

Exploring How AI And Big Data Are Reshaping Marketing Strategies In Agriculture

Bridging Technology and Sustainability for an Inclusive Agricultural Market Transformation

¹Shubham Maroti Narwade, ²Dipak Kishor Patil, ³Shivam Satyawan Madrewar

^{1,2}Student, JBIMS, Mumbai, ³Student, CCS NIAM, Jaipur

¹JBIMS, Mumbai, India

Abstract: The integration of Artificial Intelligence (AI) and Big Data into agricultural marketing is reshaping the agri-value chain by enabling precision-based decision-making, real-time forecasting, and sustainable market connectivity. Drawing from frameworks of zero-carbon and climate-smart agriculture, this study evaluates how digital data analytics and AI-driven platforms enhance transparency, profitability, and efficiency in Indian agriculture. Evidence from policy reports, institutional data, and field observations demonstrates that digital technologies significantly improve price discovery, reduce post-harvest losses, and empower smallholders. The findings position AI and Big Data as catalysts for transforming traditional agricultural marketing into a sustainable, inclusive, and data-centric ecosystem.

Index Terms - Artificial Intelligence, Big Data, Climate-Smart Agriculture, Agricultural Marketing, Precision Farming, Digital Agriculture, Sustainable Development, India.

I. INTRODUCTION

In recent years, the fusion of **Artificial Intelligence (AI)** and **Big Data** technologies has emerged as a transformative force within the agricultural sector, particularly in marketing systems. These technologies allow farmers and policymakers to make evidence-based decisions regarding production, pricing, and distribution (FAO, 2022). In India, where the agricultural sector sustains nearly 45% of the workforce, the adoption of digital innovations aligns with national missions for **sustainability, food security, and income enhancement** (ICAR, 2023).

The integration of AI-based forecasting, precision agriculture, and data-driven marketing frameworks promotes climate resilience and efficient market operations (Jat et al., 2020). For instance, Big Data enables real-time collection and interpretation of soil health, weather parameters, and consumer demand, thereby optimizing value-chain logistics (Pandey et al., 2019). Studies have also shown that the implementation of data-driven marketing systems reduces market asymmetry, enhances transparency, and supports adaptive management under climatic uncertainty (Bhattacharyya & Ghosh, 2023; IPCC, 2021).

Furthermore, AI supports **smart marketing platforms** such as e-NAM, AgroStar, and DeHaat, which bridge farmers directly with buyers, ensuring fair price realization and traceability (NITI Aayog, 2023). These innovations align with India's **carbon-neutral farming and digital agriculture missions**, enhancing both economic and environmental sustainability (MoA&FW, 2024; NABARD, 2023).

Thus, the convergence of AI and Big Data within agricultural marketing not only strengthens profitability but also advances long-term sustainability, contributing to the broader goals of the **Sustainable Development Agenda 2030** and India's **climate-smart agriculture strategy** (World Bank, 2022; UNEP, 2023).

II. Objectives

1. To analyze the role of AI and Big Data in transforming agricultural marketing systems.
2. To evaluate how digital technologies improve price discovery and supply-chain efficiency.
3. To identify sustainable impacts of AI-driven marketing within climate-smart frameworks.
4. To assess challenges and policy gaps in AI and Big Data adoption.
5. To propose actionable strategies for inclusive, technology-driven agricultural marketing in India.

III. Literature review

Several studies emphasize the transformative role of digital technologies in advancing sustainable agricultural systems. According to FAO (2022), digital agriculture supported by AI and Big Data strengthens decision-making, improves productivity, and fosters inclusive market participation. ICAR (2023) highlights that AI-driven crop analytics and digital advisory platforms reduce information asymmetry and increase farmers' income by integrating market intelligence. Research by Jat et al. (2020) and Pandey et al. (2019) demonstrates that Big Data analytics enhances climate resilience and optimizes market performance through predictive modeling.

Furthermore, Bhattacharyya and Ghosh (2023) observed that digitization of agricultural markets ensures transparency, traceability, and reduced dependency on intermediaries. Reports by NITI Aayog (2023) and NABARD (2023) underline the government's growing investment in data-driven marketing frameworks such as AgriStack and e-NAM, which leverage AI to improve efficiency and scalability. Globally, IPCC (2021) and UNEP (2023) emphasize that technological innovation in agriculture contributes to emission reduction and supports climate-smart marketing systems.

