IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

In-Vitro Anticancer And In-Silico Evaluation Of Ethanolic Crude Extracts Of Trigonella Foenum (Fenugreek) Leaves On Human Breast Cancer Mcf-7 Cell Lines

¹ Shawrif Zaman, ²Dr. Shruthi S D,

¹Research Trainee, ² CEO & Scientist,

Abstract: Breast cancer is a major global health challenge, and natural products offer promising avenues for novel therapeutics. This study evaluated the in-vitro anticancer activity of ethanolic crude extracts of Trigonella foenum-graecum (fenugreek) leaves against MCF-7 human breast cancer cells, complemented by in-silico docking and ADMET analyses. GC-MS profiling identified key phytoconstituents including ricinoleic acid, elaidic acid, isolinoleic acid, stearic acid, azelaic acid, phytol, and squalene, most of which exhibited favorable drug-likeness and low predicted toxicity. MTT assays revealed dose-dependent inhibition of MCF-7 proliferation, with cell viability decreasing from 57.6% at 250 μg/ml to 16.8% at 500 μg/ml, corresponding to inhibition rates of 42.4% and 83.2%, respectively. In-silico docking suggested strong binding affinities of azelaic acid, elaidic acid, and ricinoleic acid to cancer-related targets, potentially mediating apoptosis and metabolic disruption. These findings indicate that fenugreek leaves possess significant anticancer potential, warranting further mechanistic and in-vivo studies for therapeutic development.

Index Terms - Trigonella foenum-graecum, fenugreek leaves, MCF-7 cells, GC-MS, molecular docking, ADMET, anticancer activity.

I. Introduction

Cancer is a group of diseases marked by uncontrolled cell growth and potential to invade or spread. It results from genetic and epigenetic changes disrupting cell-cycle control, apoptosis, and DNA repair. These changes drive tumor growth, immune evasion, and metastasis. Cancers are named by tissue of origin and vary greatly in behavior and treatment response, necessitating precision medicine [1]. Breast cancer arises mostly from ductal or lobular epithelial cells. It is heterogeneous, subtyped by histology and receptor status (ER, PR, HER2), influencing prognosis and therapy. Molecular profiling identifies intrinsic subtypes (e.g., luminal A/B, HER2+, basal-like) with distinct clinical outcomes. Advances in screening and targeted treatments have improved survival, though global disparities remain [2]. Globally, breast cancer is now the most diagnosed cancer. Incidence is highest in high-income nations due to aging, screening, and lifestyle factors, but mortality is rising faster in low- and middle-income countries due to late detection and limited care. Prevention, early diagnosis, and treatment access are key to reducing future burden. [3]

Fenugreek (Trigonella foenum-graecum) is a legume valued for seeds and leaves used in food and traditional medicine. It contains saponins, flavonoids, alkaloids (e.g., trigonelline), fiber, and oils, contributing to reported antidiabetic, lipid-lowering, antioxidant, and anti-inflammatory effects [4]. Traditionally used for digestion, lactation, and metabolic support, fenugreek shows preclinical anticancer potential, particularly from

^{1,2}BioEdge Solutions, Bengaluru, India

saponins and flavonoids. These may induce apoptosis, cell-cycle arrest, and oxidative stress in cancer models. However, clinical validation is still needed [5].

Gas chromatography-mass spectrometry (GC-MS) is ideal for analyzing volatile compounds in plant extracts. GC separates compounds by volatility [6], while MS identifies them by mass spectra. It's widely used in phytochemical profiling, especially for essential oils and small bioactive substance [7]. *In-vitro* studies use isolated cells to test compounds' effects on viability, apoptosis, and related pathways. While useful for early screening, results require confirmation in animal and clinical studies due to biological complexity.[8], [9]. *In*silico methods like molecular docking and virtual screening simulate how compounds interact with targets. These tools predict activity and guide drug discovery, especially when integrated with experimental validation [10], [11], [12].

Methods

In Vitro Anticancer Study - MCF-7 Cell Line

Cell Culture Maintenance MCF-7 cells were cultured in appropriate growth medium under sterile conditions using a laminar flow hood. Cells were subcultured during log-phase to maintain viability. Thawing Frozen Cells Frozen cryovials were thawed in a 37°C water bath, transferred aseptically into growth medium, centrifuged, and resuspended before being seeded into culture vessels. Subculturing Adherent Cells Adherent cells were detached using Trypsin/TrypLE™, centrifuged, resuspended in fresh medium, counted, and seeded at recommended densities.

