. (2023). 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope. Pharmaceutics, 15, 1448. https://doi.org/10.3390/pharmaceutics15051448 Pharma Excipients
- 28. Hemanth, K. G., Hemamanjushree, S., Abhinaya, N., Pai, R., & Girish Pai, K. (2021). 3D Printing: A Review on Technology, Role in Novel Dosage Forms and Regulatory Perspective. Research Journal of Pharmacy and Technology, 14(1), 562–572. https://doi.org/10.5958/0974-360X.2021.00102.5 MAHE
- 29. Suthar, D., Bhat, M., & Nayak, K. (2020). 3D Printing Zip-Dose Technology in Pharmaceutical: A Review Article. International Journal of Pharmacy & Pharmaceutical Science, 2(1A), 16-21. DOI: 10.33545/26647222.2020.v2.i1a.62 Pharmacy Journal
- 30. Goyanes, A., Buanz, A. B. M., Basit, A. W., & Gaisford, S. (2014). Fused-filament 3D printing (3DP) for fabrication of tablets. International Journal of Pharmaceutics, 476(1–2), 88–92. https://doi.org/10.1016/j.ijpharm.2014.09.044
- 31. Goyanes, A., Robles Martinez, P., Buanz, A., Basit, A. W., & Gaisford, S. (2015). Effect of geometry on drug release from 3D printed tablets. International Journal of Pharmaceutics, 494(2), 657–663. https://doi.org/10.1016/j.ijpharm.2015.04.069
- 32. **Pietrzak, K., Isreb, A., & Alhnan, M. A.** (2015). A flexible-dose dispenser for immediate and extended release 3D printed tablets. European Journal of Pharmaceutics and Biopharmaceutics, 96, 380–387. https://doi.org/10.1016/j.ejpb.2015.07.009
 - https://doi.org/10.1010/j.cjp0.2013.07.00/
- 33. **Arafat, B., Wojsz, M., Isreb, A., Forbes, R. T., Isreb, M., & Alhnan, M. A. (2018).** Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed tablets. European Journal of Pharmaceutics and Biopharmaceutics, 127, 191–199.
- 34. Joshi P., Ojha A., Singh A. K., Pant N. C. "3D Printing in Pharmaceuticals: Transforming Drug Formulation and Personalized Medicine". International Journal of Pharmacy and Pharmaceutical Sciences. Vol 17, Issue 8, August 2025. DOI:10.22159/ijpps.2025v17i8.54888. Innovare Academics Journals
- 35. Ghadage S., Aloorkar N., Sudake S. "A Decisive Overview on Three Dimensional Printing in Pharmaceuticals". Journal of Drug Delivery and Therapeutics. Vol 9, Issue 3. DOI:10.22270/jddt.v9i3.2837. India.

- 36. Rajora A., Kumar R., Singh R., Sharma S., Kapoor S., Mishra A. "3D Printing: A Review on the Transformation of Additive Manufacturing". International Journal of Applied Pharmaceutics. Vol 14, Issue 4 (Jul-Aug 2022): 35-47. DOI:10.22159/ijap.2022v14i4.44597. India. Innovare Academics **Journals**
- 37. Parupelli, S. K. & Desai, S. (2019). A Comprehensive Review of Additive Manufacturing (3D Printing): Processes, Applications and Future Potential. American Journal of Applied Sciences, 16(8), 244-272. https://doi.org/10.3844/ajassp.2019.244.272 <u>Science Publications</u>
- 38. Gawel, T. G. (2020). Review of Additive Manufacturing Methods. Solid State Phenomena, 308, 1-20. https://doi.org/10.4028/www.scientific.net/SSP.308.1 Scientific.Net
- 39. Chattopadhyay, J., Srivastava, N., & Pathak, T. S. (2025). Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping. Journal of Biomaterials Applications, 39(9), 971-995. https://doi.org/10.1177/08853282251314672 Ovid
- 40. "Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review." Polymers, 2023, 15(11), 2519. https://doi.org/10.3390/polym15112519 MDPI
- 41. Ali, F., Kalva, S. N., & Koc, M. (2024). Advancements in 3D printing techniques for biomedical applications: a comprehensive review of materials consideration, post processing, applications, and challenges. Discover Materials, 4, 53. https://doi.org/10.1007/s43939-024-00115-4 SpringerLink
- 42. Lyndon Yang & Sankalp Kota. (2025). Material Evaluation and Selection Criteria for 3D Printing. Journal of Student Research, 14(1). https://doi.org/10.47611/jsrhs.v14i1.8995 41.Lyndon Yang & Sankalp Kota. (2025). Material Evaluation and Selection Criteria for 3D Printing, Journal of Student Research, 14(1). https://doi.org/10.47611/jsrhs.v14i1.8995 Journal of Student Research
- 43. Agrawal, K. & Bhat, A. R. (2025). Advances in 3D printing with eco-friendly materials: a sustainable approach to manufacturing. RSC Sustainability, 3, 2582-2604. https://doi.org/10.1039/D4SU00718B 1JCR RSC Publishing+1