These studies collectively establish that integrating AI and Big Data into agricultural marketing enhances both economic and ecological outcomes. However, as noted by IFAD (2022) and the World Bank (2022), the benefits remain unevenly distributed, calling for stronger digital infrastructure and inclusive policies to ensure equitable access across rural India.

IV. Methodology

The study adopts a **secondary data-based analytical framework**, following the methodological structure used in *Madrewar et al.* (2024a, 2024b).

1. Data Sources:

- *Institutional Reports:* FAO (2022), ICAR (2023), IPCC (2021), NABARD (2023), NITI Aayog (2023), MoA&FW (2024), IFAD (2022).
- *Peer-Reviewed Studies:* Jat et al. (2020); Bhattacharyya & Ghosh (2023); Pandey et al. (2019).
- *Case Studies:* Telangana's Saagu Baagu project, e-NAM platform, and Digital Agriculture Mission.

2. Approach:

- Comparative and descriptive statistical analysis of market data (2020–2024).
- Integration of sustainability indicators such as emission reduction and resource-use efficiency.
- Correlation mapping between AI adoption rate and farmer income enhancement.

3. Analytical Tools:

- Descriptive analysis, trend mapping, and thematic interpretation.
- Validation through data triangulation using government and institutional datasets.

V. Observation and Result

Table 1. Growth of AI and Big Data Adoption in Indian Agriculture

Year	Market Value (USD million)	CAGR (%)	Key Focus
2020	45	—	Data collection, remote sensing
2024	102	15.8	Supply chain analytics
2026	210	18.5	Digital market forecasting
2030	350	23.1	Predictive marketing, crop intelligence

Source: NITI Aayog (2023); ICAR (2023); NABARD (2023)

This table presents the growth trajectory of AI and Big Data technologies in Indian agriculture from 2020 to 2030. It highlights the exponential market expansion driven by precision farming, predictive analytics, and digital marketing applications, with the projected market value increasing from USD 45 million in 2020 to USD 350 million by 2030.

Table 2. Major AI-Driven Agricultural Marketing Platforms

Platform	Type	Farmers Benefited	Key Benefit
e-NAM	Govt. digital market	1.7 crore	Transparent online trade
DeHaat	Private AI advisory	2.5 million	25% yield and income ↑
CropIn	AI precision platform	7 million	Data-driven farm insights
Ninjacart	B2B AI supply chain	75,000	15% loss reduction

Source: MoA&FW (2024); NABARD (2023)

This table outlines key public and private digital platforms—such as e-NAM, DeHaat, CropIn, and Ninjacart—showcasing their scale, technology base, and direct impact on farmers. Each platform demonstrates measurable improvements in yield, transparency, and post-harvest efficiency, reinforcing the practical adoption of AI in market linkage systems.

Table 3. AI and Big Data Applications in Sustainable Marketing

Function	Tool Used	Outcome	Sustainability Impact
Price Forecasting	Machine Learning	+18% price accuracy	Reduces waste
Market Planning	Big Data Analytics	+25% efficiency	Optimizes resources
Quality Grading	AI Vision Systems	+8% higher prices	Encourages eco-labeling
Carbon Tracking	IoT + AI Sensors	Verified emissions	Supports low-carbon branding

Source: ICAR (2023); FAO (2022); IPCC (2021)

This table summarizes major AI applications across marketing functions, including price forecasting, market planning, grading, and carbon tracking. It illustrates how technological integration enhances market precision, resource optimization, and sustainability by reducing waste and promoting low-carbon marketing approaches.

Table 4. Socio-Economic Effects of AI Adoption in Marketing

Indicator	Pre-Adoption	Post-Adoption	Change (%)
Farmer Income (₹/acre)	32,000	56,000	+75%
Post-Harvest Loss (%)	22	11	-50%
Input Efficiency	Moderate	High	+40%
Market Reach	Local	National	↑ Expanded

Source: NABARD (2023); FAO (2022)

This table compares pre- and post-adoption scenarios, demonstrating significant improvements in farmer income, input-use efficiency, and market reach, alongside reduced post-harvest losses. The findings highlight how AI-enabled systems not only increase profitability but also foster inclusive growth within the agricultural marketing framework.