Subculturing Suspension Cells: - Suspension cells were passaged during log-phase growth by sampling, counting, diluting to seeding density, and incubating in shaker flasks without baffles.

Cryopreservation Protocol Cells were harvested, counted, and resuspended in freezing medium. Aliquots were frozen at a controlled rate, stored at -80°C overnight, then transferred to liquid nitrogen [13].

MTT Assay for Cell Proliferation

MTT dye is reduced by cellular enzymes to formazan, indicating metabolic activity. MCF-7 cells were seeded in 96-well plates (5,000–10,000 cells/well), treated, incubated with MTT, solubilized in DMSO, and absorbance measured at 570 nm to assess proliferation or cytotoxicity [14].

In Silico Docking Studies

Software & Hardware

- Hardware: Intel i9 CPU, 16 GB RAM, NVIDIA RTX 4050 GPU
- Software: PyRx and Discovery Studio

Ligand Preparation 3D ligand structures were downloaded from PubChem (SDF format) and imported into PyRx for docking.

Protein Preparation Protein structures were obtained from the Protein Data Bank (PDB format). Non-amino acid residues (e.g., HETATM, CONECT) were removed using 'Notepad ++', and cleaned files were used for AutoDock. Docking Docking simulations were performed to identify ligand-protein interactions, evaluating binding affinity and compatibility [15]

ADMET Predictions

SwissADME is a free tool predicting ADME, drug-likeness, and pharmacokinetics, aiding compound selection and minimizing development failures [16]. ADMET Lab 3.0 Assesses pharmacokinetic and toxicity profiles to prioritize compounds with favorable ADMET and binding properties, streamlining drug discovery [18]. Lipinski's Rule of Five Used to evaluate oral bioavailability based on molecular weight, lipophilicity, and hydrogen bonding potential. Solubility is prioritized during optimization [17].

IV. RESULTS AND DISCUSSION

In this study, one plant extract and the solvent fractions were evaluated for their possible Anticancer activities alongside Doxorubicin as a positive control. The Phytochemical analysis of Fenugreek leaves by using GC-MS indicated presence of different constituents like Squalene, Phytol, Azelaic acid, Stearic acid, 2-ethyl-Heptanoic acid, 9,12 Octadecadienoic acid (Z,Z), 9E,11E)-Octadecadienoic acid, Quinoline, (Z)-18-Octadec-9-enolide, 2,3-dihydroxypropyl ester, Caryophyllene, Linoleic acid ethyl ester (Ethyl Linoleate), Ricinoleic acid, 13-Hexyloxacyclotridec-10-en-2-one; 1,8,11-Heptadecatriene, Elaidic Acid (9-Octadecenoic acid), 9-Tetradecenal (Table 1).

