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Abstract:  Agricultural productivity is significantly affected by plant diseases that cause large-scale economic 

losses and threaten food security worldwide. Early and accurate disease detection enables timely intervention 

and sustainable crop management. Recent advances in computer vision, deep learning, and mobile computing 

have accelerated the development of automated systems for plant disease diagnosis. This review consolidates 

recent research trends in artificial-intelligence-based approaches for plant disease detection and classification. 

Studies published between 2018 and 2025 reveal the growing dominance of convolutional neural networks 

(CNNs) and cloud-based frameworks for image-driven disease recognition in crops such as cotton, mango, 

and potato. Comparative analyses demonstrate that deep-learning architectures—including ResNet, 

MobileNet, and customized CNNs—consistently outperform traditional machine-learning methods in 

accuracy and generalization. In addition, mobile and citizen-science tools have expanded the accessibility of 

AI solutions to field environments. This paper summarizes key techniques, datasets, performance metrics, and 

limitations observed across the literature and highlights the need for lightweight, explainable, and field-

deployable AI models. 

 

Index Terms - Plant disease detection, deep learning, convolutional neural networks, cloud computing, smart 

agriculture. 

I. INTRODUCTION 

Plant diseases continue to pose major challenges to global agriculture by reducing crop yield, degrading 

quality, and increasing production costs. Conventional detection practices rely on manual field inspection and 

expert diagnosis, which are time-consuming, subjective, and often infeasible at large scale. With the rapid 

growth of precision agriculture, researchers have turned toward artificial intelligence (AI), image processing, 

and Internet-connected devices to automate the identification and monitoring of crop diseases. 

During the past decade, machine-learning and computer-vision techniques have been increasingly applied to 

detect visual symptoms on leaves, stems, and fruits. Early studies such as [10] demonstrated the potential of 

classical classifiers like support-vector machines for plant-leaf classification but were limited by feature-

engineering constraints. Subsequently, deep-learning models—particularly convolutional neural networks 

(CNNs)—have revolutionized the field by learning discriminative features directly from image data. 

Comprehensive reviews [6], [7] confirm that CNN-based approaches achieve superior accuracy, robustness, 

and adaptability compared with handcrafted-feature methods. 

Recent domain-specific investigations highlight the breadth of these applications. Customized CNN and 

cloud-computing frameworks for cotton-leaf disease detection were proposed in [1] and [4], emphasizing 

scalable deployment for farmers. Segmentation-assisted deep networks for estimating mango disease severity 

were introduced in [3], whereas activation-map-based localization of potato blackleg symptoms was achieved 

in [2]. Mobile integration of multi-class CNN prediction was demonstrated in [8], showing the practicality of 
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AI models in real-world field scenarios. Complementary initiatives such as [5] employed smartphone-based 

citizen-science platforms to crowdsource disease images, while [9] combined recommender-system logic with 

on-site image capture for crop-specific advisory services. 

Collectively, these studies indicate a strong transition from laboratory experiments toward real-world, cloud-

connected, and user-oriented AI solutions for plant-health management. Despite remarkable progress, 

challenges remain in handling diverse environmental conditions, data imbalance, and limited interpretability 

of deep models. This review aims to synthesize the methodologies, architectures, datasets, and evaluation 

metrics reported in contemporary literature, to identify persistent research gaps, and to outline future 

directions for developing efficient, explainable, and field-ready plant-disease detection systems. 

 

Figure 1.1 : Distinct plants, their disease and responsible pathogen [6] 

 

II. RESEARCH METHODOLOGY 

This review follows a structured methodology to ensure comprehensive coverage and objective synthesis of 

existing research on artificial-intelligence-based plant disease detection and classification. The approach 

involves systematic literature selection, evaluation, and categorization of relevant studies published between 

2018 and 2025. 

 

2.1 Literature Search Strategy 

 

A detailed search was conducted across major academic databases including IEEE Xplore, SpringerLink, 

Elsevier, MDPI, Nature, and Frontiers in Artificial Intelligence. Keywords such as plant disease detection, 

leaf classification, deep learning in agriculture, convolutional neural networks, and AI-based crop monitoring 

were used in various combinations. Only peer-reviewed journals, reputable conference proceedings, and open-

access scientific reports were considered to ensure the quality and credibility of the selected studies. 

