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ABSTRACT 
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intuitionistic fuzzy topological space. 
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1. INTRODUCTION  

The concept of fuzzy sets was introduced by Zadeh [11] in 1965 and later Atanassov [1] generalized this 

idea to intuitionistic fuzzy sets using the notion of fuzzy sets.  On the other hand D. Coker [3]  introduced 

intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. The concept of 

generalized closed sets in topological spaces was introduced by Levine[5].  In 2008, Thakur S.S. and 

Chaturvedi [10] introduced the concepts of intuitionistic fuzzy generalized closed sets in intuitionistic fuzzy 

topological spaces.  

In this paper we have introduced the new class of closed sets namely, intuitionistic fuzzy 𝑔̂ * closed sets in 

intuitionistic fuzzy topological spaces and discussed some of their properties. 

2. PRELIMINARIES  

Definition 2.1[1]: An intuitionistic fuzzy set (IFS for short) A is an object having the form A = {〈x, 

μA(x), νA(x)〉 | x ∈ X}, where the functions μA : X → [0, 1] and νA : X → [0, 1] denote the degree of 

membership (namely μA(x)) and the degree of non-membership (namely νA(x)) of each element x ∈ X to 

the set A, respectively, and 0 ≤ μA(x) + νA(x) ≤ 1 for each x ∈ X. Denote by IFS(X), the set of all intuitionistic 

fuzzy sets in X.  

An intuitionistic fuzzy set A in X is simply denoted by A = 〈x, μA, νA〉 instead of denoting             A = {〈x, 

μA(x), νA(X)〉 | x ∈ X}. 
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Definition 2.2[1]:  Let A and B be IFSs of the form A = {〈x, μA (x), νA (x)〉 | x ∈ X} and                       B = 

{〈x, μB (x), νB (x)〉 | x ∈ X}.  

Then, 

(a)  A ⊆ B if and only if μA (x) ≤  μB (x) and νA (x) ≥  νB (x) for all x ∈ X 

(b)  A = B if and only if A ⊆ B and B ⊆ A 

(c)  Ac = {〈x, νA (x) , μA (x)〉 | x ∈ X} 

(d)  A ∩ B = {〈x, μA (x) ∧  μB (x),  νA (x) ∨ νB (x)〉 | x ∈ X} 

(e)  A ∪ B = {〈x, μA (x) ∨  μA (x) νA (x) ∧ νB (x) 〉 | x ∈ X}  

Note: The  intuitionistic fuzzy sets 0 ~ = {〈x, 0, 1〉 | x ∈ X} and 1 ~ = {〈x, 1, 0〉 | x ∈ X} are respectively the 

empty set and the whole set of  X. 

 

Definition 2.3[3]: An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying 

the following axioms :  

• 0~, 1~ ∈ τ 

• G1 ∩ G2 ∈ τ, for any G1, G2 ∈ τ 

• ∪ Gi ∈ τ for any family {Gi  | i ∈ J} ⊆ τ. 

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any 

IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.  

The complement Ac of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS 

in short) in X. 

 

Definition 2.4[3]: Let  (X, τ) be an IFTS and A = 〈x, μA , νA〉 be an IFS in X.   

Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by 

 int(A) = ∪ {G | G is an IFOS in X and G ⊆ A}, 

   cl(A)  = ∩ {K | K is an IFCS in X and A ⊆ K}. 

Note that for any IFS A in (X, τ), we have  

(1) A is an intuitionistic fuzzy closed set in X iff cl(A) = A 

(2) A is an intuitionistic fuzzy open set in X iff int(A) = A 

(3) cl(Ac) = (int(A))c 

  (4) int(Ac) = (cl(A))c   

 

Definition 2.5:  An IFS A =  〈x, μA , νA〉 in an  IFTS (X, τ) is said to be an  

(a) intuitionistic fuzzy semi open set[7] (IFSOS in short) if A ⊆ cl(int(A)) 

(b) intuitionistic fuzzy pre open set [6]( IFPOS in short) if A ⊆ int(cl(A))  

(c) intuitionistic fuzzy 𝛼-open set [8] ( IF𝛼OS in short) if A ⊆ int(cl(int(A)) 

The complement of an IFSOS (resp. IFPOS, IF𝛼OS  ) is called IFSCS (resp. IFPCS, IF𝛼CS). The 

intersection of all IFSCS (resp.IFPCS, IF𝛼CS) in X containing A is called the semiclosure (resp.  pre closure 

and  𝛼-closure ) of A and is denoted by scl(A) (resp. pcl(A) and 𝛼cl(A)). 

 

Definition 2.6:  An IFS A =  〈x, μA , νA〉 in an IFTS in an IFTS (X, τ) is said to be an 

1) intuitionistic fuzzy generalized closed set [10] (IFgCS in short) if  cl(A) ⊆ U whenever A ⊆ U and 

U is an IFOS in X. 