Table 1 – Constituents of Fenugreek Leaf Extract

CI		N/C-11		D. d. d.		D	
Sl	Name	Molecular	CAS	Retention	Similarity	Base	Properties
no.	G I	Formula	111 02 4	Time	0.5	m/z	TT 1 (1)
1	Squalene	C ₃₀ H ₅₀	111-02-4	17.50	95	410.00	Hydration, Anti-
							inflammatory,
			150015				Antioxidant
2	Phytol	C20H40O	150-86-7	30.14	93	123.00	Anti Inflammatory,
							Antioxidant
3	Azelaic acid	C9H16O4	123-99-9	13.76	98	187.00	Insulin Sensitivity,
							Antioxidant,
							Antidiabetic
4	Stearic acid	C18H36O2	57-11-4	16.60	97	129.00	Anti diabetic,
							Cardiovascular health,
							Metabolic function
5	2-ethyl-	C8H16O2	106-76-3	13.74	96	129.00	Metabolic function
	Heptanoic acid						
6	9,12-	C18H32O2	60-33-3	22.97	91	67.05	Glucose Metabolism,
	Octadecadienoic						Cholesterol Regulation
	acid (Z,Z)						
7	9E,11E)-	C ₁₈ H ₃₂ O ₂	544-71-8	24.32	93	67.05	Metabolic function
	Octadecadienoic						
	acid		\ I /				
8	Quinoline	C ₉ H ₇ N	92-22-5	14.50	97	129.00	Antimicrobial,
			7				Antioxidant
9	(Z)-18-Octadec-	C ₁₈ H ₃₂ O ₂	8 0060-	26.02	88	55.05	Antioxidant
	9-enolide		76-0		. /	2	
10	2,3-	C5H10O4	2277-28-	28.68	88	67.05	Lipid Metabolism
	dihydroxypropyl		3				
	ester						
11	Caryophyllene	C ₁₅ H ₂₄	87-44-5	19.63	96	204.00	Anti-inflammatory
12	Linoleic acid	C20H36O2	544-35-4	32.28	89	67.05	Glucose Metabolism,
	ethyl ester (Ethyl						Cardiovascular Health
	Linoleate)	53	N.				Andrew Control
13	Ricinoleic acid	C ₁₈ H ₃₄ O ₃	141-22-0	34.09	82	98.05	Anti-inflammatory,
	Themorete acta	010113403	111 22 0	2 1102	0_	70.00	Metabolic stability
14	1,8,11-	C ₁₇ H ₃₀	56134-	14.5	87	234.00	Cellular metabolism
	Heptadecatriene	21/1130	03-3		",		- Climin memorism
15	Elaidic Acid (9-	C ₁₈ H ₃₄ O ₂	112-79-8	18.5	98	282.00	Antidiabetic, Lipid
13	Octadecenoic	C101134U2	114-17-0	10.5		202.00	metabolism
	acid)						inctabolisiii
16	9-Tetradecenal	C14H26O	1937-62-	16.5	79	210.00	Biochemical process
10	7-1 cu aututilai	C141126U	8	10.5	19	210.00	Biochemical process
			σ			I	

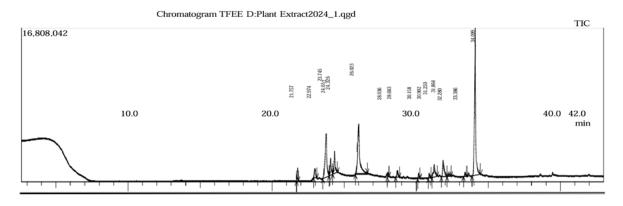
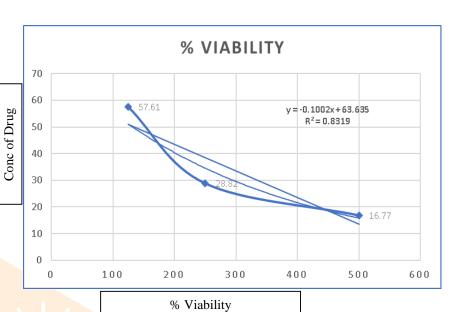


Fig: Chromatogram plant extract

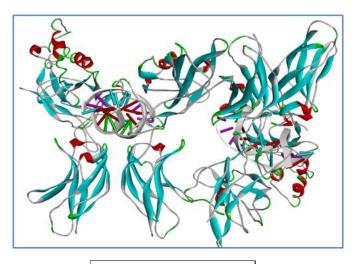
Table – 2: ADME Selected Compound - SWISS ADME

Sl no.	Name	Molecula r Formula	SMILES	Golden	F20%	Volum e Distrib ution	Metab olism	Excret ion Cleara nce	Acute Toxicity
1	Ricinoleic	C18H34O3	CCCCCC[Accepte	Low	0.5.8	4.13	3.872	0 Alert
	acid		C@H](C/C	d		Good		Low	
			=C\CCCC						
			CCCC(=O)			12			
			0)0						
2	Elaidic	C18H34O2	CCCCCC	Accepte	Low	0.858	3.43	2.414	0 Alert
	Acid.(9-		CC/C=C/C	d		Good		Low	
	Octadecenoic		CCCCCC						
	acid)		C(=O)O					1	
3	Isolinoleic	C ₁₈ H ₃₂ O ₂	CCCCCC/	Accepte	Mode	0.608	3.34	1.652	0 Alert
	Acid		C=C/C=C/	d	rate	Good	(,'2)	Low	
	(9E,11E-	\sim	CCCCCC						
	Octadecadien		CC(=O)O			110			
	oic acid)			-		-			
4	Stearic Acid	C ₁₈ H ₃₆ O ₂	CCCCCC	Accepte	Mode	0.752	3.81	2.425	0 Alert
			CCCCCC	d	rate	Good		Low	
			CCCCCC(
			=O)O						
5	Azelaic acid	C9H16O4	C(CCCC(=	Rejected	High	0.26	2.29	1.727	0 Alert
			O)O)CCC			Good		Low	
			C(=O)O						