 

2.2 Inclusion and Exclusion Criteria 

 

The inclusion criteria were defined to focus on recent, image-based, and AI-driven research contributions: 

 

● Publications from 2018–2025 to capture the evolution of modern deep-learning techniques. 

● Studies employing machine learning, deep learning, or hybrid AI approaches for plant disease 

detection or severity estimation. 

● Research emphasizing real-world implementation such as mobile, cloud, or IoT integration. 
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Studies were excluded if they (i) lacked technical or performance details, (ii) focused solely on pest detection 

without disease identification, or (iii) were non-English or non-peer-reviewed sources. 

 

2.3 Selection and Categorization Process 

 

From the initial pool, ten key papers ([1] - [10]) were selected based on citation relevance and technical 

diversity. Each paper was carefully reviewed to extract information regarding dataset characteristics, image 

preprocessing techniques, learning architectures, performance metrics, and deployment platforms. The 

selected studies were then categorized into thematic groups for analysis: 

 

1. Traditional machine-learning approaches ([10]) 

2. Deep-learning and CNN-based models ([2], [3], [4], [8]) 

3. Cloud and edge-deployed frameworks ([1], [4]) 

4. Mobile and citizen-science applications ([5], [8], [9]) 

5. Review and benchmarking studies ([6], [7]) 

 

2.4 Analytical Framework 

 

Each paper’s objectives, methods, datasets, and reported outcomes were compared to identify common 

methodologies, trends, and research gaps. The comparative evaluation emphasizes strengths, limitations, and 

practical applicability across different crop types and deployment environments. This structured review 

approach ensures that the findings presented in subsequent sections are both comprehensive and technically 

representative of the current state of research in AI-based plant disease detection. 

 

 

III. THEORETICAL AND TECHNICAL BACKGROUND 

This section provides an overview of the fundamental theories, algorithms, and performance measures used 

in computer-vision-based plant disease detection systems. The reviewed literature highlights a shift from 

traditional image-processing techniques toward advanced deep learning and cloud-enabled frameworks for 

agricultural diagnostics. 

 

 
Figure 3.1 : Flowchart with the methodological steps 

 

 
Figure 3.2 : Computer vision-based techniques for plant disease detection and classification [7] 
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3.1 Image Processing and Feature Extraction Principles 

 

Plant disease detection relies primarily on digital image analysis to identify visual patterns such as color 

changes, leaf texture, and shape deformities caused by infection. 

Early systems (e.g., Ramesh et al., 2018 [10]) employed image preprocessing techniques including: 

 

● Noise removal using Gaussian and median filters. 

● Segmentation via k-means clustering and Otsu thresholding. 

● Feature extraction using Gabor filters, Gray-Level Co-Occurrence Matrix (GLCM), and Scale-

Invariant Feature Transform (SIFT). 

 

These extracted features were then passed to machine learning classifiers such as SVM, Random Forest, and 

K-Nearest Neighbors (KNN) for classification. 

 

3.2 Machine Learning Approaches 

 

Traditional machine learning (ML) algorithms were widely used before the deep learning era. 

 

 
Figure 3.2.1 : Distinct classifiers are analyzed in research for the detection of disease in plants [6] 

 

Typical models include: 

● Support Vector Machines (SVMs) – efficient for binary disease classification (used by Hulsman et 

al., 2025 [2]). 

● Decision Trees (DT) and Random Forests (RF) – effective for multi-class detection when features 

are hand-engineered ([7]). 

● Naïve Bayes (NB) – simple probabilistic classifier for small datasets. 

● K-Means and CART – used for unsupervised clustering of diseased vs. healthy leaves. 

 

ML models perform adequately under controlled conditions but struggle in complex field environments due 

to feature variability and limited generalization capacity. 
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3.3 Deep Learning Architectures 

 

Recent studies demonstrate that deep convolutional neural networks (CNNs) outperform conventional ML 

methods by automatically learning hierarchical features. 

Key architectures include: 

 

Model / Architecture Application Area 

AlexNet / VGG16 [6] General leaf disease detection 

ResNet & DenseNet121 [7][4] Cotton and mixed crop datasets 

MobileNet V2 / V3 [8] Mobile-based CNN for in-field diagnosis 

Customized CNNs (CBAM, SE blocks) [2] [4] Localized lesion identification 

Transfer Learning & GAN-Augmented CNNs [6][7] Cross-domain generalization 

 

Table 3.3.1 : Models used in research for various plant diseases 

 

Deep networks perform feature extraction, classification, and localization within a unified architecture. 

