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Abstract: Agricultural productivity is significantly affected by plant diseases that cause large-scale economic
losses and threaten food security worldwide. Early and accurate disease detection enables timely intervention
and sustainable crop management. Recent advances in computer vision, deep learning, and mobile computing
have accelerated the development of automated systems for plant disease diagnosis. This review consolidates
recent research trends in artificial-intelligence-based approaches for plant disease detection and classification.
Studies published between 2018 and 2025 reveal the growing dominance of convolutional neural networks
(CNNSs) and cloud-based frameworks for image-driven disease recognition in crops such as cotton, mango,
and potato. Comparative analyses demonstrate that deep-learning architectures—including ResNet,
MobileNet, and customized CNNs—consistently outperform traditional machine-learning methods in
accuracy and generalization. In addition, mobile and citizen-science tools have expanded the accessibility of
Al solutions to field environments. This paper summarizes key techniques, datasets, performance metrics, and
limitations observed across the literature and highlights the need for lightweight, explainable, and field-
deployable Al models.

Index Terms - Plant disease detection, deep learning, convolutional neural networks, cloud computing, smart
agriculture.

|. INTRODUCTION

Plant diseases continue to pose major challenges to global agriculture by reducing crop yield, degrading
quality, and increasing production costs. Conventional detection practices rely on manual field inspection and
expert diagnosis, which are time-consuming, subjective, and often infeasible at large scale. With the rapid
growth of precision agriculture, researchers have turned toward artificial intelligence (Al), image processing,
and Internet-connected devices to automate the identification and monitoring of crop diseases.

During the past decade, machine-learning and computer-vision techniques have been increasingly applied to
detect visual symptoms on leaves, stems, and fruits. Early studies such as [10] demonstrated the potential of
classical classifiers like support-vector machines for plant-leaf classification but were limited by feature-
engineering constraints. Subsequently, deep-learning models—particularly convolutional neural networks
(CNNs)—have revolutionized the field by learning discriminative features directly from image data.
Comprehensive reviews [6], [7] confirm that CNN-based approaches achieve superior accuracy, robustness,
and adaptability compared with handcrafted-feature methods.

Recent domain-specific investigations highlight the breadth of these applications. Customized CNN and
cloud-computing frameworks for cotton-leaf disease detection were proposed in [1] and [4], emphasizing
scalable deployment for farmers. Segmentation-assisted deep networks for estimating mango disease severity
were introduced in [3], whereas activation-map-based localization of potato blackleg symptoms was achieved
in [2]. Mobile integration of multi-class CNN prediction was demonstrated in [8], showing the practicality of
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Al models in real-world field scenarios. Complementary initiatives such as [5] employed smartphone-based
citizen-science platforms to crowdsource disease images, while [9] combined recommender-system logic with
on-site image capture for crop-specific advisory services.

Collectively, these studies indicate a strong transition from laboratory experiments toward real-world, cloud-
connected, and user-oriented Al solutions for plant-health management. Despite remarkable progress,
challenges remain in handling diverse environmental conditions, data imbalance, and limited interpretability
of deep models. This review aims to synthesize the methodologies, architectures, datasets, and evaluation
metrics reported in contemporary literature, to identify persistent research gaps, and to outline future
directions for developing efficient, explainable, and field-ready plant-disease detection systems.

Plant Disease Pathogen Symptoms
Apple Scab Pomi Spilocaea Brown-Gray on leaf
Rot Malorum Sphaeropsis Dark Brown on leaf
Rust Sporangium Yellow pale on leaf
Cherry Mildew Clandestina Gray powder on leaf
Corn Gray Spot Cercospora Rectangle lesions
Rust Sorghi puccinia Red pustules on leaf
Light blight Tutcica setosphaeria Elliptical lesions
Grape Rot Bidwellii guignardia Red borders on leaf
Measles Aleophilum Necrotic stripping
Isariopsis blight Angulata brachypus Coalesce lesions
Peach Spot Arboricola Xanthomonas Clustered lesions
Potato Early blight Solani Alternaria Brown lesion
Late blight Infestans phytophthora Dark greeb spot
Tomato Septoria spot Lycopersici Foliage
Mosaic Mosaic virus Mottle green leaf
Orange Green Citrus Bacteria Motile Precipitate Demolition
Strawberry Scorch Fungus Diplocarpon Brown edges
Squash Mildew Xanthii podosphaers ‘White powder

Figure 1.1 : Distinct plants, their disease and responsible pathogen [6]

Il. RESEARCH METHODOLOGY

This review follows a structured methodology to ensure comprehensive coverage and objective synthesis of
existing research on artificial-intelligence-based plant disease detection and classification. The approach
involves systematic literature selection, evaluation, and categorization of relevant studies published between
2018 and 2025.