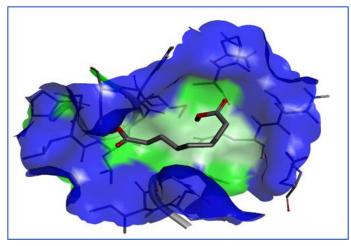

Table 3: - UV absorption of Cell line solution at 570 nm

Parameter	Blank	Negative Control (Untreated)	Standard Control	Concentration, 125 µg/ml	Concentration, 250 µg/ml	Concentration, 500 μg/ml
OD 1	0	1.69	0.163	0.974	0.487	0.283
OD 2	0	1.689	0.163	0.974	0.485	0.284
OD 3	0	1.691	0.164	0.973	0.489	0.283
Average	0	1.69	0.163333333	0.973666667	0.487	0.283333333
Average - Blank	0	1.69	0.163333333	0.973666667	0.487	0.283333333
Std Deviation	0	0.001	0.00057735	0.00057735	0.002	0.00057735
Std error	0	0.00057735	0.000333333	0.000333333	0.001154701	0.000333333
% Cell Viability		100	9.66469428	57.61341223	28.81656805	16.765286
% Inhibition		0	90.33530572	42.38658777	71.18343195	83.234714

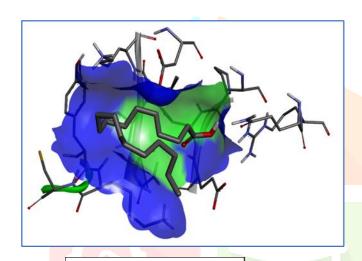
Table – 4: ADME Selected Compound - ADMET LAB 2

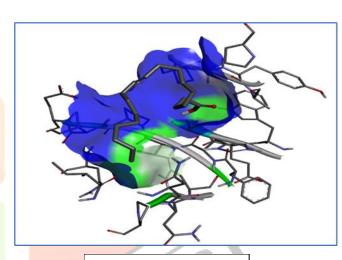

Sl no.	Name	Molecular Formula	SMILES	Golden	F _{20%}	Volum e Distrib ution	Metab olism	Excret ion Cleara nce	Acute Toxicity
1	Ricinoleic acid	C ₁₈ H ₃₄ O ₃	CCCCC[C@H](C/C =C\CCCC CCCC(=O) O)O	Accepte d	Low	0.5.8 Good	4.13	3.872 Low	0 Alert
2	Elaidic Acid.(9- Octadecenoic acid)	C18H34O2	CCCCCC C/C=C/CC CCCCCC(=0)0	Accepte d	Low	0.858 Good	3.43	2.414 Low	0 Alert
3	Isolinoleic Acid (9E,11E- Octadecadien oic acid)	C18H32O2	CCCCCC/ C=C/C=C/ CCCCCCC C(=0)0	Accepte d	Mode rate	0.608 Good	3.34	1.652 Low	0 Alert
4	Stearic Acid	C18H36O2	CCCCCC CCCCCC CCCC(=0)	Accepte d	Mode rate	0.752 Good	3.81	2.425 Low	0 Alert
5	Azelaic acid	C9H16O4	C(CCCC(= 0)0)CCC C(=0)0	Rejected	High	0.26 Good	2.29	1.727 Low	0 Alert

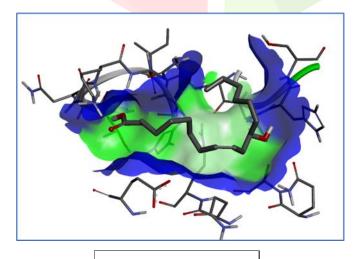
Concentration of Drug (μg)	% Viability	
125	57.61	
250	28.82	
500	16.77	