2) intuitionistic fuzzy generalized pre closed set [6] (IFgPCS in short) if pcl(A) ⊆ U whenever A ⊆ U 

and U is an IFOS in X. 

3) intuitionistic fuzzy generalized semi closed set [7]  (IFgSCS in short) if scl(A) ⊆ U whenever A ⊆ 

U and U is an IFOS in X. 

4) intuitionistic fuzzy semi generalized closed set [7] (IFSgCS in short) if scl(A) ⊆ U whenever A ⊆ U 

and U is an IFSOS in X. 
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5) intuitionistic fuzzy 𝛼 generalized closed set [8] (IF𝛼gCS in short) if 𝛼cl(A) ⊆ U whenever A ⊆ U 

and U is an IFOS in X. 

6) intuitionistic fuzzy g* closed set [2] (IFg*CS in short) if cl(A) ⊆ U whenever A ⊆ U and U is an 

IFgOS in X. 

7) intuitionistic fuzzy strongly g* closed set [4] ( IF strongly g*CS in short) if         cl(int(A))⊆ U 

whenever A ⊆ U and U is an IFgOS in X. 

8) intuitionistic fuzzy 𝛽** generalized closed set [9] (IF 𝛽**gCS in short) if                          cl(int(cl(A))) 

∩ int(cl(int(A))) ⊆ U whenever A ⊆ U and U is an IFOS in X. 

 

The complement of an IFgCS (resp. IFgPCS, IFSgCS, IF𝛼gCS, IFg*CS, IF strongly g*CS and 

IF𝛽**CS ) is called as IFgOS (resp. IFgPOS, IFSgOS, IF𝛼gOS, IFg*CS,                                IF stronglyg*OS 

and IF𝛽**OS). 

 

Definition 2.7:  cl*(A) is defined as the intersection of all IFgCS containing A 

 

3. INTUITIONISTIC FUZZY 𝒈̂ * CLOSED SET  

We introduce the following definition. 

Definition 3.1: An IFS A is said to be an intuitionistic fuzzy generalized 𝑔̂ * closed set  (IF𝑔̂*CS in short) 

in (X, τ) if cl* (A) ⊆ U whenever A ⊆ U and U is an IF𝑔OS in X. The family of all IF𝑔̂*CS of an IFTS (X, 

τ) is denoted by IF𝑔̂ *C(X). 

Definition 3.2: The complement of an IF𝑔̂ * CS is said to be an intuitionistic fuzzy 𝑔̂ *open set and it is is 

denoted by IF𝑔̂ *OS in  (X, τ). The family of all IF𝑔̂ *OS of an IFTS (X, τ) is denoted by IF𝑔̂ *O(X). 

Example 3.3: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.6, 0.4〉 ,      〈b, 0.7, 

0.2〉}. Then IF𝑔̂ * CS = {〈a, 0.3, 0.7〉, 〈b, 0.1, 0.8〉} and IF𝑔̂ * OS = {〈a, 0.7, 0.3〉,                  〈b, 0.8, 0.1〉} 

in X. 

 

Theorem 3.4: Every IFCS is an IF𝑔̂ * CS but not conversely.  

Proof:  Let A be an IFCS in X and U be any IFgOS in (X, τ) such that A  ⊆ U.  Since, “Every IFCS is an 

IFgCS” and A is an IFCS in X, cl*(A) ⊆ cl(A) = A ⊆ U. Therefore, A is an             IF𝑔̂*CS in X.                                                                                                                                

 

Example 3.5: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.5, 0.5〉 ,      〈b,0.2,0.6〉}. 

Then the IFS A = {〈a,0.5,0.5〉, 〈b, 0.4, 0.5〉} is an IF𝑔̂ * CS in X but not IFCS in X. 

 

Theorem 3.6:  Every IFSCS is an IF𝑔̂ * CS but not conversely. 

Proof:  Let A be an IFSCS in X and U be any IFgOS in (X, τ) such that A ⊆ U. Since, “Every IFSCS is an 

IFgCS” and A is an IFSCS in X, cl*(A) ⊆ scl(A) = A ⊆ U.  Therefore, A is an IF𝑔̂*CS in X.                                                                                                                                                  

 

Example 3.7:  Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.6, 0.4〉 ,      〈b, 0.7, 

0.2〉}. Then the IFS A = {〈a, 0.7, 0.3〉, 〈b, 0.8, 0.1〉} is an IF𝑔̂ * CS in X but not IFSCS in X. 

 

Theorem 3.8: Every IF𝛼CS is an an IF𝑔̂ * CS but not conversely. 

