JCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Smart Agriculture Through Deep Learning: A **Review On AI-Based Plant Disease Detection**

¹Pranjali Borchate, ²Komal Londhe, ³Sakshi Swami, ⁴Srushti Nandanwar, ⁵Prof. Varsha Pande ¹Student, ²Student, ³Student, ⁴Student, ⁵Professor 1,2,3,4,5 Computer Engineering 1,2,3,4,5 Terna Engineering College, Navi Mumbai, India

Abstract: Agricultural productivity is significantly affected by plant diseases that cause large-scale economic losses and threaten food security worldwide. Early and accurate disease detection enables timely intervention and sustainable crop management. Recent advances in computer vision, deep learning, and mobile computing have accelerated the development of automated systems for plant disease diagnosis. This review consolidates recent research trends in artificial-intelligence-based approaches for plant disease detection and classification. Studies published between 2018 and 2025 reveal the growing dominance of convolutional neural networks (CNNs) and cloud-based frameworks for image-driven disease recognition in crops such as cotton, mango, and potato. Comparative analyses demonstrate that deep-learning architectures—including ResNet, MobileNet, and customized CNNs—consistently outperform traditional machine-learning methods in accuracy and generalization. In addition, mobile and citizen-science tools have expanded the accessibility of AI solutions to field environments. This paper summarizes key techniques, datasets, performance metrics, and limitations observed across the literature and highlights the need for lightweight, explainable, and fielddeployable AI models.

Index Terms - Plant disease detection, deep learning, convolutional neural networks, cloud computing, smart agriculture.

I. Introduction

Plant diseases continue to pose major challenges to global agriculture by reducing crop yield, degrading quality, and increasing production costs. Conventional detection practices rely on manual field inspection and expert diagnosis, which are time-consuming, subjective, and often infeasible at large scale. With the rapid growth of precision agriculture, researchers have turned toward artificial intelligence (AI), image processing, and Internet-connected devices to automate the identification and monitoring of crop diseases.

During the past decade, machine-learning and computer-vision techniques have been increasingly applied to detect visual symptoms on leaves, stems, and fruits. Early studies such as [10] demonstrated the potential of classical classifiers like support-vector machines for plant-leaf classification but were limited by featureengineering constraints. Subsequently, deep-learning models—particularly convolutional neural networks (CNNs)—have revolutionized the field by learning discriminative features directly from image data. Comprehensive reviews [6], [7] confirm that CNN-based approaches achieve superior accuracy, robustness, and adaptability compared with handcrafted-feature methods.

Recent domain-specific investigations highlight the breadth of these applications. Customized CNN and cloud-computing frameworks for cotton-leaf disease detection were proposed in [1] and [4], emphasizing scalable deployment for farmers. Segmentation-assisted deep networks for estimating mango disease severity were introduced in [3], whereas activation-map-based localization of potato blackleg symptoms was achieved in [2]. Mobile integration of multi-class CNN prediction was demonstrated in [8], showing the practicality of AI models in real-world field scenarios. Complementary initiatives such as [5] employed smartphone-based citizen-science platforms to crowdsource disease images, while [9] combined recommender-system logic with on-site image capture for crop-specific advisory services.

Collectively, these studies indicate a strong transition from laboratory experiments toward real-world, cloud-connected, and user-oriented AI solutions for plant-health management. Despite remarkable progress, challenges remain in handling diverse environmental conditions, data imbalance, and limited interpretability of deep models. This review aims to synthesize the methodologies, architectures, datasets, and evaluation metrics reported in contemporary literature, to identify persistent research gaps, and to outline future directions for developing efficient, explainable, and field-ready plant-disease detection systems.