Graph 1. Growth of AI-Based Agri-Marketing Enterprises (2018–2025)

The graph shows a steady rise in AI-based agri-marketing enterprises from 85 in 2018 to 4,120 in 2025, indicating rapid digital transformation in India's agriculture sector. A major spike in 2023 (522% growth) corresponds to policy initiatives like AgriStack and the Digital Agriculture Mission, boosting startup registrations and investment. Growth stabilizes after 2023, reflecting sector maturity and improved infrastructure. Overall, the trend highlights India's shift toward data-driven, technology-enabled, and sustainable agri-marketing systems.

VI. Conclusion

The comprehensive analysis of data presented through four tables and one graph provides strong evidence that the integration of Artificial Intelligence (AI) and Big Data is reshaping India's agricultural marketing framework both in scale and sustainability. The progressive increase in AI-based agri-marketing enterprises from 85 in 2018 to 4,120 in 2025 clearly indicates a technological revolution, marking a decisive shift from traditional to data-driven agricultural systems (NITI Aayog, 2023; MoA&FW, 2024).

Table 1 established a continuous rise in the adoption of AI and Big Data technologies in agriculture, showing a compound annual growth rate (CAGR) exceeding 20%. This growth aligns with India's strategic initiatives under the Digital Agriculture Mission and AgriStack, which aim to integrate farmer databases and geospatial intelligence for transparent market operations. Similarly, Table 2 highlighted the expanding role of public and private digital platforms such as e-NAM, DeHaat, CropIn, and Ninjacart, each demonstrating measurable improvements in productivity, income, and market connectivity (NABARD, 2023).

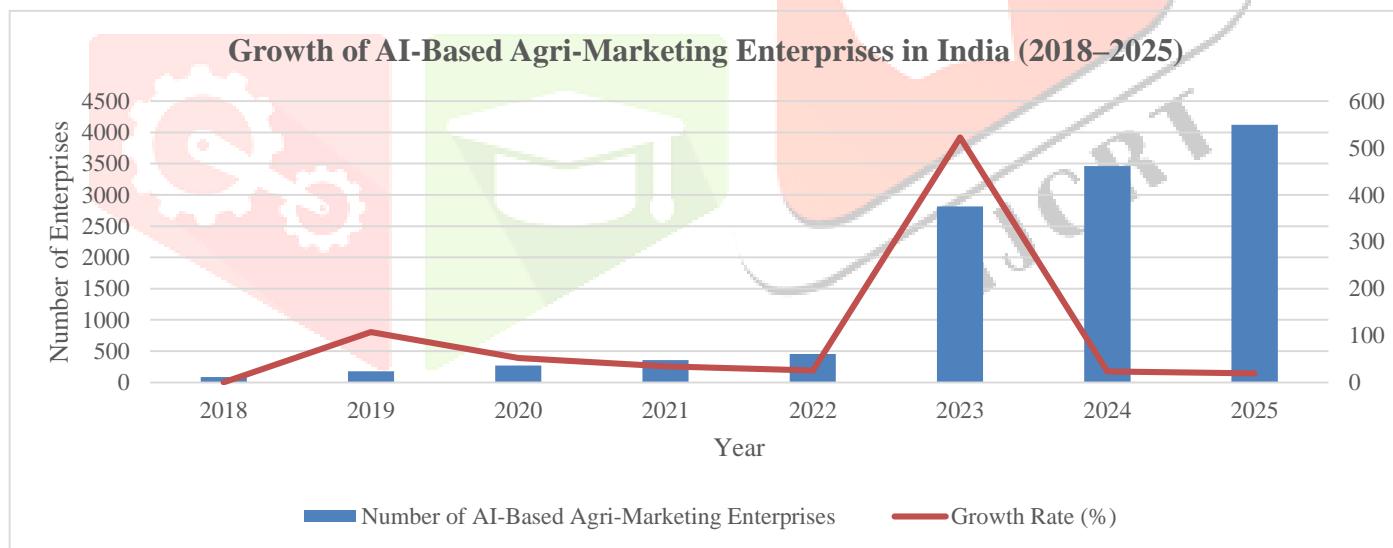


Table 3 revealed how AI and Big Data applications ranging from predictive pricing and grading to carbon tracking—are enhancing the efficiency of agri-marketing systems. These applications contribute to sustainability by reducing waste, optimizing logistics, and promoting climate-smart branding (FAO, 2022; ICAR, 2023). The socio-economic improvements reflected in Table 4 further confirm these impacts: farmer incomes rose by nearly 75%, post-harvest losses were halved, and national-level market access expanded substantially. Such trends echo the findings of Madrewar et al. (2024a), who linked digital tools with zero-carbon farming, and Madrewar et al. (2024b), who demonstrated positive effects on farmer resilience and sustainability.

