
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510457 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d844

Mitigating Website Vulnerabilities: A

Comprehensive Comparative Review Of Security

Mechanisms And Detection Approaches

Mr. MATHEW SOMY, Miss. LIBINA ROSE SEBASTIAN

Student, Professor

Department of Computer Science and Engineering (Cyber Security)

St Joseph’s College of Engineering and Technology, Palai, India

Abstract: Web applications are constantly targeted by attackers due to their role in delivering interactive

services and processing sensitive information. Vulnerabilities such as SQL Injection (SQLi), Cross-Site

Scripting (XSS), Cross-Site Request Forgery (CSRF), and insecure coding practices can compromise both data

integrity and user trust. This review synthesizes findings from representative studies, highlighting detection

and mitigation approaches including AI-driven models, static and dynamic analysis, automated remediation

tools, and platform-specific scanners. By examining objectives, methods, strengths, and limitations, the paper

identifies patterns and practical lessons for embedding robust security practices throughout the software

development lifecycle.

Index Terms - Web Application Security, SQL Injection, Cross-Site Scripting, Detection Frameworks, Secure

Coding, Artificial Intelligence

1. INTRODUCTION

Modern web applications provide critical functionality for users but are also inherently exposed to security

threats. Client-side scripts, if improperly validated or encoded, can be exploited to compromise data and disrupt

services. Common attack vectors include XSS, SQLi, cookie and session theft, and other browser-based

exploits. Injection techniques remain a leading cause of vulnerabilities, consistently appearing among the most

exploited weaknesses in web platforms.Studies of real-world web applications, including e-commerce and

banking platforms, indicate that more than 85% of sites contain exploitable flaws. Securing web applications

therefore requires a combination of preventive coding, runtime monitoring, and adaptive detection

mechanisms.

2. LITERATURE REVIEW

This section presents a synthesis of eight key studies, summarizing their approaches, methodologies, and

notable outcomes.

2.1 Comprehensive Web Vulnerability Mitigation Framework

The foundational work develops a taxonomy covering SQLi, XSS, CSRF, and Remote Code Execution (RCE).

The authors advocate a defence-in-depth approach spanning all SDLC stages, combining preventive coding,

input validation, robust error handling, and encryption for both data in transit and at rest. AI-assisted intrusion

detection complements static and dynamic scanning, while DevSecOps practices embed security checks

directly into CI/CD pipelines. Ongoing developer training and structured dependency management are

emphasized to ensure holistic protection.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510457 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d845

2.2 Hybrid Deep Learning for XSS and SQLi Detection

A hybrid CNN-LSTM model addresses XSS and SQLi vulnerabilities by learning both spatial and sequential

patterns of potentially malicious input. CNN layers capture local patterns such as keyword structures, while

LSTM layers consider context and sequence. This approach demonstrates high accuracy with low false

positives, though it requires large, continually updated datasets and integration into live monitoring systems to

remain effective.

2.3 Reducing False Positives in SQLi Detection Using Data Mining

Static taint analysis often produces false positives when detecting SQLi vulnerabilities. By combining static

analysis with data mining classifiers, this approach discriminates between genuine vulnerabilities and safe

code. Evaluated on real-world PHP applications, it significantly reduces false positives compared to tools like

RIPS and Pixy. Regular retraining ensures adaptability to new attack patterns.

2.4 Taxonomy of Cross-Site Scripting Attacks

XSS attacks are categorized into stored, reflected, DOM-based, induced, and meta-information XSS. The study

highlights evasion techniques such as encoding variations, whitespace insertion, and payload fragmentation,

demonstrating why simple filters are often insufficient. Context-aware output encoding and comprehensive

input validation remain essential mitigation strategies.

2.5 Automated XSS Remediation Tool: saferXSS

saferXSS statically analyses Java applications to trace data from user inputs to output sinks. Detected

vulnerabilities are automatically sanitized using pattern-based encoding. While effective in reducing manual

intervention, the tool is limited to Java environments and requires regular updates to address emerging attack

vectors.

2.6 Platform-Specific Security for ASP.NET

A hybrid static-dynamic scanner for ASP.NET applications detects SQLi, XSS, cookie poisoning, and session

hijacking vulnerabilities. Static analysis examines code and configuration files, while dynamic testing validates

exploitability. Although highly accurate for ASP.NET, the methodology lacks portability to other frameworks.

2.7 Hierarchical XSS Defence Model

This model enforces security at design, development, and runtime stages, employing architectural patterns,

secure coding, automated scanning, anti-CSRF tokens, and HTTP-only cookies. Effectiveness depends on

adherence to best practices, and the model focuses primarily on XSS mitigation.

2.8 MITM and Session Hijacking Vulnerabilities

This work examines transport-layer threats, including MITM and session hijacking attacks. Techniques such

as ARP spoofing, DNS poisoning, and SSL stripping are discussed. Recommended mitigations include strict

TLS configuration, HSTS enforcement, certificate pinning, and robust session management.