Plant	Disease	Pathogen	Symptoms
Apple	Scab	Pomi Spilocaea	Brown-Gray on leaf
	Rot	Malorum Sphaeropsis	Dark Brown on leaf
	Rust	Sporangium	Yellow pale on leaf
Cherry	Mildew	Clandestina	Gray powder on leaf
Corn	Gray Spot	Cercospora	Rectangle lesions
	Rust	Sorghi puccinia	Red pustules on leaf
	Light blight	Tutcica setosphaeria	Elliptical lesions
Grape	Rot	Bidwellii guignardia	Red borders on leaf
	Measles	Aleophilum	Necrotic stripping
	Isariopsis blight	Angulata brachypus	Coalesce lesions
Peach	Spot	Arboricola Xanthomonas	Clustered lesions
Potato	Early blight	Solani Alternaria	Brown lesion
	Late blight	Infestans phytophthora	Dark greeb spot
Tomato	Septoria spot	Lycopersici	Foliage
	Mosaic	Mosaic virus	Mottle green leaf
Orange	Green Citrus	Bacteria Motile	Precipitate Demolition
Strawberry	Scorch Fungus	Diplocarpon	Brown edges
Squash	Mildew	Xanthii podosphaers	White powder

Figure 1.1: Distinct plants, their disease and responsible pathogen [6]

II. RESEARCH METHODOLOGY

This review follows a structured methodology to ensure comprehensive coverage and objective synthesis of existing research on artificial-intelligence-based plant disease detection and classification. The approach involves systematic literature selection, evaluation, and categorization of relevant studies published between 2018 and 2025.

2.1 Literature Search Strategy

A detailed search was conducted across major academic databases including IEEE Xplore, SpringerLink, Elsevier, MDPI, Nature, and Frontiers in Artificial Intelligence. Keywords such as plant disease detection, leaf classification, deep learning in agriculture, convolutional neural networks, and AI-based crop monitoring were used in various combinations. Only peer-reviewed journals, reputable conference proceedings, and openaccess scientific reports were considered to ensure the quality and credibility of the selected studies.

2.2 Inclusion and Exclusion Criteria

The inclusion criteria were defined to focus on recent, image-based, and AI-driven research contributions:

- Publications from 2018–2025 to capture the evolution of modern deep-learning techniques.
- Studies employing machine learning, deep learning, or hybrid AI approaches for plant disease detection or severity estimation.
- Research emphasizing real-world implementation such as mobile, cloud, or IoT integration.

Studies were excluded if they (i) lacked technical or performance details, (ii) focused solely on pest detection without disease identification, or (iii) were non-English or non-peer-reviewed sources.

2.3 Selection and Categorization Process

From the initial pool, ten key papers ([1] - [10]) were selected based on citation relevance and technical diversity. Each paper was carefully reviewed to extract information regarding dataset characteristics, image preprocessing techniques, learning architectures, performance metrics, and deployment platforms. The selected studies were then categorized into thematic groups for analysis:

- 1. Traditional machine-learning approaches ([10])
- 2. Deep-learning and CNN-based models ([2], [3], [4], [8])
- 3. Cloud and edge-deployed frameworks ([1], [4])
- 4. Mobile and citizen-science applications ([5], [8], [9])
- 5. Review and benchmarking studies ([6], [7])

2.4 Analytical Framework

Each paper's objectives, methods, datasets, and reported outcomes were compared to identify common methodologies, trends, and research gaps. The comparative evaluation emphasizes strengths, limitations, and practical applicability across different crop types and deployment environments. This structured review approach ensures that the findings presented in subsequent sections are both comprehensive and technically representative of the current state of research in AI-based plant disease detection.

III. THEORETICAL AND TECHNICAL BACKGROUND

This section provides an overview of the fundamental theories, algorithms, and performance measures used in computer-vision-based plant disease detection systems. The reviewed literature highlights a shift from traditional image-processing techniques toward advanced deep learning and cloud-enabled frameworks for agricultural diagnostics.

Figure 3.1: Flowchart with the methodological steps

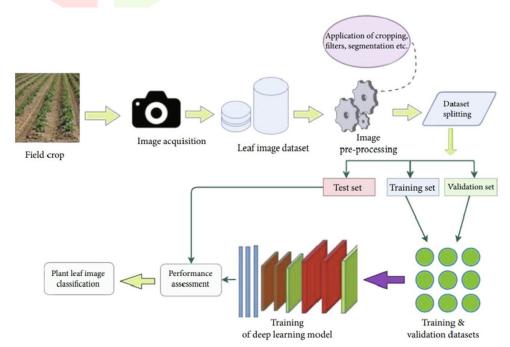


Figure 3.2: Computer vision-based techniques for plant disease detection and classification [7]

3.1 Image Processing and Feature Extraction Principles

Plant disease detection relies primarily on digital image analysis to identify visual patterns such as color changes, leaf texture, and shape deformities caused by infection.