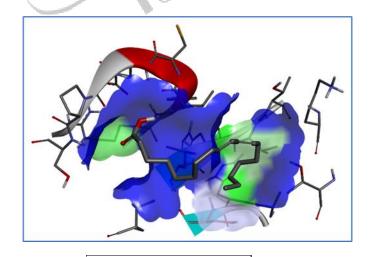


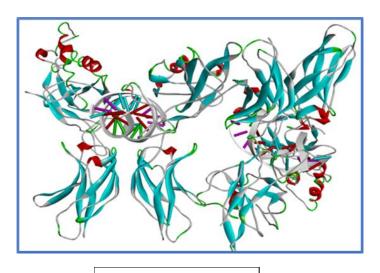
MTT ASSAY SUMMARY % Inhibition y = m x+ c Culture Condition 0 x = y - c / mUntreated 90.34 = 50 - 63.635 / - 0.1002 Standard TF 125 μg 42.39 = - 13.635 / -0.1002 TF 250 μg 71.18 **x = 136.077** TF 500 μg 83.23 IC 50 Value (μg) 136.08

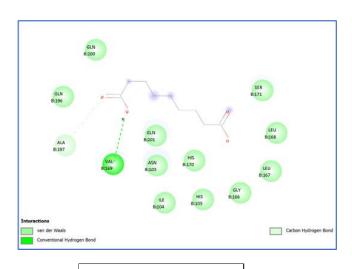


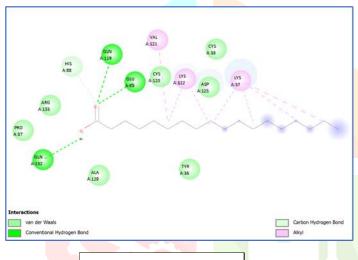

Docking Protein 1le5

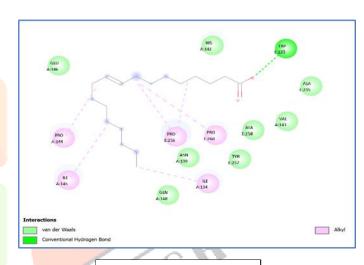

1. Ricinoleic Acid

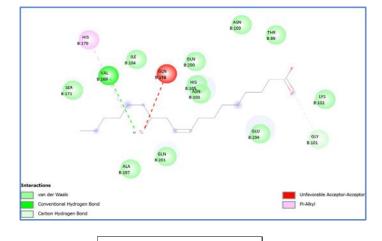

2. Elaidic Acid

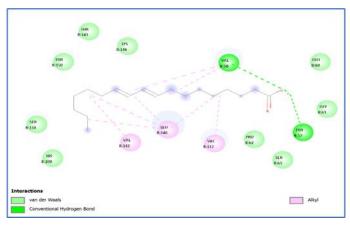

3. Isolinoleic Acid


4. Stearic Acid


5. Azelaic Acid


Docking Protein 1le5


1. Ricinoleic Acid


2. Elaidic Acid

3. Isolinoleic Acid

4. Stearic Acid

5. Azelaic Acid

Discussion

The present in vitro study demonstrates that a fenugreek (Trigonella foenum-graecum) leaf extract—whose GC/MS profile included ricinoleic acid, elaidic (9-octadecenoic) acid, isolinoleic (9E,11E-octadecadienoic) acid, stearic acid and azelaic acid—exerts a reproducible, dose-dependent reduction in MCF-7 cell viability as assessed by the MTT assay (absorbance read at 570 nm). These data are consistent with earlier reports that fenugreek extracts and isolated fatty-acid components produce cytotoxicity in breast and other cancer cell lines, indicating that the plant matrix is a plausible source of antiproliferative agents. [19]

Fatty acids and related metabolites can impair cancer cell viability through several convergent mechanisms. Unsaturated long-chain fatty acids (including elaidic and linoelaidic isomers) have been shown to reduce MCF-7 viability in a concentration-dependent manner and to modulate inflammatory cytokines and apoptotic signalling—effects that parallel the concentration-dependent MTT reductions observed here. [20]