2.1 Literature Search Strategy

A detailed search was conducted across major academic databases including IEEE Xplore, SpringerLink,
Elsevier, MDPI, Nature, and Frontiers in Artificial Intelligence. Keywords such as plant disease detection,
leaf classification, deep learning in agriculture, convolutional neural networks, and Al-based crop monitoring
were used in various combinations. Only peer-reviewed journals, reputable conference proceedings, and open-
access scientific reports were considered to ensure the quality and credibility of the selected studies.

2.2 Inclusion and Exclusion Criteria
The inclusion criteria were defined to focus on recent, image-based, and Al-driven research contributions:

e Publications from 2018-2025 to capture the evolution of modern deep-learning techniques.

e Studies employing machine learning, deep learning, or hybrid Al approaches for plant disease
detection or severity estimation.

e Research emphasizing real-world implementation such as mobile, cloud, or 10T integration.
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Studies were excluded if they (i) lacked technical or performance details, (ii) focused solely on pest detection
without disease identification, or (iii) were non-English or non-peer-reviewed sources.

2.3 Selection and Categorization Process

From the initial pool, ten key papers ([1] - [10]) were selected based on citation relevance and technical
diversity. Each paper was carefully reviewed to extract information regarding dataset characteristics, image
preprocessing techniques, learning architectures, performance metrics, and deployment platforms. The
selected studies were then categorized into thematic groups for analysis:

Traditional machine-learning approaches ([10])
Deep-learning and CNN-based models ([2], [3], [4], [8])
Cloud and edge-deployed frameworks ([1], [4])

Mobile and citizen-science applications ([5], [8], [9])
Review and benchmarking studies ([6], [7])

agrODE

2.4 Analytical Framework

Each paper’s objectives, methods, datasets, and reported outcomes were compared to identify common
methodologies, trends, and research gaps. The comparative evaluation emphasizes strengths, limitations, and
practical applicability across different crop types and deployment environments. This structured review
approach ensures that the findings presented in subsequent sections are both comprehensive and technically
representative of the current state of research in Al-based plant disease detection.

I11. THEORETICAL AND TECHNICAL BACKGROUND

This section provides an overview of the fundamental theories, algorithms, and performance measures used
in computer-vision-based plant disease detection systems. The reviewed literature highlights a shift from
traditional image-processing techniques toward advanced deep learning and cloud-enabled frameworks for
agricultural diagnostics.

Field Data Dataset Model Model
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Figure 3.1 : Flowchart with the methodological steps
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Figure 3.2 : Computer vision-based techniques for plant disease detection and classification [7]
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3.1 Image Processing and Feature Extraction Principles

Plant disease detection relies primarily on digital image analysis to identify visual patterns such as color
changes, leaf texture, and shape deformities caused by infection.
Early systems (e.g., Ramesh et al., 2018 [10]) employed image preprocessing techniques including:

e Noise removal using Gaussian and median filters.

e Segmentation via k-means clustering and Otsu thresholding.

e Feature extraction using Gabor filters, Gray-Level Co-Occurrence Matrix (GLCM), and Scale-
Invariant Feature Transform (SIFT).

These extracted features were then passed to machine learning classifiers such as SVM, Random Forest, and
K-Nearest Neighbors (KNN) for classification.

3.2 Machine Learning Approaches

Traditional machine learning (ML) algorithms were widely used before the deep learning era.
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Figure 3.2.1 : Distinct classifiers are analyzed in research for the detection of disease in plants [6]

Typical models include:
e Support Vector Machines (SVMs) — efficient for binary disease classification (used by Hulsman et
al., 2025 [2]).
e Decision Trees (DT) and Random Forests (RF) — effective for multi-class detection when features
are hand-engineered ([7]).
e Naive Bayes (NB) — simple probabilistic classifier for small datasets.
e K-Means and CART — used for unsupervised clustering of diseased vs. healthy leaves.