Early systems (e.g., Ramesh et al., 2018 [10]) employed image preprocessing techniques including:

- Noise removal using Gaussian and median filters.
- Segmentation via k-means clustering and Otsu thresholding.
- Feature extraction using Gabor filters, Gray-Level Co-Occurrence Matrix (GLCM), and Scale-Invariant Feature Transform (SIFT).

These extracted features were then passed to machine learning classifiers such as SVM, Random Forest, and K-Nearest Neighbors (KNN) for classification.

3.2 Machine Learning Approaches

Traditional machine learning (ML) algorithms were widely used before the deep learning era.

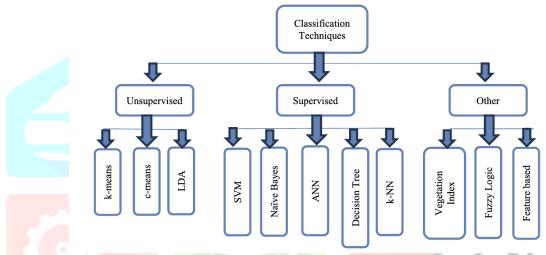


Figure 3.2.1: Distinct classifiers are analyzed in research for the detection of disease in plants [6]

Typical models include:

- Support Vector Machines (SVMs) efficient for binary disease classification (used by Hulsman et al., 2025 [2]).
- Decision Trees (DT) and Random Forests (RF) effective for multi-class detection when features are hand-engineered ([7]).
- Naïve Bayes (NB) simple probabilistic classifier for small datasets.
- K-Means and CART used for unsupervised clustering of diseased vs. healthy leaves.

ML models perform adequately under controlled conditions but struggle in complex field environments due to feature variability and limited generalization capacity.

3.3 Deep Learning Architectures

Recent studies demonstrate that deep convolutional neural networks (CNNs) outperform conventional ML methods by automatically learning hierarchical features. Key architectures include:

Model / Architecture	Application Area	
AlexNet / VGG16	[6] General leaf disease detection	
ResNet & DenseNet121	[7][4] Cotton and mixed crop datasets	
MobileNet V2 / V3	[8] Mobile-based CNN for in-field diagnosis	
Customized CNNs (CBAM, SE blocks)	[2] [4] Localized lesion identification	
Transfer Learning & GAN-Augmented CNNs	[6][7] Cross-domain generalization	

Table 3.3.1: Models used in research for various plant diseases

Deep networks perform feature extraction, classification, and localization within a unified architecture. They have achieved accuracies exceeding 99 % on benchmark datasets such as PlantVillage, though realtime performance can decline in uncontrolled lighting or occluded leaves.

3.4 Performance Metrics

To evaluate detection performance, multiple statistical indicators are used. The most common are:

Metric	Formula	Interpretation	
Accuracy	(TP + TN)/(TP + FP + FN + TN)	Overall correctness	
Precision	TP / (TP + FP)	Correctness of positive predictions	
Recall (Sensitivity)	TP / (TP + FN)	Ability to detect actual positives	
F1 Score	$2 \times (Precision \times Recall)/(Precision + Recall)$	Balance between precision & recall	
mAP (mean Average Precision)	Mean of AP across classes	Localization/segmentation accuracy	

Table 3.4.1 :Performance metrics used in research for various plant diseases

Most deep learning studies—particularly those by Bhargava et al. [6] and Demilie [7]—use accuracy, F1, and mAP as benchmarks for fair comparison.

3.5 Datasets and Benchmark Sources

Commonly used public datasets include:

- PlantVillage 54,000 + labeled images of 38 crop species (used in [6], [7], [8]).
- Field-based cotton and potato datasets collected for real-world testing ([1], [2], [4]).
- Custom mango and citrus datasets segmentation-focused images from [3] and [5].