Proof:  Let A be an IF𝛼CS in X and U be an IFgOS in (X, τ) such that A ⊆ U. Since, “Every IF𝛼CS is an 

IFgCS” and A is an IF𝛼CS in X, cl*(A) ⊆ 𝛼cl(A) = A ⊆ U. Therefore, A is an IF𝑔̂*CS in X.                                                                                                                                 

 

Example 3.9:  Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.4, 0.6〉 ,       〈b, 0.2, 

0.7〉}.  Then the IFS A = {〈a, 0.5, 0.5〉,  〈b, 0.3, 0.5〉} is an IF𝑔̂*CS in X but not IF𝛼CS in X. 
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Theorem 3.10:  Every IF𝑔CS is an  IF𝑔̂ * CS but not conversely. 

Proof:  Let A be an IFgCS in X and U be any IFOS in (X, τ) such that A  ⊆ U.  Since, “Every IFOS is IFgOS” 

we have, cl*(A) ⊆ cl(A) ⊆ U. Therefore, cl*(A)  ⊆ U where U is an IFgOS           in X. Hence, A is an IF𝑔̂ 

* CS in X. .                                                                                                                                   

 

Example 3.11: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T  = {〈a, 0.5, 0.5〉 ,   〈b, 0.4, 

0.6〉}.  Then the IFS A = {〈a, 0.5, 0.5〉, 〈b, 0.4, 0.6〉} is an IF𝑔̂*CS in X but  not an IFgCS in X. 

           

Theorem 3.12: Every IFSgCS is an IF𝑔̂ * CS but not conversely. 

Proof :  Let A be an IFSgCS in X and U be any IFSOS in (X, τ) such that A  ⊆ U.  Since, “Every IFSOS is 

IFgOS” we have, cl*(A) ⊆ scl(A) ⊆ U. Therefore, cl*(A)  ⊆ U where U is an IFgOS in X. Hence, A is an 

IF𝑔̂ * CS in X.                                                                                               

 

Example 3.13: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.6, 0.4〉,      〈b, 0.7, 

0.2〉}. Then the IFS A = {〈a, 0.6, 0.4〉, 〈b, 0.7, 0.2〉} is an IF𝑔̂*CS in X but not an IFSgCS          in X. 

 

Theorem 3.14:  Every IF𝛼𝑔CS is an  IF𝑔̂ * CS but not conversely.  

Proof:  Let A be an IF𝛼gCS in X and U be any IFOS in (X, τ) such that A  ⊆ U.  Since, “Every IFOS is 

IFgOS” and “Every IF𝛼CS is IFgCS” we have, cl*(A) ⊆  𝛼cl(A) ⊆ U. Therefore, cl*(A)⊆ U where U is an 

IFgOS in X. Hence, A is an IF𝑔̂ * CS in X.                                       

Example 3.15: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.5, 0.5〉,      〈b, 0.4, 

0.6〉}. Then the IFS A = {〈a, 0.5, 0.5〉, 〈b, 0.4, 0.6〉} is an  IF𝑔̂ * CS in X  but not IF𝛼gCS in X. 

 

Theorem 3.16:  Every IFg*CS is an  IF𝑔̂ * CS but not conversely. 

Proof:  Let A be an IFg*CS in X and U be any IFgOS in (X, τ) such that A  ⊆ U.  Since, “Every IFCS is 

IFgCS”. Therefore, cl*(A)  ⊆ U where U is an IFgOS in X. Hence, A is an IF𝑔̂*CS in X.                                                                                                                                                

 

Example 3.17: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.6, 0.4〉,       〈b, 0.7, 

0.2〉}. Then the IFS A = {〈a, 0.5, 0.5〉, 〈b, 0.4, 0.5〉} is an IF𝑔̂ * CS in  X  but not an IFg*CS  in X. 

                       

Theorem 3.18:  Every IF𝑔̂ * CS is an IF𝛽**gCS but not conversely. 

Proof:  Let A be an IF𝑔̂ * CS in X and U be an IFOS in (X, τ) such that A  ⊆ U.  Since, cl(int(cl(A))) ∩ 

int(cl(int(A))) ⊆ cl*(A) ⊆ U.  Therefore, cl(int(cl(A))) ∩ int(cl(int(A))) ⊆U. Hence A is an IF𝛽**gCS in X. 

 

Example 3.19:  Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.5, 0.5〉 ,   〈b, 0.2, 

0.6〉}. Then the IFS A = {〈a, 0.4, 0.6〉, 〈b, 0.1, 0.7〉} is an IF𝛽**gCS in X  but not IF𝑔̂*CS           in  X.  

 

Remark 3.20: IFPCS and IF𝑔̂ * CS are independent to each other. 

