IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Error Detection And Correction In Communication Systems: A Review

Kavita Kanathe

PG Scholar

Department of Electronics and Communication Engineering SAGE University Indore

Prof Megha Gupta

Assistant Professor

Department of Electronics and Communication Engineering SAGE University Indore

Dr. Shivangini Morya

Associate professor & head

Department of Electronics and Communication Engineering SAGE University Indore

Abstract: Reliable data transmission is a fundamental requirement in modern communication systems. Signals transmitted over communication channels are often corrupted due to noise, interference, and fading, leading to transmission errors. Channel coding, which includes error detection and correction techniques, plays a vital role in ensuring data integrity. This paper provides a comprehensive review of error control techniques, including Automatic Repeat Request (ARQ), Forward Error Correction (FEC), and block coding, with a focus on Golay codes. The paper discusses the types of transmission errors, coding structures, implementation methods, and highlights recent developments in high-speed and efficient error correction for memory and communication applications.

Keywords— Error Detection, Error Correction, Forward Error Correction, Golay Codes, Block Codes, Communication Systems.

I. Introduction

In any modern communication system, the overarching goal is to transmit information from a sender to a receiver accurately, reliably, and efficiently over a designated communication channel. However, during the transmission process, signals are invariably subjected to a variety of distortions and impairments that can significantly affect the integrity of the transmitted data. These distortions typically arise from environmental factors such as thermal noise, electromagnetic interference, multipath fading, and signal attenuation, which can lead to the corruption of transmitted bits and result in data errors at the receiver end. Ensuring reliable communication under such conditions is a primary challenge in the design of communication systems.

To mitigate the effects of these impairments, modern communication systems employ error control coding techniques, which are broadly categorized into error detection and error correction mechanisms. These techniques are integral to maintaining data integrity and system reliability, particularly in applications such as wireless networks, satellite communications, deep-space links, and high-speed data storage systems, where retransmission may be costly or infeasible.

Error detection focuses on identifying whether an error has occurred in the transmitted data. It does not inherently correct the errors but provides a mechanism to alert the receiver about the presence of corrupted bits, enabling corrective action such as retransmission. Several methods have been widely adopted for error detection, including parity checks, which add a single bit to indicate whether the number of ones in a data block is even or odd; cyclic redundancy checks (CRC), which use polynomial division to detect errors in large data blocks; and checksums, which compute a simple arithmetic sum of data elements to detect inconsistencies. While these techniques are effective in identifying corrupted data, they cannot reconstruct the original data, necessitating retransmission to restore data integrity.

Error correction, in contrast, not only detects errors but also identifies their locations and corrects them automatically, eliminating the need for retransmission. This capability is essential in scenarios where feedback channels are unavailable or communication delays are significant. Error correction techniques typically rely on adding redundant information (parity bits) to the transmitted message in a structured manner that allows the receiver to recover the original data despite the presence of errors. Commonly used error correction codes include Hamming codes, which can correct single-bit errors; Reed-Solomon codes, which are effective in correcting burst errors in data storage and communication channels; and convolutional codes, which encode data sequentially to provide robust error correction across continuous data streams.

The integration of error detection and correction mechanisms forms the backbone of reliable digital communication systems. By enabling the system to both detect and correct errors, these techniques significantly enhance the robustness and efficiency of communication links, ensuring the accurate delivery of information even under challenging transmission conditions. The ongoing evolution of error control coding has been driven by increasing demands for higher data rates, reduced latency, and efficient utilization of bandwidth, making it a critical area of research and development in modern communication engineering.

II. Error Control in Communication Systems

Channel coding is essential for recovering the transmitted signal from corrupted versions received over noisy channels. These codes are designed to improve communication performance by making transmitted signals more resilient to impairments such as noise, fading, and interference [1, 2].

In real-world scenarios, noise in communication channels mainly arises from thermal fluctuations and electromagnetic interference captured by receiving antennas. Gaussian noise is often modeled as white, having uniform power spectral density over frequency. In such cases, errors occur independently in each signaling interval, forming random errors, which can be modeled using a Binary Symmetric Channel (BSC).

