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Service Rate Before Selling The Items With 

Constant Demand Rate In The Inventory System 

When The Amount Received Is Uncertain. 
 

Prashant Vaghela 1 Dr. Chirag J. Trivedi 2 

 

Abstract: 

Sometimes it happens that the arrival of the quantity of items differ from the ordered quantity and this 

quantity is needed to give some time for service to each item instead of a fixed time of service for all items 

in the inventory before allowing it for sell. After servicing all items with the rate of service greater than the 

rate of demand items stars to be depleted from the inventory up to the zero level of inventory. This service 

time is cost of holding on all received items in the inventory. The optimal order quantity depends only on the 

mean and standard deviation of the amount arrived and if we can reduce the service time by increasing service 

persons or facilities the total cost goes near to cost of EOQ model with uncertain arrival of quantity. 

 

Key words Inventory system, Demand rate, Service rate, Replenishment rate, Lead time, Queuing system 

Service time, re-order point. 

 

1. Introduction 

It is seen that when the quantity arrives to the shop and it some fixed time is allotted for servicing all 

received items with the condition that the quantity arrives is uncertain, the best or minimum order quantity 

turns out to depends only on the mean and standard deviation of the amount received. Here it was assumed 

that after servicing all items within a fixed time, all will put for sell together. It is also interesting to know 

that if instead of service time for all items we have service rate what could be the best order quantity? In this 

paper we have assumed the same criteria. That is quantity arrives in uncertain amount with deterministic 

service rate and after completion of service for all items we will put items together for selling. It is also 

assumed that the demand rate is constant and known to us. Also to avoid queue of customers we have assumed 

that service rate is more than demand rate. That is the waiting time of customer is that much small so that it 

can be negligible. 

 

2. Literature review 

Edward A. Silver (1976) worked on the quantity received from a supplier may not match the quantity 

ordered—due to defects, shortages, shipping issues, etc. Silver's extended Economic Order Quantity (EOQ) 

model tackles this by considering that only the mean and standard deviation of the received amount matter 

in determining the optimal order quantity. Traditional models generally assume one-sided randomness but A. 

Hamid Noori and Gerald Keller ((1986)) extended the classic continuous-review (Q, r) inventory model to 

account for uncertainty in both demand during lead time and supply availability. Chirag Trivedi, Y.K. Shan, 

Nita H. Shah. (1994), present an EOQ model in which a temporary price discount is offered, but the supply 

received is random rather than equal to the order. Nita H. Shah, Chirag J. Trivedi (1996), extended the classic 

Economic Order Quantity (EOQ) model is by considering both random lead times and random demand 

instead of fixed values. Karush (1957) showed that inventory with random demand and lead times can be 
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modelled as a queuing system. Berman O. Kaplan E.H., and Shimshak D.G. (1993) considered the inventory 

during the provision of service and inventory depleted according to the demand rate when there are no 

customers waiting in the queue and when customers are waiting in a queue it is depleted according to service 

rate. Ha (1997) worked on single-item make-to-stock production system and considered poison demand and 

exponential production times and used  an M/M/1/S queuing system for modeling the system. Arda and 

Hennet (2006) analyzed inventory control of a multi-supplier strategy in a two-level supply chain with 

random arrival for customers and random delivery time for suppliers, the system was represented as a 

queuing network. Jung Woo Baek and Seung Ki Moon (2014), provides a queueing-theoretic model for 

production-inventory systems with lost sales, develops exact analytical results for performance evaluation, 

and offers managerial insights into balancing production, inventory levels, and customer service. 

Seyedhoseini et al. (2015) applied queuing theory to propose a mathematical model for inventory systems 

with substitute flexibility.  

 

3. Notations and Assumptions for the model:  

The model is developed under the very stringent assumption and the notations used for the derivation are 

as under:  

 q = the order quantity 

 q* = Economic order quantity to be determined. 

 C3 = Replenishment cost per order which is known and constant 

 C1 = Holding cost per unit per unit time which is known and constant 

 L = Lead time which is zero.  

 The stockout cost is zero.  

 b = the bias factor 

 𝜆 =  Demand rate is constant and known 

 
𝑦

𝜇
 = Total Service time to serve y items. 

 T = Total Cycle time. 

 𝐸𝑂𝑄 = √
2𝜆𝐶3

𝐶1
= The economic quantity in units. 

 𝐸(𝑦|𝑞) = 𝑏𝑞 

 𝐸𝐶𝑃𝑈𝑇(𝑞) = Expected costs per unit time if a requisition quantity q is used 

 𝐸𝐶𝑊𝑆(𝑄) = Expected cost without service 

 𝑞𝑤𝑠
∗= Economic order quantity without service 

 The time horizon if infinite. 