 

Example 3.21: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.5, 0.5〉,       〈b, 0.6, 

0.3〉}.  Then the IFS A = {〈a, 0.5, 0.5〉, 〈b, 0.5, 0.4〉} is an  IFPCS in X but not IF𝑔̂* CS in X since, A⊆ T 

and T is IFgOS in X but cl*(A) = 1 ⊈ T. 

 

Example 3.21:  Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.5, 0.5〉 ,   〈b, 0.6, 

0.3〉}.  Then the IFS A = {〈a, 0.6, 0.4〉, 〈b, 0.7, 0.2〉} is anIF𝑔̂ * CS in X but not IFPCS in X. since cl(int(A)) 

= 1⊈ T. 

 

Remark 3.22: IFgPCS and  IF𝑔̂ * CS are independent to each other.  
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Example 3.23: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.4, 0.5〉,    〈b, 0.2, 

0.6〉}.  Then the IFS A = {〈a, 0.3, 0.6〉, 〈b, 0.1, 0.7〉} is an  IFgPCS in X but not IF𝑔̂*CS in X. since, A ⊆ T 

and T is IFgOS in X, but cl*(A) = {〈a, 0.5, 0.4〉, 〈b, 0.6, 0.2 〉}⊈T. 

 

Example 3.23: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.5, 0.5〉 ,      〈b, 0.4, 

0.6〉}.  Then the IFS A = {〈a, 0.5, 0.5〉, 〈b, 0.4, 0.6〉} is an IF𝑔̂ * CS in X but not IFgPCS in X since A⊆ T 

and T is IFOS in X but pcl(A) = {〈a, 0.5, 0.5〉 , 〈b, 0.6, 0.4 〉}⊈ T. 

 

Remark 3.24: IF strongly g*CS and IF𝑔̂ * CS are independent to each other. 

 

Example 3.25:  Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.5, 0.5〉 , 〈b, 0.6, 0.2〉}. 

Then the IFS A = {〈a, 0.4, 0.6〉, 〈b, 0.5, 0.3〉} is an IFstrongly g*CS in X, but  not IF𝑔̂*CS in X, since A⊆ T 

and T is IFgOS in X, but cl*(A) = {〈a, 0.5, 0.5〉, 〈b,0.2,0.6〉⊈ 𝑇.                        

 

Example 3.25: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T  = {〈a, 0.2, 0.8〉 ,   〈b, 0.3, 

0.7〉}.  Then the IFS A = {〈a, 0.4, 0.5〉, 〈b, 0.5, 0.4〉} is an IF𝑔̂ * CS in X but not                 IFstrongly g*CS 

in X since A⊆ T and T is IFgOS in X but cl(int(A)) ={〈a,0.8,0.2〉, 〈b,0.7,0.3〉}⊈T. 

 

The following diagram shows the relationship of IF𝑔̂ * CS with other existing sets. A        B represents A 

implies B and A          B represents A and B are independent to each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. IF𝒈̂ * CS 2.IFCS 3.IFPCS 4.IFSCS 

5. IF𝜶CS 6.IFgCS 7. IFSgCS 8.IFgPCS 

9. IF𝜶𝒈CS 10. IFg*CS 11. IF strongly g*CS 12. IF𝛽**gCS 

 

 

Theorem 3.26: If A and B are IF𝑔̂ * CSs in an IFTS (X, τ), then A∪B is also an IF𝑔̂ *CS in        (X, τ). 

Proof: Let A∪B ⊆ U and U is IFgOS then A ⊆ U or B ⊆ U. Since, A and B are IF𝑔̂ * CS, cl*(A)⊆U or 

cl*(B) ⊆ U then, cl*(A) ∪ cl*(B) ⊆ U. Now, cl*(A ∪ B) = cl*(A) ∪ cl*(B) ⊆U Therefore, A∪B is an IF𝑔̂ * 

CS in (X, τ). 

 

Remark 3.27:  The intersection of two IF𝑔̂ * CSs in an IFTS (X, τ) neednot be an IF𝑔̂ * CS in (X, τ). 

Example 3.28: Let X = {a,b} and τ = {0 ~ , T, 1 ~}be an IFT on X where  T = {〈a, 0.1, 0.9〉 ,     〈b, 0, 1〉}.  

Consider the two IFS A = {〈a, 0, 0.9〉, 〈b, 0.1, 0.9〉}and B= {〈a, 0.5, 0.4〉, 〈b, 0, 1〉}. Then A and B are IF𝑔̂ 

*CSs but A ∩ B = {〈a, 0, 0.9〉, 〈b, 0, 1〉} is not IF𝑔̂ *CS in X. Since A∩B ⊆ T and T is IFgOS in X but cl*(A ∩ 

B)= {〈a, 0.9, 0.1〉 , 〈b, 1, 0〉}⊈ T. 
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