A. Types of Errors

Depending on channel conditions, errors are typically classified into three categories [3]:

- 1. Random Errors Caused by additive noise, these errors affect individual bits independently.
- 2. Burst Errors Occur when groups of consecutive bits are corrupted, often due to fading or mechanical faults in storage systems.
- 3. Impulse Errors Result from severe disturbances such as lightning or system failures. Such errors often exceed the correction capabilities of standard coding schemes. Advanced codes like Reed- Solomon codes can detect these catastrophic errors but may not fully correct them [4].

Even with optimized system design, some bit errors are inevitable. In wireless systems, error rates can reach up to 10–310⁴-310–3 or higher [5]. To handle unacceptable bit error rates, error control techniques are implemented.

IJCR

B. Error Control Techniques

1. Automatic Repeat Request (ARQ)

ARQ is based on error detection and retransmission. Parity bits identify errors, and the receiver requests retransmission of corrupted data blocks. This requires a two-way link and increases latency but ensures high reliability [6].

2. Forward Error Correction (FEC)

FEC introduces redundant parity bits to detect and correct errors at the receiver without retransmission. This is suitable for one-way communication links, such as satellite or broadcast systems, where retransmission is infeasible [7].

Error control coding thus forms the foundation of reliable digital communication, balancing trade-offs among bandwidth, power, and error performance.

III. Block Codes

Block codes are represented as (n,k), where k information bits are encoded into an n-bit codeword. The relationship is:

n=k+rn=k+rn=k+r

where r is the number of redundant parity bits. These extra bits allow for detection and correction of errors.

Common block codes include:

- Single Parity-Check Bit Codes
- Repetition Codes
- Hadamard Codes
- Hamming Codes
- Convolutional Codes
- Cyclic Codes
- Golay Codes and Extended Golay Codes

Block codes are used to provide reliable data transmission and are particularly suitable for channels with random and burst errors.

IV. Golay Codes

Marcel Golay (1902–1989) developed the Golay code, one of the most significant error-correcting codes, known for its perfect code properties [9, 10]. Perfect codes achieve the theoretical maximum error correction for a given code length and alphabet size.

A code C with N codewords of length n over an alphabet of size q and minimum distance d=2e+1d=2e+1d=2e+1 is perfect if:

$$\sum_{i=0}^e inom{n}{i} (q-1)^i = rac{q^n}{N}$$

Perfect codes partition the vector space into non-overlapping decoding spheres, ensuring maximum error correction efficiency.

A. Binary Golay Codes

Two closely related Golay codes exist:

- Extended Binary Golay Code (G24): [24, 12, 8]
- Perfect Binary Golay Code (G23): [23, 12, 7]

G24 encodes 12 bits of data into 24-bit codewords, capable of correcting up to 3-bit errors or detecting up to 7-bit errors. G23 is obtained by deleting one coordinate from G24.

B. Codeword Structure

A Golay [23, 12] codeword consists of 12 information bits and 11 parity bits that are generated through modulo-2 division (similar to the Cyclic Redundancy Check (CRC) method). Out of the total

$$2^{23} = 8.388,608$$

possible 23-bit combinations, only 2¹²=4,096

sequences represent valid codewords, providing minimal redundancy while achieving a high error-correction capability

V. Literature Review

Recent studies have demonstrated significant advancements in the application and implementation of error-correcting codes in modern communication and memory systems, emphasizing hardware efficiency, reliability, and high-speed performance.

Nandivada Sridevi et al. [1] investigated the occurrence of soft errors and multiple-bit upsets in SRAM memories, which are increasingly prevalent as technology scales down. To mitigate these errors, they implemented Hamming codes and extended SEC-DED-DAEC (Single Error Correction—Double Error Detection—Double Adjacent Error Correction) codes. The SEC-DED-DAEC code not only corrects single-bit errors and detects double-bit errors but also corrects double-adjacent bit errors. The encoding and decoding processes were implemented and verified using Verilog HDL in Xilinx ISE 14.7, demonstrating improved reliability and reduced system complexity in memory applications.

Kristjane Koleci et al. [2] focused on post-quantum cryptography by developing an iterative decoder for the LEDAcrypt cryptosystem, which is based on Low-Density Parity-Check (LDPC) codes. Their design targeted efficient FPGA and ASIC implementations, optimizing multiplier architecture to accelerate the decoding process while minimizing area utilization. On the Artix-7 200 FPGA, the decoder achieved a total execution time of 0.6 ms, consuming only 30% of memory, 15% of LUTs, and 3% of Flip-Flops. The ASIC implementation further demonstrated low latency and power consumption, highlighting the feasibility of hardware-efficient post-quantum cryptosystems.