They have achieved accuracies exceeding 99 % on benchmark datasets such as PlantVillage, though real-

time performance can decline in uncontrolled lighting or occluded leaves. 

 

3.4 Performance Metrics 

 

To evaluate detection performance, multiple statistical indicators are used. The most common are: 

 

 

Metric Formula Interpretation 

Accuracy (TP + TN)/(TP + FP + FN + TN) Overall correctness 

Precision TP / (TP + FP) Correctness of positive 

predictions 

Recall (Sensitivity) TP / (TP + FN) Ability to detect actual positives 

F1 Score 2 × (Precision × Recall)/(Precision + 

Recall) 

Balance between precision & 

recall 

mAP (mean Average 

Precision) 

Mean of AP across classes Localization/segmentation 

accuracy 

 

Table 3.4.1 :Performance metrics used in research for various plant diseases 

 

Most deep learning studies—particularly those by Bhargava et al. [6] and Demilie [7]—use accuracy, F1, 

and mAP as benchmarks for fair comparison. 

 

3.5 Datasets and Benchmark Sources 

 

Commonly used public datasets include: 

● PlantVillage – 54,000 + labeled images of 38 crop species (used in [6], [7], [8]). 

● Field-based cotton and potato datasets – collected for real-world testing ([1], [2], [4]). 

● Custom mango and citrus datasets – segmentation-focused images from [3] and [5]. 
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Dataset quality directly influences model generalization. Studies with in-field data (e.g., Omara et al., 2023 

[9]) highlight the need for data augmentation and illumination normalization to improve performance in 

uncontrolled environments. 

 

3.6 Summary of Theoretical Insights 

 

● From the reviewed literature, it can be inferred that: 

● CNNs with attention and transfer-learning mechanisms provide the highest reliability. 

● Lightweight networks (MobileNet, ShuffleNet) allow mobile and IoT deployment. 

● Robustness depends on dataset diversity, illumination control, and cross-domain adaptation. 

● Integration of IoT and Cloud Computing ([1], [5]) supports real-time inference in resource-limited 

regions. 

 

 

IV. LITERATURE REVIEW AND COMPARATIVE ANALYSIS 

The last decade has seen a rapid shift from handcrafted-feature machine-learning models toward fully 

automated deep-learning frameworks for plant disease detection. The ten reviewed papers [1]–[10] 

collectively demonstrate this transition across crops, sensing platforms, and computational architectures. 

 

4.1 Traditional Machine-Learning Approaches 

 

The earliest work among the selected studies, [10], employed conventional image-processing and classifier 

pipelines such as support-vector machines (SVM) and K-nearest neighbors (KNN). These systems relied on 

manually extracted color and texture descriptors to distinguish diseased from healthy leaves. While cost-

effective, their dependence on handcrafted features limited scalability and accuracy under uncontrolled field 

lighting.  

 

 
 

Figure 4.1.1 : Comparison between different machine learning models [10] 

 

4.2 Deep-Learning and CNN-Based Models 

 

With the success of convolutional neural networks (CNNs) in computer vision, deep architectures rapidly 

replaced classical models. Papers [2], [3], [4], and [8] presented CNN-based disease classifiers using 

architectures such as VGG-16, ResNet-50, and customized lightweight networks. Fig. 4 illustrates a typical 

CNN structure adopted in these studies. Reference [4] introduced a customized CNN that achieved over 97 

% accuracy for cotton-leaf disease detection on field images, whereas [2] applied activation-map 

visualization to localize blackleg symptoms in potato plants, thereby enhancing interpretability. Similarly, 

[3] used segmentation-guided deep networks to quantify disease severity in mango fruits. The mobile-

integrated system in [8] extended CNN inference to real-time prediction, demonstrating that compact 

models can run efficiently on smartphones. 
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Figure 4.2.1 : Accuracy Visualization Curve & Loss Visualization Curve [8] 

 

 
Figure 4.2.1 :  Modified ResNet50 architecture [3] 

 

4.3 Cloud- and Edge-Deployed Frameworks 

 

Scalability and remote accessibility are essential for agricultural deployment. Studies [1] and [4] proposed 

cloud-based environments that allow users to upload images from mobile devices for centralized processing. 

The architecture presented in Fig. 5 depicts the general framework combining edge acquisition, cloud 

storage, and deep-learning inference. Such solutions reduce device-level computational load and facilitate 

large-scale data aggregation, enabling model retraining with minimal farmer intervention. 