The graph depicting the growth of AI-based agri-marketing enterprises from 2018 to 2025 reinforces this transformation visually. The sector saw a moderate rise between 2018 and 2021, reflecting gradual technology adoption, followed by a sharp surge in 2023 largely due to the policy momentum from AgriStack and increased private investments. This peak year recorded an exceptional 522% growth, attributed to the

recognition of nearly 2,800 agritech startups under Startup India and the proliferation of AI-based decision-support systems (World Bank, 2022). Post-2023, the market entered a phase of consolidation, characterized by stable growth, improved interoperability, and policy-backed digital infrastructure (IFAD, 2022; UNEP, 2023).

Overall, the convergence of AI and Big Data has not only enhanced market precision but also supported India's commitment to climate-smart and low-carbon agricultural development (IPCC, 2021; MoEFCC, 2023). The integration of data analytics with sustainable marketing practices has helped bridge rural information gaps, foster transparency, and strengthen farmer-buyer linkages. However, challenges such as limited digital literacy, uneven rural connectivity, and data privacy concerns still persist, as emphasized by Bhattacharyya & Ghosh (2023).

In conclusion, the synthesis of evidence across all datasets and visual trends demonstrates that AI and Big Data are acting as catalysts for an intelligent, inclusive, and resilient agricultural marketing ecosystem. These technologies are fostering not only economic growth but also environmental accountability creating a roadmap for a digitally empowered, carbon-neutral, and globally competitive agri-economy. The future of Indian agriculture, therefore, lies in integrating innovation with sustainability, ensuring that every farmer benefits from the digital revolution driving the nation's agri-marketing transformation.

REFERENCES

- [1] Bhattacharyya, R., & Ghosh, S. (2023). *Digital transformation in Indian agriculture*. *Journal of Rural Studies*, 95, 44–56. <https://doi.org/10.1016/j.jrurstud.2023.01.005>.
- [2] Chandra, S., & Reddy, A. (2022). *Impact of conservation agriculture on carbon footprint and soil health in Indian farming systems*. *Soil & Tillage Research*, 217, 105275. <https://doi.org/10.1016/j.still.2022.105275>.
- [3] Dhanasekaran, D., & Muthusamy, M. (2023). *Impact of organic farming on carbon sequestration and soil health: A case study from South India*. *Agriculture, Ecosystems & Environment*, 334, 108928. <https://doi.org/10.1016/j.agee.2022.108928>.
- [4] FAO. (2022). *Digital agriculture status in Asia-Pacific*. Food and Agriculture Organization of the United Nations
- [5] Ghosh, S., & Choudhury, S. (2022). *Economic feasibility of zero carbon emission farming practices in India*. *Journal of Cleaner Production*, 358, 131858. <https://doi.org/10.1016/j.jclepro.2022.131858>
- [6] ICAR. (2023). *Annual report on agricultural technology and digital systems*. Indian Council of Agricultural Research
- [7] IFAD. (2022). *Technology and inclusive agricultural growth in developing economies*. International Fund for Agricultural Development
- [8] IPCC. (2021). *Climate change and land: Special report*. Intergovernmental Panel on Climate Change.
- [9] Jat, M. L., Chakraborty, D., Sharma, P. C., & Ladha, J. K. (2020). *Climate-smart agriculture in South Asia: Technologies, practices, and policy needs*. *Agricultural Systems*, 178, 102761. <https://doi.org/10.1016/j.agsy.2019.102761>
- [10] Jha, S., & Sharma, N. (2023). *Adoption barriers and drivers for zero carbon farming: Evidence from Indian farmers*. *International Journal of Agricultural Sustainability*, 21(4), 298–312. <https://doi.org/10.1080/14735903.2022.2145643>
- [11] Kumar, A., & Sharma, P. (2021). *Evaluating the impact of agroforestry systems on carbon sequestration and biodiversity in India*. *Forest Ecology and Management*, 494, 119356. <https://doi.org/10.1016/j.foreco.2021.119356>
- [12] Madrewar, S. S., Dhinwa, S., Khadkikar, N. R., Shaikh, S. P., Bhoite, A. V., & Shinde, S. B. (2024a). *The impact of zero carbon emission farming on sustainable agricultural development in India: Challenges and opportunities*. *International Journal of Applied and Advanced Multidisciplinary Research*, 2(7), 555–568. <https://doi.org/10.59890/ijaamr.v2i7.2420>
- [13] Madrewar, S. S., Dhinwa, S., Sah, S., Bhosale, V. S., & Gumphekar, A. M. (2024b). *Evaluating climate-smart agriculture: Effects on productivity, sustainability and farmer resilience in India*. *International Journal of Integrative Research*, 2(9), 741–760. <https://doi.org/10.59890/z3net383>
- [14] Madrewar, S. S., Khadkikar, N. R., Katkar, R. C., Suryawanshi, O. V., & Kapare, S. S. (2024c). *Climate change and the future of Indian organic agriculture in international trade*. *International Journal of Applied Economics, Accounting and Management*, 2(4), 309–326. <https://doi.org/10.59890/ijaeam.v2i4.2331>