Dataset quality directly influences model generalization. Studies with in-field data (e.g., Omara et al., 2023 [9]) highlight the need for data augmentation and illumination normalization to improve performance in uncontrolled environments.

3.6 Summary of Theoretical Insights

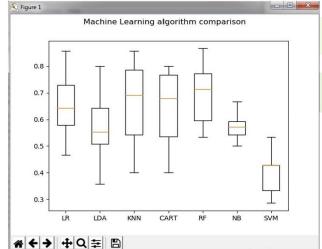
- From the reviewed literature, it can be inferred that:
- CNNs with attention and transfer-learning mechanisms provide the highest reliability.
- Lightweight networks (MobileNet, ShuffleNet) allow mobile and IoT deployment.
- Robustness depends on dataset diversity, illumination control, and cross-domain adaptation.
- Integration of IoT and Cloud Computing ([1], [5]) supports real-time inference in resource-limited regions.

IV. LITERATURE REVIEW AND COMPARATIVE ANALYSIS

The last decade has seen a rapid shift from handcrafted-feature machine-learning models toward fully automated deep-learning frameworks for plant disease detection. The ten reviewed papers [1]–[10] collectively demonstrate this transition across crops, sensing platforms, and computational architectures.

4.1 Traditional Machine-Learning Approaches

The earliest work among the selected studies, [10], employed conventional image-processing and classifier pipelines such as support-vector machines (SVM) and K-nearest neighbors (KNN). These systems relied on manually extracted color and texture descriptors to distinguish diseased from healthy leaves. While costeffective, their dependence on handcrafted features limited scalability and accuracy under uncontrolled field lighting.



ŀ		— /	
	Various Machine learning	Accuracy(percent)	
	models		
	Logistic regression	65.33	
	Support vector machine	40.33	
	k- nearest neighbor	66.76	
	CART	64.66	
	Random Forests	70.14	
	Naïve Bayes	57.61	

Figure 4.1.1: Comparison between different machine learning models [10]

4.2 Deep-Learning and CNN-Based Models

With the success of convolutional neural networks (CNNs) in computer vision, deep architectures rapidly replaced classical models. Papers [2], [3], [4], and [8] presented CNN-based disease classifiers using architectures such as VGG-16, ResNet-50, and customized lightweight networks. Fig. 4 illustrates a typical CNN structure adopted in these studies. Reference [4] introduced a customized CNN that achieved over 97 % accuracy for cotton-leaf disease detection on field images, whereas [2] applied activation-map visualization to localize blackleg symptoms in potato plants, thereby enhancing interpretability. Similarly, [3] used segmentation-guided deep networks to quantify disease severity in mango fruits. The mobileintegrated system in [8] extended CNN inference to real-time prediction, demonstrating that compact models can run efficiently on smartphones.

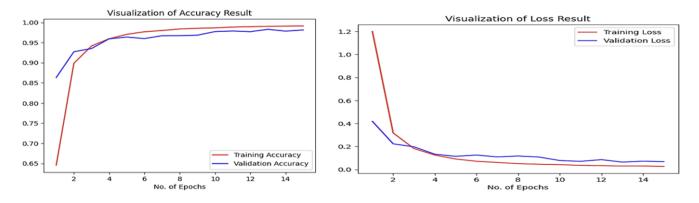


Figure 4.2.1: Accuracy Visualization Curve & Loss Visualization Curve [8]

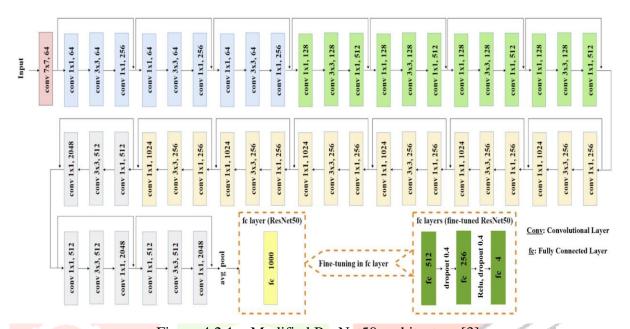


Figure 4.2.1: Modified ResNet50 architecture [3]

4.3 Cloud- and Edge-Deployed Frameworks

Scalability and remote accessibility are essential for agricultural deployment. Studies [1] and [4] proposed cloud-based environments that allow users to upload images from mobile devices for centralized processing. The architecture presented in Fig. 5 depicts the general framework combining edge acquisition, cloud storage, and deep-learning inference. Such solutions reduce device-level computational load and facilitate large-scale data aggregation, enabling model retraining with minimal farmer intervention.