 

4.4 Mobile and Citizen-Science Applications 

 

In recent years, emphasis has shifted toward participatory data collection and on-device inference. The 

citizen-science application developed in [5] enables farmers and researchers to capture pest or disease 

images through a smartphone interface and receive instant AI-based feedback. The recommender-system 

approach in [9] extends this concept by integrating geolocation and contextual crop information to suggest 

remedial actions. These works collectively highlight the growing interest in democratizing plant-disease 

monitoring through accessible, mobile platforms. 
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Figure 4.4.1 : Schematic representation of the architecture for the Artificial Intelligence (AI)-based mobile 

application [1] 

 

4.5 Comprehensive Reviews and Benchmark Studies 

 

Two papers, [6] and [7], offer large-scale comparisons of existing methods. Reference [6] (IEEE Access 

2024) provides an extensive taxonomy of computer-vision and AI techniques for plant-leaf disease 

diagnosis and reports accuracy trends across architectures, while [7] (Journal of Big Data 2024) 

quantitatively compares multiple CNN variants on shared datasets. Both conclude that transfer-learning-

based CNNs consistently outperform shallow or handcrafted approaches. Table 2 consolidates the common 

evaluation metrics—accuracy, precision, recall, and F1-score—cited across these benchmark papers. 

 

4.6 Cross-Study Comparison and Observations 

 

A synthesis of results reveals several consistent patterns. 

 

● CNN-based methods ([2]–[4], [8]) generally achieved classification accuracies above 95 %, whereas 

traditional ML [10] remained below 90 %. 

● Studies integrating cloud or mobile components ([1], [5], [9]) demonstrated enhanced usability but 

faced connectivity and latency limitations. 

● Segmentation-guided or attention-based models ([2], [3]) improved localization and severity 

estimation, addressing the “black-box” limitation of standard CNNs. 

● Review papers [6], [7] highlighted dataset imbalance and lack of field diversity as enduring 

challenges. 

 

These trends confirm that the research community is converging toward end-to-end, field-deployable AI 

systems capable of both detection and diagnostic explanation. As visualized in Fig. 6, the trajectory from 

classical machine learning to deep-learning-based cloud and mobile ecosystems marks a decisive evolution 

in smart agriculture. 

 

 

V. DISCUSSION AND INSIGHTS 

The literature analyzed across ten research studies reveals that artificial intelligence and deep learning have 

revolutionized plant disease detection, improving accuracy, scalability, and accessibility. 

However, real-world deployment still faces challenges regarding dataset diversity, environmental variation, 

and computational resource constraints. 
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5.1 Comparative Performance of Techniques 

 

Studies show that deep learning models consistently outperform traditional machine learning approaches. 

For instance, CNN-based models achieved accuracies between 97–99% across multiple crops such as 

cotton, mango, and potato ([1], [2], [4], [5]). 

The DenseNet121 model used by Bhargava et al. [6] and Demilie et al. [7] demonstrated robust feature 

extraction capabilities and superior performance metrics such as F1-score > 0.95. 

Customized architectures such as MobileNet V2 + CBAM attention modules ([2], [5]) further improve 

accuracy and reduce parameter counts for mobile and edge deployment. 

 

 
 

Table 5.1 : Comparison of accuracy (data derived from [1], [4]) 

 

5.2 Common Challenges 

 

Despite promising accuracies, several challenges persist: 

 

● Dataset imbalance: Limited diseased samples (especially for rare crop diseases) reduce 

generalization. 

● Environmental variations: Lighting, background clutter, and leaf occlusion cause misclassifications 

([3], [5], [9]). 

● Limited field validation: Most models, such as those in [4] and [8], were trained on controlled 

datasets like PlantVillage, which differ from real field conditions. 

● Computational complexity: Deep models require large memory and processing power, unsuitable for 

low-cost devices ([2], [5]). 

 

5.3 Research Gaps 

 

Several gaps remain. 

 

● Explainability: Few studies employ visualization or interpretable AI methods beyond activation 

maps. 

● Cross-crop generalization: Current models are often crop-specific and rarely tested on multiple 

species. 

● Real-time adaptability: Continuous model updating from new field data is seldom implemented. 