P. Santini et al. [3] addressed the computational challenges of evaluating iterative decoders for LDPC and Moderate-Density Parity-Check (MDPC) codes, which traditionally rely on intensive Monte Carlo simulations. They proposed theoretical models to estimate error correction performance more efficiently, providing tight bounds for parallel bit-flipping decoders, even for codes with small block lengths. This analytical approach

ensures reliable error rate guarantees, which are critical for cryptographic applications requiring strong security assurances.

- J. Hu et al. [4] introduced a lightweight hardware design for QC-LDPC codes used in the LEDAkem key encapsulation mechanism, a post-quantum cryptography candidate in the NIST standardization process. Their implementation optimized memory mapping and parallel processing to achieve area- and power- efficient key encapsulation suitable for resource-constrained IoT devices. For 128-bit security, the key encapsulation and decapsulation processes required 6.82×10^5 and 2.26×10^6 cycles, respectively, with only 3% and 39% of FPGA logic resources, demonstrating a balanced trade-off between performance and resource utilization.
- K. Koleci et al. [6] proposed a Cyclic Redundancy Check (CRC)-based encoding and decoding scheme integrated with Golay codes for digital communication systems. This approach eliminated the need for

Linear Feedback Shift Registers (LFSRs), simplifying hardware complexity. Efficient architectures for both encoders and decoders were implemented on the Xilinx Virtex-4 platform, achieving higher throughput and faster processing compared to traditional designs. The CRC-based Golay coding scheme enhanced transmission reliability while reducing circuit complexity.

M. Baldi et al. [8] developed FPGA prototypes for both the binary Golay (G23) and extended binary Golay (G24) codes, implementing high-speed, low-latency architectures without relying on LFSRs. The proposed encoder operated at a clock frequency of 238.575 MHz, while the decoder ran at 195.028 MHz. These implementations demonstrated strong potential for forward error correction in high-speed communication links, providing a practical solution for applications demanding high reliability and low latency.

Collectively, these studies highlight the ongoing evolution of error-correcting codes, emphasizing the importance of hardware-efficient, high-speed, and reliable coding schemes. Such advancements are critical for modern communication systems, memory technologies, and post-quantum cryptographic applications, addressing challenges related to speed, area, power consumption, and error resilience.

VI. Conclusion

Error detection and correction are fundamental to reliable communication. Channel coding techniques, including block codes, Golay codes, and FEC mechanisms, provide robustness against random, burst, and impulse errors. Golay codes, in particular, offer a perfect balance between minimal redundancy and high error correction capability.

Efficient implementations in hardware (FPGA and ASIC) have enabled practical deployment of these codes in modern communication systems and memory applications, ensuring low-latency, high-speed, and reliable data transfer.

VII. Future Scope

Future research directions include:

- Adaptive coding that adjusts redundancy dynamically based on channel conditions.
- Machine learning-based error prediction for intelligent error correction.
- Quantum error correction for next-generation quantum communication systems.
- Integration of LDPC, Polar, and Golay codes in 5G/6G networks for enhanced reliability and spectral efficiency.
- Development of low-power, area-efficient hardware designs for IoT, satellite, and deep-space applications.