ML models perform adequately under controlled conditions but struggle in complex field environments due
to feature variability and limited generalization capacity.
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3.3 Deep Learning Architectures

Recent studies demonstrate that deep convolutional neural networks (CNNSs) outperform conventional ML
methods by automatically learning hierarchical features.
Key architectures include:

Model / Architecture Application Area
AlexNet / VGG16 [6] General leaf disease detection
ResNet & DenseNet121 [7]1[4] Cotton and mixed crop datasets
MobileNet V2 / V3 [8] Mobile-based CNN for in-field diagnosis
Customized CNNs (CBAM, SE blocks) [2] [4] Localized lesion identification
Transfer Learning & GAN-Augmented CNNs [6][7] Cross-domain generalization

Table 3.3.1 : Models used in research for various plant diseases
Deep networks perform feature extraction, classification, and localization within a unified architecture.
They have achieved accuracies exceeding 99 % on benchmark datasets such as PlantVillage, though real-
time performance can decline in uncontrolled lighting or occluded leaves.

3.4 Performance Metrics

To evaluate detection performance, multiple statistical indicators are used. The most common are:

Metric Formula Interpretation
Accuracy (TP+TN)/(TP + FP + FN + TN) Overall correctness
Precision TP /(TP + FP) Correctness of positive

predictions
Recall (Sensitivity) TP /(TP +FN) Ability to detect actual positives
F1 Score 2 x (Precision x Recall)/(Precision + Balance between precision &
Recall) recall
mMAP (mean Average Mean of AP across classes Localization/segmentation
Precision) accuracy

Table 3.4.1 :Performance metrics used in research for various plant diseases

Most deep learning studies—particularly those by Bhargava et al. [6] and Demilie [7]—use accuracy, F1,
and mAP as benchmarks for fair comparison.

3.5 Datasets and Benchmark Sources

Commonly used public datasets include:
e PlantVillage — 54,000 + labeled images of 38 crop species (used in [6], [7], [8])-
e Field-based cotton and potato datasets — collected for real-world testing ([1], [2], [4]).
e Custom mango and citrus datasets — segmentation-focused images from [3] and [5].
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Dataset quality directly influences model generalization. Studies with in-field data (e.g., Omara et al., 2023
[9]) highlight the need for data augmentation and illumination normalization to improve performance in
uncontrolled environments.

3.6 Summary of Theoretical Insights

From the reviewed literature, it can be inferred that:

CNNs with attention and transfer-learning mechanisms provide the highest reliability.
Lightweight networks (MobileNet, ShuffleNet) allow mobile and loT deployment.

Robustness depends on dataset diversity, illumination control, and cross-domain adaptation.
Integration of 10T and Cloud Computing ([1], [5]) supports real-time inference in resource-limited
regions.

IV. LITERATURE REVIEW AND COMPARATIVE ANALYSIS

The last decade has seen a rapid shift from handcrafted-feature machine-learning models toward fully
automated deep-learning frameworks for plant disease detection. The ten reviewed papers [1]-[10]
collectively demonstrate this transition across crops, sensing platforms, and computational architectures.

4.1 Traditional Machine-Learning Approaches

The earliest work among the selected studies, [10], employed conventional image-processing and classifier
pipelines such as support-vector machines (SVM) and K-nearest neighbors (KNN). These systems relied on
manually extracted color and texture descriptors to distinguish diseased from healthy leaves. While cost-
effective, their dependence on handcrafted features limited scalability and accuracy under uncontrolled field
lighting.

V.ji; Figure 1 - " o] B )
Machine Learning algorithm comparison
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Figure 4.1.1 : Comparison between different machine learning models [10]
4.2 Deep-Learning and CNN-Based Models

With the success of convolutional neural networks (CNNSs) in computer vision, deep architectures rapidly
replaced classical models. Papers [2], [3], [4], and [8] presented CNN-based disease classifiers using
architectures such as VGG-16, ResNet-50, and customized lightweight networks. Fig. 4 illustrates a typical
CNN structure adopted in these studies. Reference [4] introduced a customized CNN that achieved over 97
% accuracy for cotton-leaf disease detection on field images, whereas [2] applied activation-map
visualization to localize blackleg symptoms in potato plants, thereby enhancing interpretability. Similarly,
[3] used segmentation-guided deep networks to quantify disease severity in mango fruits. The mobile-
integrated system in [8] extended CNN inference to real-time prediction, demonstrating that compact
models can run efficiently on smartphones.
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Figure 4.2.1 : Accuracy Visualization Curve & Loss Visualization Curve [8]
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Figure 4.2.1 : Modified ResNet50 architecture [3]
4.3 Cloud- and Edge-Deployed Frameworks

Scalability and remote accessibility are essential for agricultural deployment. Studies [1] and [4] proposed
cloud-based environments that allow users to upload images from mobile devices for centralized processing.
The architecture presented in Fig. 5 depicts the general framework combining edge acquisition, cloud
storage, and deep-learning inference. Such solutions reduce device-level computational load and facilitate
large-scale data aggregation, enabling model retraining with minimal farmer intervention.