3. COMPARATIVE ANALYSIS

Key observations include:
• Broad frameworks cover multiple vulnerabilities but are resource-intensive.

• Automation improves efficiency but requires careful management of false positives.

• Platform-specific tools offer precision but limited portability.

• Machine learning approaches depend on large, up-to-date datasets.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510457 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d846

Table 1: Comparison of Security Approaches for Web Applications

 The

comparative analysis highlights the diversity of techniques developed to secure web applications against

common vulnerabilities such as SQL Injection (SQLi), Cross-Site Scripting (XSS), Cross-Site Request Forgery

(CSRF), Remote Code Execution (RCE), and session-level attacks. The Comprehensive Framework offers the

widest protection, integrating secure coding, encryption, AI-based detection, and DevSecOps practices

throughout the software lifecycle, though it is resource-intensive. The Hybrid CNN-LSTM approach achieves

high accuracy and low false positives for SQLi and XSS detection but depends heavily on large, continuously

updated datasets. Taint Analysis combined with Data Mining improves precision by reducing false positives

in SQLi detection, yet it is computationally demanding. The XSS Taxonomy study enhances understanding of

attack variants, but it lacks automation. saferXSS automates static analysis and remediation in Java

applications, although its scope is limited to that platform. The ASP.NET Scanner delivers high accuracy in

detecting SQLi, XSS, and session vulnerabilities, but is restricted to ASP.NET environments. The Hierarchical

XSS Model applies multi-layered controls from design to runtime for stronger protection, albeit focused mainly

on XSS. Finally, the MITM and Session Analysis approach strengthens network-level defenses through secure

transport mechanisms but provides minimal coverage at the application layer. Overall, these methods

demonstrate a trade-off between breadth of protection, platform dependence, automation, and computational

cost.

4. CONCLUSION

Securing web applications demands a layered and continuous approach. Vulnerabilities like SQLi, XSS,

CSRF, RCE, MITM, and session hijacking evolve rapidly, requiring integration of preventive coding, AI-

assisted detection, automated remediation, and runtime monitoring. Cross-study insights highlight trade-offs

between coverage and specificity, automation and accuracy, and generality versus framework dependence.

Human factors, including developer training and adherence to best practices, remain vital. Future research

should aim to unify these approaches into adaptive, cross-platform security frameworks that balance

operational efficiency with comprehensive protection.

Method Vulnerabilities Key Features Strengths Limitations

Comprehensive
Framework

SQLi, XSS,
CSRF, RCE

Secure coding,
encryption, AI
detection,
DevSecOps

Wide SDLC
coverage

Resource-
intensive

Hybrid CNN-
LSTM

SQLi, XSS Deep learning
payload
classification

High accuracy,
low false
positives

Needs large
datasets

Taint Analysis +
Data Mining

SQLi Reduces false
positives

Improved
precision

Computationally
heavy

XSS Taxonomy XSS Classification
of variants

Clear
understanding

No automation

saferXSS XSS Automated
static analysis

Automatic
remediation

Java-specific

ASP.NET
Scanner

SQLi, XSS,
Session

Platform-
specific
scanning

High accuracy Framework-
specific

Hierarchical
XSS Model

XSS Design-to-
runtime
controls

Multi-layer
protection

XSS-focused

MITM &
Session
Analysis

MITM, Session Network-level
mitigation

Strengthens
transport
security

Lacks app-layer
measures

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510457 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d847

5. REFRENCES

[1] R. K. Gupta, S. Sharma, and M. Kumar, “Mitigating Website Vulnerabilities: A Comprehensive Analysis

of Security Mechanisms and Emerging Technologies,” ICCCIS, pp. 102–110, 2024.

[2] A. Prasad, V. Kumar, and S. K. Singh, “Securing Web Applications Against XSS and SQLi Using Deep

Learning,” Int. J. of Computer Applications, vol. 184, no. 36, pp. 1–8, 2023.

[3] R. D. Patil and S. P. Patil, “An Approach to Minimize False Positive in SQLI Detection Techniques

through Data Mining,” ICAC3, pp. 215–220, 2021.

[4] P. S. Kumar and N. V. Kumar, “Analysis of Cross-Site Scripting Attack,” IJCSIT, vol. 6, no. 2, pp. 1183–

1187, 2022.

[5] S. Mehta and R. Gupta, “Automated Removal of Cross-Site Scripting Vulnerabilities in Web

Applications,” IJACSA, vol. 14, no. 5, pp. 200–207, 2023.

[6] A. Sharma, P. Verma, and M. Singh, “Discovering Security Vulnerabilities and Leaks in ASP.NET

Websites,” SmartTechCon, pp. 450–456, 2022.

[7] R. Nair, V. S. Rao, and P. Thomas, “XSS Vulnerability Assessment and Prevention in Web Application,”

Procedia Computer Science, vol. 185, pp. 712–719, 2021.

[8] K. Singh and M. Chauhan, “Unveiling Vulnerabilities of Web Attacks,” Cyber Security Conf., pp. 370–

375, 2022.

http://www.ijcrt.org/