Methanolic extracts of Trigonella foenum-graecum (fenugreek) seeds and sprouts contain multiple bioactive flavonoids (apigenin, vicenin-2, vitexin, luteolin, orientin) and isoflavones (daidzein, formononetin), as identified by high-resolution LC-MS. In MCF-7 breast cancer cells, these extracts produced dose- and timedependent reductions in cell viability (MTT assay), increased mitochondrial DNA damage, and suppressed proliferation and metastatic potential. Overall, the results highlight fenugreek—particularly the sprouts—as a rich source of compounds with promising anticancer activity. [21]

The study found that fenugreek seed extract exhibited strong antibacterial activity, particularly against Staphylococcus aureus and Pseudomonas aeruginosa. In MCF-7 breast cancer cells, the extract inhibited proliferation at 400 µg/ml after 72 hours without significant apoptosis or necrosis, while showing no anticancer effect on liver cancer or normal Vero cell lines. These results suggest fenugreek seed extract as a potential antibacterial and selective anticancer agent. [22]

Azelaic acid and its derivatives have documented antiproliferative activity in multiple tumour cell systems and were previously reported to reduce proliferation when formulated for delivery; their presence in the fenugreek extract provides an additional plausible contributor to the anti-MCF-7 effect. [23]

Stearic acid and other saturated acids may exert subtler modulatory effects on membrane composition and signalling that, in combination with unsaturated fatty acids, produce additive or synergistic cytotoxicity—an interaction that cannot be resolved by MTT alone. [24]

While the MTT assay (570 nm readout) reliably reports mitochondrial dehydrogenase activity and thus relative cell viability, it does not distinguish apoptosis from necrosis nor reveal molecular mechanism. Therefore, the promising MTT results reported here should be followed by mechanistic assays: Annexin-V/PI flow cytometry, caspase activity and PARP cleavage for apoptosis, ROS and mitochondrial membrane potential measures, and cell-cycle analysis. Time-course and fractionation (isolating individual fatty acid fractions) will clarify which constituents are most active and whether effects are additive or synergistic. Finally, orthogonal in vivo testing and pharmacokinetic/toxicity profiling are required before translating these observations toward therapeutic applications. []

Conclusion

In conclusion, the *in-vitro* and *in-silico* docking studies strongly indicate the positive anticancer potential of fenugreek leaves on MCF-7 cell lines. Through a combination of biochemical assays and computational modelling, these studies highlight the efficacy of fenugreek's phytoconstituents, particularly Azelaic acid, in regulating glucose metabolism and mitigating postprandial breast cancer. The inhibition of MCF-7 breast cancer cell proliferation highlights the potential of fenugreek leaves in suppressing tumor growth and combating breast cancer effectively. These findings reinforce the therapeutic value of fenugreek leaves as a natural anticancer agent and provide a strong basis for further research into their clinical applicability in cancer management.

Conflict of Interest: -

Authors declare that there is no conflict of interest.

Acknowledgement: -

The authors thank Bio Edge Solutions for research support and access to necessary software tools and instruments.