4.4 Mobile and Citizen-Science Applications

In recent years, emphasis has shifted toward participatory data collection and on-device inference. The citizen-science application developed in [5] enables farmers and researchers to capture pest or disease images through a smartphone interface and receive instant AI-based feedback. The recommender-system approach in [9] extends this concept by integrating geolocation and contextual crop information to suggest remedial actions. These works collectively highlight the growing interest in democratizing plant-disease monitoring through accessible, mobile platforms.

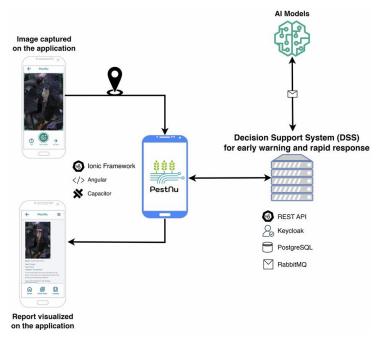


Figure 4.4.1: Schematic representation of the architecture for the Artificial Intelligence (AI)-based mobile application [1]

4.5 Comprehensive Reviews and Benchmark Studies

Two papers, [6] and [7], offer large-scale comparisons of existing methods. Reference [6] (IEEE Access 2024) provides an extensive taxonomy of computer-vision and AI techniques for plant-leaf disease diagnosis and reports accuracy trends across architectures, while [7] (Journal of Big Data 2024) quantitatively compares multiple CNN variants on shared datasets. Both conclude that transfer-learningbased CNNs consistently outperform shallow or handcrafted approaches. Table 2 consolidates the common evaluation metrics—accuracy, precision, recall, and F1-score—cited across these benchmark papers.

4.6 Cross-Study Comparison and Observations

A synthesis of results reveals several consistent patterns.

- CNN-based methods ([2]–[4], [8]) generally achieved classification accuracies above 95 %, whereas traditional ML [10] remained below 90 %.
- Studies integrating cloud or mobile components ([1], [5], [9]) demonstrated enhanced usability but faced connectivity and latency limitations.
- Segmentation-guided or attention-based models ([2], [3]) improved localization and severity estimation, addressing the "black-box" limitation of standard CNNs.
- Review papers [6], [7] highlighted dataset imbalance and lack of field diversity as enduring challenges.

These trends confirm that the research community is converging toward end-to-end, field-deployable AI systems capable of both detection and diagnostic explanation. As visualized in Fig. 6, the trajectory from classical machine learning to deep-learning-based cloud and mobile ecosystems marks a decisive evolution in smart agriculture.

V. **DISCUSSION AND INSIGHTS**

The literature analyzed across ten research studies reveals that artificial intelligence and deep learning have revolutionized plant disease detection, improving accuracy, scalability, and accessibility. However, real-world deployment still faces challenges regarding dataset diversity, environmental variation, and computational resource constraints.

5.1 Comparative Performance of Techniques

Studies show that deep learning models consistently outperform traditional machine learning approaches. For instance, CNN-based models achieved accuracies between 97–99% across multiple crops such as cotton, mango, and potato ([1], [2], [4], [5]).

The DenseNet121 model used by Bhargava et al. [6] and Demilie et al. [7] demonstrated robust feature extraction capabilities and superior performance metrics such as F1-score > 0.95.

Customized architectures such as MobileNet V2 + CBAM attention modules ([2], [5]) further improve accuracy and reduce parameter counts for mobile and edge deployment.