4.4 Mobile and Citizen-Science Applications

In recent years, emphasis has shifted toward participatory data collection and on-device inference. The
citizen-science application developed in [5] enables farmers and researchers to capture pest or disease
images through a smartphone interface and receive instant Al-based feedback. The recommender-system
approach in [9] extends this concept by integrating geolocation and contextual crop information to suggest
remedial actions. These works collectively highlight the growing interest in democratizing plant-disease
monitoring through accessible, mobile platforms.
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Figure 4.4.1 : Schematic representation of the architecture for the Artificial Intelligence (Al)-based mobile
application [1]

4.5 Comprehensive Reviews and Benchmark Studies

Two papers, [6] and [7], offer large-scale comparisons of existing methods. Reference [6] (IEEE Access
2024) provides an extensive taxonomy of computer-vision and Al techniques for plant-leaf disease
diagnosis and reports accuracy trends across architectures, while [7] (Journal of Big Data 2024)
quantitatively compares multiple CNN variants on shared datasets. Both conclude that transfer-learning-
based CNNs consistently outperform shallow or handcrafted approaches. Table 2 consolidates the common
evaluation metrics—accuracy, precision, recall, and F1-score—cited across these benchmark papers.

4.6 Cross-Study Comparison and Observations
A synthesis of results reveals several consistent patterns.

e CNN-based methods ([2]-[4], [8]) generally achieved classification accuracies above 95 %, whereas
traditional ML [10] remained below 90 %.

e Studies integrating cloud or mobile components ([1], [5], [9]) demonstrated enhanced usability but
faced connectivity and latency limitations.

e Segmentation-guided or attention-based models ([2], [3]) improved localization and severity
estimation, addressing the “black-box” limitation of standard CNNss.

e Review papers [6], [7] highlighted dataset imbalance and lack of field diversity as enduring
challenges.

These trends confirm that the research community is converging toward end-to-end, field-deployable Al
systems capable of both detection and diagnostic explanation. As visualized in Fig. 6, the trajectory from
classical machine learning to deep-learning-based cloud and mobile ecosystems marks a decisive evolution
in smart agriculture.

V. DISCUSSION AND INSIGHTS

The literature analyzed across ten research studies reveals that artificial intelligence and deep learning have
revolutionized plant disease detection, improving accuracy, scalability, and accessibility.

However, real-world deployment still faces challenges regarding dataset diversity, environmental variation,
and computational resource constraints.
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5.1 Comparative Performance of Techniques

Studies show that deep learning models consistently outperform traditional machine learning approaches.
For instance, CNN-based models achieved accuracies between 97-99% across multiple crops such as
cotton, mango, and potato ([1], [2], [4], [5]).

The DenseNet121 model used by Bhargava et al. [6] and Demilie et al. [7] demonstrated robust feature
extraction capabilities and superior performance metrics such as F1-score > 0.95.

Customized architectures such as MobileNet V2 + CBAM attention modules ([2], [5]) further improve
accuracy and reduce parameter counts for mobile and edge deployment.

Inference Time

Model Accuracy (%) Precision Recall F1- Score (ms)
VGG - 16 92.4 0.91 0.92 0.915 145
VGG - 19 931 0.92 0.93 0.925 155
Inception 94.5 0.94 0.94 0.94 130

Xception V3 95.2 0.95 0.95 0.95 125
Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
VGG-16 82.5 80.3 81.2 80.7
DenseNet 84.2 83.1 82.7 82.9

NasNet Mobile | 83.5 81.9 81.5 81.7
EfficientNet 84.8 83.6 84.1 83.8
Inception V3 84.5 83.3 82.8 83.0
MobileNet 84.0 82.7 83.0 82.8
ResNet101 84.7 83.5 83.9 83.7
Xception 83.8 82.4 82.6 82.5

Table 5.1 : Comparison of accuracy (data derived from [1], [4])

5.2 Common Challenges

Despite promising accuracies, several challenges persist:

Dataset imbalance: Limited diseased samples (especially for rare crop diseases) reduce
generalization.

Environmental variations: Lighting, background clutter, and leaf occlusion cause misclassifications
(31, [31, [9D).

Limited field validation: Most models, such as those in [4] and [8], were trained on controlled
datasets like PlantVillage, which differ from real field conditions.

Computational complexity: Deep models require large memory and processing power, unsuitable for
low-cost devices ([2], [5]).