References

- [1]. Nandivada Sridevi, K. Jamal and Kiran Mannem, "Implementation of Error Correction Techniques in Memory Applications", Fifth International Conference on Computing Methodologies and Communication, IEEE 2021.
- [2]. Kristjane Koleci, Paolo Santini, Marco Baldi, Franco Chiaraluce, Maurizio Martina And Guido Masera, "Efficient Hardware Implementation of the LEDAcrypt Decoder", IEEE Access 2021.
- [3]. P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce, "Analysis of the error correction capability of LDPC and MDPC codes under parallel bit-flipping decoding and application to cryptography,", IEEE Trans. Communication, vol. 68, no. 8, pp. 4648_4660, Aug. 2020.
- [4]. J. Hu, M. Baldi, P. Santini, N. Zeng, S. Ling, and H. Wang, "Lightweight key encapsulation using LDPC codes on FPGAs", IEEE Trans. Comput., vol. 69, no. 3, pp. 327_341, Mar. 2020.
- [5]. D. Zoni, A. Galimberti, and W. Fornaciari, ``Efficient and scalable FPGA oriented design of QC-LDPC bit-flipping decoders for post-quantum cryptography," IEEE Access, vol. 8, pp. 163419_163433, 2020.
- [6]. K.Koleci, M. Baldi, M. Martina, and G. Masera, "Ahardware implementation for code-based post-quantum asymmetric cryptography," in Proc. 3rd Italian Conf. Cybersecurity (ITASEC), vol. 2597, Ancona, Italy, Feb. 2020, pp. 141_152.
- [7]. D. Zoni, A. Galimberti, and W. Fornaciari, "Flexible and scalable FPGA oriented design of multipliers for large binary polynomials," IEEE Access, vol. 8, pp. 75809_75821, 2020.
- [8]. M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, "LEDAcrypt: QC-LDPC code-based cryptosystems with bounded decryption failure rate," in Code-Based Cryptography, M. Baldi, E. Persichetti, and P. Santini, Eds. Cham, Switzerland: Springer, 2019, pp. 11_43.
- [9]. Shivani Tambatkar, Siddharth Narayana Menon, Sudarshan. V, M. Vinodhini and N. S. Murty, "Error Detection and Correction in Semiconductor Memories using 3D Parity Check Code with Hamming Code", International Conference on Communication and Signal Processing, April 6-8, 2017, India.
- [10]. Pallavi Bhoyar, "Design of Encoder and Decoder for Golay code", International Conference on Communication and Signal Processing, April 6-8, IEEE 2016, India.
- [11]. Pedro Reviriego, Shanshan Liu, Liyi Xiao, and Juan Antonio Maestro, "An Efficient Single and DoubleAdjacent Error Correcting Parallel Decoder for the (24,12) Extended Golay Code", IEEE Transactions On Very Large Scale Integration (VLSI) Systems, Vol. 34, No. 3, pp. 01-04, 2016.
- [12]. Satyabrata Sarangi and Swapna Banerjee, "Efficient Hardware Implementation of Encoder and Decoder for Golay Code", IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2014.
- [13]. P. Adde, D. G. Toro, and C. Jego, "Design of an efficient maximum likelihood soft decoder for systematic short block codes," IEEE Trans. Signal Process. vol. 60, no. 7, pp. 3914–3919, Jul. 2012.\
- [14] T. Shahgholi, A. Sheikhahmadi, K. Khamforoosh, and S. Azizi, "LPWAN-based hybrid backhaul communication for intelligent transportation systems: Architecture and performance evaluation," EURASIP J. Wireless Commun. Netw., vol. 2021, no. 1, pp. 1–17, Dec. 2021.
- [15]N. Islam, B. Ray, and F. Pasandideh, "IoT based smart farming: Are the LPWAN technologies suitable for remote communication?" in Proc. IEEE Int. Conf. Smart Internet Things (SmartIoT), Aug. 2020, pp. 270–276.
- [16] R. O. Andrade and S. G. Yoo, "A comprehensive study of the use of LoRa in the development of smart cities," Appl. Sci., vol. 9, no. 22, p. 4753, Nov. 2019. [Online]. Available:

https://www.mdpi.com/2076-3417/9/22/4753

[17]E. E. Reber, R. L. Michell, and C. J. Carter, "Oxygen absorption in the earth's atmosphere," Aerospace Corp., Los Angeles, CA, USA, Tech. Rep. TR-0200 (4230-46)-3, Nov. 1988.

[18] F. Gu, J. Niu, L. Jiang, X. Liu, and M. Atiquzzaman, "Survey of the low power wide area network technologies," J. Netw. Comput. Appl., vol. 149, Jan. 2020, Art. no. 102459.

[19] M. Chochul and P. Ševcík, "A survey of low power wide area network technologies," in Proc. 18th Int. Conf. Emerg. eLearn. Technol. Appl. (ICETA), Nov. 2020, pp. 69–73.

[20] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, "Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios," IEEE Wireless Commun., vol. 23, no. 5, pp. 60–67, Oct. 2016.

[21]Y. Song, J. Lin, M. Tang, and S. Dong, "An Internet of Energy Things based on wireless LPWAN," Engineering, vol. 3, no. 4, pp. 460–466, Aug. 2017.

[22].P. Burns, "How to quadruple the range of LoRa," Medium, Oct. 2019. Accessed: Mar. 19, 2023. [Online]. Available: https://medium.com/@patburns/how-to-quadruple-the-range-of-lora-