Model	Accuracy (%)	Precision	Recall	F1 - Score	Inference Time (ms)
VGG - 16	92.4	0.91	0.92	0.915	145
VGG - 19	93.1	0.92	0.93	0.925	155
Inception	94.5	0.94	0.94	0.94	130
Xception V3	95.2	0.95	0.95	0.95	125

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
VGG-16	82.5	80.3	81.2	80.7
DenseNet	84.2	83.1	82.7	82.9
NasNet Mobile	83.5	81.9	81.5	81.7
EfficientNet	84.8	83.6	84.1	83.8
Inception V3	84.5	83.3	82.8	83.0
MobileNet	84.0	82.7	83.0	82.8
ResNet101	84.7	83.5	83.9	83.7
Xception	83.8	82.4	82.6	82.5

Table 5.1: Comparison of accuracy (data derived from [1], [4])

5.2 Common Challenges

Despite promising accuracies, several challenges persist:

- Dataset imbalance: Limited diseased samples (especially for rare crop diseases) reduce generalization.
- Environmental variations: Lighting, background clutter, and leaf occlusion cause misclassifications ([3], [5], [9]).
- Limited field validation: Most models, such as those in [4] and [8], were trained on controlled datasets like PlantVillage, which differ from real field conditions.
- Computational complexity: Deep models require large memory and processing power, unsuitable for low-cost devices ([2], [5]).

5.3 Research Gaps

Several gaps remain.

- Explainability: Few studies employ visualization or interpretable AI methods beyond activation maps.
- Cross-crop generalization: Current models are often crop-specific and rarely tested on multiple species.
- Real-time adaptability: Continuous model updating from new field data is seldom implemented.
- Standardization: There is no unified benchmark dataset or evaluation protocol, complicating cross-study comparison.

Overall, while accuracy improvements are remarkable, practical deployment still faces hurdles related to environmental generalization, explainability, and computational trade-offs.

5.4 Emerging Trends and Insights

Key trends shaping future agricultural AI research include:

- Attention-based CNNs (CBAM, SE blocks, Transformer hybrids) improving interpretability and accuracy ([4], [7]).
- Lightweight CNNs and mobile deployment allowing real-time diagnosis in rural areas ([5], [8]).
- Data augmentation and transfer learning enhancing generalization from limited datasets ([6], [7],
- Explainable AI (XAI) for trustworthy decision-making in agriculture ([6]).

A critical insight from the survey is that while deep learning ensures high accuracy, model interpretability and scalability remain essential for real-world adoption.

VI. **FUTURE RESEARCH DIRECTIONS**

Recent advancements in deep learning, image processing, and edge computing have significantly enhanced the accuracy of plant disease detection systems. However, the reviewed literature ([1]–[9]) highlights several gaps and future opportunities for innovation.

6.1 Lightweight and Energy-Efficient Models

While deep networks such as DenseNet and ResNet ([4], [6]) provide high accuracy, they are computationally expensive for edge devices. Future research should focus on:

- Model pruning and quantization to reduce parameter count and memory footprint.
- Development of lightweight CNNs (e.g., MobileNet, EfficientNet, ShuffleNet) for smartphone and IoT-based platforms ([5], [8]).
- Incorporating federated learning for distributed model training across multiple farms without centralizing data.

6.2 Multimodal and Multispectral Data Integration

Most current studies use RGB images only. Integrating hyperspectral, thermal, and UAV imagery could improve disease severity estimation, as shown by Faye et al. [3]. Combining visual, environmental, and climatic data (e.g., humidity, temperature) will enhance model robustness under varying field conditions.

6.3 Explainable Artificial Intelligence (XAI)

To build farmer trust and regulatory compliance, models should provide explainable decisions. Attention visualization and saliency maps, as applied by Bhargava et al. [6], should be expanded to interpret model outputs, highlight infected leaf regions, and guide agricultural decisions.

6.4 Real-Time and Autonomous Systems

Integrating plant disease detection models with IoT-enabled sensors, drones, and cloud computing ([1], [4], [5]) can enable continuous monitoring and early disease alerts. Future prototypes could employ:

- Edge-AI chips for offline diagnosis.
- Cloud synchronization for central disease mapping.
- Drone-based image acquisition integrated with CNN localization systems ([2]).