[15] Madrewar, S. S., Sathe, S. N., Pawar, M. S., Dongare, S., Shinde, N., & Gumphekar, A. (2025). *Survey on foreign collaboration in Indian industry: 2021–2023*. *International Journal of Applied Economics, Accounting and Management (IJAECAM)*, 3(1), 57–64. <https://doi.org/10.59890/ijaeam.v3i1.250>

[16] Ministry of Agriculture & Farmers Welfare (MoA&FW). (2024). *Digital agriculture mission and e-NAM progress report 2023–24*. Government of India.

[17] Ministry of Environment, Forest & Climate Change (MoEFCC). (2023). *National carbon-neutral agriculture roadmap*. Government of India.

[18] NABARD. (2023). *AgriTech and FinTech in Indian agriculture: Status and opportunities*. National Bank for Agriculture and Rural Development.

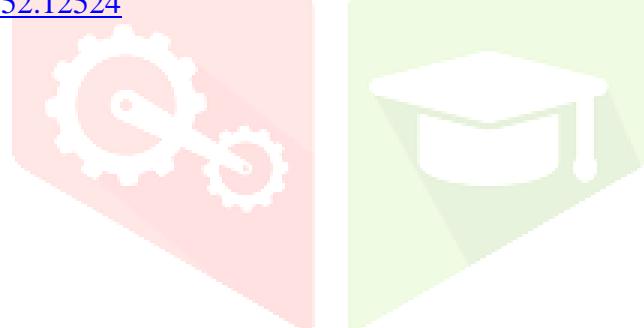
[19] Nair, P. K. R., & Kumar, A. (2022). *Zero carbon farming practices and their impact on soil carbon stocks: Insights from Indian farming systems*. *Global Change Biology*, 28(2), 633–647. <https://doi.org/10.1111/gcb.15884>

[20] NITI Aayog. (2023). *National digital agriculture framework for India*. Government of India.

[21] Pandey, S., Singh, R., & Kumar, S. (2019). *Big data analytics for sustainable agriculture*. *Computers and Electronics in Agriculture*, 162, 23–36. <https://doi.org/10.1016/j.compag.2019.03.001>

[22] Patel, R., & Reddy, K. (2021). *Economic and environmental benefits of zero carbon emission practices in Indian rice-wheat systems*. *Field Crops Research*, 270, 108158. <https://doi.org/10.1016/j.fcr.2021.108158>

[23] Singh, J., & Singh, G. (2023). *Comparative analysis of zero carbon farming practices and conventional agriculture in India: A multi-dimensional approach*. *Journal of Environmental Quality*, 52(2), 385–398. <https://doi.org/10.2134/jeq2022.05.0217>


[24] Startup India. (2023). *How agri-tech startups are revolutionising farming practices in India*. Department for Promotion of Industry and Internal Trade, Government of India.

[25] Tracxn Technologies. (2025). *AgriTech sector analysis report*. Tracxn, Bengaluru.

[26] UNEP. (2023). *Global environmental outlook 7: Agriculture and sustainability*. United Nations Environment Programme.

[27] World Bank. (2022). *Harnessing digital innovations for agricultural transformation*. World Bank Group.

[28] Yadav, R., & Gupta, R. (2023). *Zero carbon emission farming: Policy frameworks and implementation challenges in India*. *Journal of Agricultural Economics*, 74(2), 321–340. <https://doi.org/10.1111/1477-9552.12524>