REFERENCES

- 1. Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I. and Jemal, A., 2024. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 74(3), pp.229-263.
- 2. Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J.R., Cardoso, F., Siesling, S. and Soerjomataram, I., 2022. Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, pp.15-23.
- 3. Visuvanathan, T., Than, L.T.L., Stanslas, J., Chew, S.Y. and Vellasamy, S., 2022. Revisiting Trigonella foenum-graecum L.: pharmacology and therapeutic potentialities. Plants, 11(11), p.1450.
- 4. Sarwar, S., Khalil, A.A., Abbas, M., Saeed, F., Afzaal, M., Tufail, T., Hussain, M., Ishfaq, M., Hussain, M., Suleria, H.A.R. & Shah, F. 2022, 'Fenugreek (Trigonella foenum-graecum): Nutraceutical values and therapeutic potential', Indian Journal of Traditional Knowledge, vol. 21, no. 2, pp. 246–256.
- 5. RANJAN, S., Chaitali, R.O.Y. and SINHA, S.K., 2023. Gas chromatography-mass spectrometry (GC-MS): A comprehensive review of synergistic combinations and their applications in the past two decades, Journal of Analytical Sciences and Applied Biotechnology, 5(2), pp.72-85.
- 6. Song, H., Liu, J., Shi, S., et al. 2019, 'GC-O-MS technique and its applications in food flavor analysis', Food Research International, vol. 120, pp. 196–204.
- 7. Bernauer, U., Oberemm, A., Madle, S. and Gundert-Remy, U., 2005. The use of in vitro data in risk assessment. Basic & clinical pharmacology & toxicology, 96(3), pp.176-181.
- 8. Kumar, S., Singh, R., Dutta, D., Chandel, S., Bhattacharya, A., Ravichandiran, V. and Sukla, S., 2022. In vitro anticancer activity of methanolic extract of Justicia adhatoda leaves with special emphasis on human breast cancer cell line. *Molecules*, 27(23), p.8222.
- 9. Sanjai, C., Hakkimane, S.S., Guru, B.R. and Gaonkar, S.L., 2024. A comprehensive review on anticancer evaluation techniques. Bioorganic Chemistry, 142, p.106973.
- 10. Sadybekov, A.V. and Katritch, V., 2023. Computational approaches streamlining drug discovery. Nature, 616(7958), pp.673-685.
- 11. Meng, X.Y., Zhang, H.X., Mezei, M. and Cui, M., 2011. Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design, 7(2), pp.146-157.
- 12. Paggi, J.M., Pandit, A. and Dror, R.O., 2024. The art and science of molecular docking. *Annual review* of biochemistry, 93(1), pp.389-410.
- 13. Pawar, R.P. and Rohane, S.H., 2021. Role of autodock vina in PyRx molecular docking. Asian Journal of Research in Chemistry, 14(2), pp.132-134.
- 14. Maurya, A., Singh, V.K. and Agarwal, A., 2024. Molecular docking, standard dynamics trajectory analysis and density functional theory studies of potent antibacterial compounds against Staphylococcus aureus AacA-AphD protein to identify potential lead molecules. Lett Appl *NanoBioSci*, 13(2), pp.1-18.
- 15. Ayodele, P.F., Bamigbade, A., Bamigbade, O.O., Adeniyi, I.A., Tachin, E.S., Seweje, A.J. and Farohunbi, S.T., 2023. Illustrated procedure to perform molecular docking using PyRx and Biovia discovery studio visualizer: a case study of 10kt with atropine. Progress in Drug Discovery & *Biomedical Science*, 6(1).
- 16. Sardar, H., 2023. Drug like potential of Daidzein using SwissADME prediction: In silico Approaches. *Phytonutrients*, pp.02-08.
- 17. Ivanović, V., Rančić, M., Arsić, B. and Pavlović, A., 2020. Lipinski's rule of five, famous extensions and famous exceptions. *Popular Scientific Article*, 3(1), pp.171-177.
- 18. Fu, L., Shi, S., Yi, J., Wang, N., He, Y., Wu, Z., Peng, J., Deng, Y., Wang, W., Wu, C. and Lyu, A., 2024. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic acids research, 52(W1), pp.W422-W431.
- 19. [a] Al-Timimi LA N (2019) Antibacterial and Anticancer Activities of Fenugreek Seed Extract. Asian Pacific Journal of Cancer Prevention 20:3771–3776.
- 20. [b] Dutta, A., Panchali, T., Khatun, A., Jarapala, S.R., Das, K., Ghosh, K., Chakrabarti, S. and Pradhan, S., 2023. Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line. Scientific Reports, 13(1), p.14125.

- 21. [c] Khoja, K.K., Howes, M.J.R., Hider, R., Sharp, P.A., Farrell, I.W. and Latunde-Dada, G.O., 2022. Cytotoxicity of fenugreek sprout and seed extracts and their bioactive constituents on MCF-7 breast cancer cells. Nutrients, 14(4), p.784.
- 22. [d] Al-Timimi, L.A.N., 2019. Antibacterial and anticancer activities of fenugreek seed extract. Asian Pacific journal of cancer prevention: APJCP, 20(12), p.3771.
- 23. [e] Breathnach, A.S., 1999. Azelaic acid: potential as a general antitumoural agent. Medical Hypotheses, 52(3), pp.221-226.
- 24. [f] Levitsky, D.O. and Dembitsky, V.M., 2015. Anti-breast cancer agents derived from plants. *Natural products and bioprospecting*, *5*(1), pp.1-16.
- 25. [g] Dutta, A., Panchali, T., Khatun, A., Jarapala, S.R., Das, K., Ghosh, K., Chakrabarti, S. and Pradhan, S., 2023. Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line. Scientific Reports, 13(1), p.14125.