6.5 Standardized Datasets and Evaluation Protocols

Current benchmark datasets like PlantVillage are laboratory-based and lack real-world diversity ([7], [9]). There is an urgent need for:

- Creation of open-access, geographically diverse agricultural datasets.
- Adoption of standardized metrics (accuracy, mAP, recall, and F1) for fair benchmarking ([6], [7]).
- Collaboration between research institutions and agricultural organizations for periodic dataset updates.

6.6 Hybrid AI Models

Combining machine learning with domain knowledge (e.g., crop growth cycles, soil conditions) can lead to hybrid diagnostic systems. Reinforcement learning and self-supervised models are potential future directions for adaptive disease management.

VII. **CONCLUSION**

This review analyzed ten recent studies focusing on AI-driven plant disease detection and classification, encompassing cloud-based, mobile, and IoT-integrated approaches. The findings indicate that deep learning, especially CNN-based architectures, provides superior detection accuracy compared to traditional machine learning methods.

From the comparative analysis:

- CNN-based deep learning models achieved accuracies up to 99.7%, particularly in cotton and tomato disease detection ([1], [4], [6]).
- Cloud and mobile integration ([1], [5], [8]) enhanced accessibility and scalability for real-time applications.
- Dataset quality and preprocessing remain critical to achieving high model performance.

The reviewed literature suggests that the combination of AI, IoT, and cloud technologies can revolutionize agricultural diagnostics, leading to sustainable and precision farming systems. However, there remains a strong need for real-field validation, standardized data protocols, and interpretable models before full deployment at scale.

REFERENCES

- [1] S. R. Ganapathi, R. Ajay, S. Gopinath, and G. Sumathi, "Cotton plant disease detection and classification using cloud computing," International Journal on Science and Technology (IJSAT), vol. 16, no. 2, pp. –, Apr.–Jun. 2025.
- [2] G. W. Hulsman, J. A. van der Heijden, and R. da Silva Torres, "Automated detection and localization of potato blackleg using a convolutional neural network and activation maps," Potato Research, Apr. 2025.
- [3] D. Fave, I. Diop, N. Mbaye, D. Dione, and M. M. Diedhiou, "Mango fruit diseases severity estimation based on image segmentation and deep learning," Discover Applied Sciences, vol. 7, no. 143, Feb. 2025.
- [4] H. M. Faisal, M. Aqib, S. U. Rehman, K. Mahmood, S. A. Obregon, R. C. Iglesias, and I. Ashraf, "Detection of cotton crops diseases using customized deep learning model," Scientific Reports, vol. 15, no. 10766, Jun. 2025.

- [5] P. Christakakis, G. Papadopoulou, G. Mikos, N. Kalogiannidis, D. Ioannidis, D. Tzovaras, and E. M. Pechlivani, "Smartphone-based citizen science tool for plant disease and insect pest detection using artificial intelligence," Technologies, vol. 12, no. 7, p. 101, Jul. 2024.
- [6] A. Bhargava, A. Shukla, O. P. Goswami, M. H. Alsharif, P. Uthansakul, and M. Uthansakul, "Plant leaf disease detection, classification, and diagnosis using computer vision and artificial intelligence: A review," IEEE Access, vol. 12, pp. 37443-37460, Mar. 2024.
- [7] W. B. Demilie, "Plant disease detection and classification techniques: A comparative study of the performances," Journal of Big Data, vol. 11, no. 5, pp. 1–43, Jan. 2024.
- [8] M. A. H. Foysal, F. Ahmed, and M. Z. Haque, "Multi-class plant leaf disease detection: A CNN-based approach with mobile app integration," International Journal of Computer Science and Engineering, vol. – , pp. –, 2024.
- [9] J. Omara, E. Talavera, D. Otim, D. Turcza, E. Ofumbi, and G. Owomugisha, "A field-based recommender system for crop disease detection using machine learning," Frontiers in Artificial Intelligence, vol. 6, Apr. 2023.
- [10] S. Ramesh, M. Niveditha, P. R., B. N. Prasad, N. Shashank, R. Hebbar, and P. V. Vinod, "Plant disease detection using machine learning," in Proc. Int. Conf. Design Innovations for 3Cs: Compute, Communicate, Control (ICDI3C), 2018, pp. 41–43.