● Standardization: There is no unified benchmark dataset or evaluation protocol, complicating cross-

study comparison. 
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Overall, while accuracy improvements are remarkable, practical deployment still faces hurdles related to 

environmental generalization, explainability, and computational trade-offs. 

 

5.4 Emerging Trends and Insights 

 

Key trends shaping future agricultural AI research include: 

 

● Attention-based CNNs (CBAM, SE blocks, Transformer hybrids) improving interpretability and 

accuracy ([4], [7]). 

● Lightweight CNNs and mobile deployment allowing real-time diagnosis in rural areas ([5], [8]). 

● Data augmentation and transfer learning enhancing generalization from limited datasets ([6], [7], 

[9]). 

● Explainable AI (XAI) for trustworthy decision-making in agriculture ([6]). 

 

A critical insight from the survey is that while deep learning ensures high accuracy, model interpretability 

and scalability remain essential for real-world adoption. 

 

 

VI. FUTURE RESEARCH DIRECTIONS 

Recent advancements in deep learning, image processing, and edge computing have significantly enhanced 

the accuracy of plant disease detection systems. However, the reviewed literature ([1]–[9]) highlights 

several gaps and future opportunities for innovation. 

 

6.1 Lightweight and Energy-Efficient Models 

 

While deep networks such as DenseNet and ResNet ([4], [6]) provide high accuracy, they are 

computationally expensive for edge devices. Future research should focus on: 

 

● Model pruning and quantization to reduce parameter count and memory footprint. 

● Development of lightweight CNNs (e.g., MobileNet, EfficientNet, ShuffleNet) for smartphone and 

IoT-based platforms ([5], [8]). 

● Incorporating federated learning for distributed model training across multiple farms without 

centralizing data. 

 

6.2 Multimodal and Multispectral Data Integration 

 

Most current studies use RGB images only. Integrating hyperspectral, thermal, and UAV imagery could 

improve disease severity estimation, as shown by Faye et al. [3]. Combining visual, environmental, and 

climatic data (e.g., humidity, temperature) will enhance model robustness under varying field conditions. 

 

6.3 Explainable Artificial Intelligence (XAI) 

 

To build farmer trust and regulatory compliance, models should provide explainable decisions. Attention 

visualization and saliency maps, as applied by Bhargava et al. [6], should be expanded to interpret model 

outputs, highlight infected leaf regions, and guide agricultural decisions. 

 

6.4 Real-Time and Autonomous Systems 

 

Integrating plant disease detection models with IoT-enabled sensors, drones, and cloud computing ([1], [4], 

[5]) can enable continuous monitoring and early disease alerts. Future prototypes could employ: 

 

● Edge-AI chips for offline diagnosis. 

● Cloud synchronization for central disease mapping. 

● Drone-based image acquisition integrated with CNN localization systems ([2]). 
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6.5 Standardized Datasets and Evaluation Protocols 

 

Current benchmark datasets like PlantVillage are laboratory-based and lack real-world diversity ([7], [9]). 

There is an urgent need for: 

 

● Creation of open-access, geographically diverse agricultural datasets. 

● Adoption of standardized metrics (accuracy, mAP, recall, and F1) for fair benchmarking ([6], [7]). 

● Collaboration between research institutions and agricultural organizations for periodic dataset 

updates. 

 

6.6 Hybrid AI Models 

 

Combining machine learning with domain knowledge (e.g., crop growth cycles, soil conditions) can lead to 

hybrid diagnostic systems. Reinforcement learning and self-supervised models are potential future 

directions for adaptive disease management. 

 

 

VII. CONCLUSION 

This review analyzed ten recent studies focusing on AI-driven plant disease detection and classification, 

encompassing cloud-based, mobile, and IoT-integrated approaches. The findings indicate that deep learning, 

especially CNN-based architectures, provides superior detection accuracy compared to traditional machine 

learning methods. 

 

From the comparative analysis: 

 

● CNN-based deep learning models achieved accuracies up to 99.7%, particularly in cotton and tomato 

disease detection ([1], [4], [6]). 

● Cloud and mobile integration ([1], [5], [8]) enhanced accessibility and scalability for real-time 

applications. 

● Dataset quality and preprocessing remain critical to achieving high model performance. 

 

The reviewed literature suggests that the combination of AI, IoT, and cloud technologies can revolutionize 

agricultural diagnostics, leading to sustainable and precision farming systems. However, there remains a 

strong need for real-field validation, standardized data protocols, and interpretable models before full 

deployment at scale. 
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