5.3 Research Gaps

Several gaps remain.

Explainability: Few studies employ visualization or interpretable Al methods beyond activation
maps.

Cross-crop generalization: Current models are often crop-specific and rarely tested on multiple
species.

Real-time adaptability: Continuous model updating from new field data is seldom implemented.
Standardization: There is no unified benchmark dataset or evaluation protocol, complicating cross-
study comparison.
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Overall, while accuracy improvements are remarkable, practical deployment still faces hurdles related to
environmental generalization, explainability, and computational trade-offs.

5.4 Emerging Trends and Insights
Key trends shaping future agricultural Al research include:

e Attention-based CNNs (CBAM, SE blocks, Transformer hybrids) improving interpretability and
accuracy ([4], [7]).

e Lightweight CNNs and mobile deployment allowing real-time diagnosis in rural areas ([5], [8]).

e Data augmentation and transfer learning enhancing generalization from limited datasets ([6], [7],
[9D).

e Explainable Al (XAl) for trustworthy decision-making in agriculture ([6]).

A critical insight from the survey is that while deep learning ensures high accuracy, model interpretability
and scalability remain essential for real-world adoption.

V1. FUTURE RESEARCH DIRECTIONS

Recent advancements in deep learning, image processing, and edge computing have significantly enhanced
the accuracy of plant disease detection systems. However, the reviewed literature ([1]-[9]) highlights
several gaps and future opportunities for innovation.

6.1 Lightweight and Energy-Efficient Models

While deep networks such as DenseNet and ResNet ([4], [6]) provide high accuracy, they are
computationally expensive for edge devices. Future research should focus on:

e Model pruning and quantization to reduce parameter count and memory footprint.

e Development of lightweight CNNs (e.g., MobileNet, EfficientNet, ShuffleNet) for smartphone and
loT-based platforms ([5], [8]).

e Incorporating federated learning for distributed model training across multiple farms without
centralizing data.

6.2 Multimodal and Multispectral Data Integration

Most current studies use RGB images only. Integrating hyperspectral, thermal, and UAV imagery could
improve disease severity estimation, as shown by Faye et al. [3]. Combining visual, environmental, and
climatic data (e.g., humidity, temperature) will enhance model robustness under varying field conditions.
6.3 Explainable Artificial Intelligence (XAl)

To build farmer trust and regulatory compliance, models should provide explainable decisions. Attention
visualization and saliency maps, as applied by Bhargava et al. [6], should be expanded to interpret model
outputs, highlight infected leaf regions, and guide agricultural decisions.

6.4 Real-Time and Autonomous Systems

Integrating plant disease detection models with loT-enabled sensors, drones, and cloud computing ([1], [4],
[5]) can enable continuous monitoring and early disease alerts. Future prototypes could employ:

e Edge-Al chips for offline diagnosis.
e Cloud synchronization for central disease mapping.
e Drone-based image acquisition integrated with CNN localization systems ([2]).
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6.5 Standardized Datasets and Evaluation Protocols

Current benchmark datasets like PlantVillage are laboratory-based and lack real-world diversity ([7], [9]).
There is an urgent need for:

e Creation of open-access, geographically diverse agricultural datasets.

e Adoption of standardized metrics (accuracy, mAP, recall, and F1) for fair benchmarking ([6], [7]).

e Collaboration between research institutions and agricultural organizations for periodic dataset
updates.

6.6 Hybrid Al Models

Combining machine learning with domain knowledge (e.g., crop growth cycles, soil conditions) can lead to
hybrid diagnostic systems. Reinforcement learning and self-supervised models are potential future
directions for adaptive disease management.

VIl. CONCLUSION

This review analyzed ten recent studies focusing on Al-driven plant disease detection and classification,
encompassing cloud-based, mobile, and loT-integrated approaches. The findings indicate that deep learning,
especially CNN-based architectures, provides superior detection accuracy compared to traditional machine
learning methods.

From the comparative analysis:

e CNN-based deep learning models achieved accuracies up to 99.7%, particularly in cotton and tomato
disease detection ([1], [4], [6]).

e Cloud and mobile integration ([1], [5], [8]) enhanced accessibility and scalability for real-time
applications.

e Dataset quality and preprocessing remain critical to achieving high model performance.

The reviewed literature suggests that the combination of Al, 10T, and cloud technologies can revolutionize
agricultural diagnostics, leading to sustainable and precision farming systems. However, there remains a
strong need for real-field validation, standardized data protocols, and interpretable models before full
deployment at scale.
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