 𝑇𝐶(𝑞) = Average total cost per cycle 

 The replenishment rate is infinite  

 

Consider the following figure. Where inventory has taken time 
𝑦

𝜇
 for the process to be done on all items 

before it starts for depletion. After the time 
𝑦

𝜇
 items are depleted at the rate of 𝜆 and the inventory becomes 

zero at time T. 
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4. The Mathematical Model:  
For developing the expected costs per unit time, we consider the time as being made up of cycles and the 

new cycle begins each time when the q quantity is ordered. As the lead time is zero the order will be placed 

when the inventory level drops to zero. 

When the ordered quantity arrives at the inventory it takes some time for packing each item or labelling 

each item or do some required process on each item before put all for selling. In each order the quantity 𝑞  is 

ordered and it is assumed that this processing or service rate is 𝜇. That is total time taken for service will be 
𝑞

𝜇
 and we don’t want customer to wait for item for neglecting the waiting cost we have also assumed that 

𝑞

𝜇
<

1

𝜆
 . In real life it may happen that instead of ordered quantity some other quantity arrives at shop. Suppose 

that the quantity y is received instead of q. That is y is a random variable and its maximum value is q. Because 

when the quantity y arrives, and all y items are labelled or packed or assembled one by one with the service 

rate 𝜇, it stays for some time duration in the inventory for service before the selling. This stay is delayed by 

the service time  
𝑦

𝜇
, which affects the inventory depletion rate. 

So 
𝑦

𝜇
<

1

𝜆
 means the whole batch is served in less time than it typically takes to consume one unit. That is, 

service is extremely fast compared to demand — we finish service of q items before, on an average, a single 

item is demanded. 

 Therefore, the Inventory level at any time 𝑡, 0 ≤ 𝑡 ≤ 𝑇 will be, 

𝐼(𝑡) = {

𝑦 𝑖𝑓 0 ≤ 𝑡 ≤
𝑦

𝜇

𝑦 − 𝜆 (𝑡 −
𝑦

𝜇
) 𝑖𝑓 

𝑦

𝜇
< 𝑡 ≤ 𝑇

              

 

Where the total cycle time is  

𝑇(𝑦) =
𝑦

𝜇
+

𝑦

𝜆
=

𝑦(𝜆 + 𝜇)

𝜆𝜇
 

 

The expected value of T(y) is given by  

𝐸(𝑇|𝑞) =
(𝜆 + 𝜇)

𝜆𝜇
𝐸(𝑦|𝑞) =

𝑏𝑞(𝜆 + 𝜇)

𝜆𝜇
 

 

Let C(y) be the costs in the current cycle. And hence it will be, 

𝐶(𝑦) = 𝐶1 ∫ 𝐼(𝑡)𝑑𝑡

𝑇

0

+ 𝐶3 

 

= 𝐶1 ∫ 𝑦 𝑑𝑡

𝑦 𝜇⁄

0

+ 𝐶1 ∫ [𝑦 − 𝜆 (𝑡 −
𝑦

𝜇
)]  𝑑𝑡

𝑇

𝑦 𝜇⁄

+ 𝐶3 

Letting (𝑡 −
𝑦

𝜇
) = 𝑢 we have  

= 𝐶1 ∫ 𝑦 𝑑𝑡

1 𝜇⁄

0

+ 𝐶1 ∫ [𝑦 − 𝜆𝑢] 𝑑𝑢 

𝑦 𝜆⁄

0

+ 𝐶3 

Thus, we have, 

𝐶(𝑦) = (
𝑦2

𝜇
+

𝑦2

2𝜆
) 𝐶1 + 𝐶3 

 

𝐶(𝑦) = 𝑦2 (
2𝜆 + 𝜇

2𝜆𝜇
) 𝐶1 + 𝐶3 
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The expected value of C(y) is given by  

𝐸(𝐶|𝑞) = 𝐶1 ∙ (
2𝜆 + 𝜇

2𝜆𝜇
) ∙ 𝐸(𝑦2|𝑞) + 𝐶3 

 

As 𝐸(𝑦|𝑞) = 𝑏𝑞 and 𝐸(𝑦2|𝑞) =  𝜎𝑦|𝑞
2 + [𝐸(𝑦|𝑞)]2 

𝐸(𝐶|𝑞) = 𝐶1 ∙ (
2𝜆 + 𝜇

2𝜆𝜇
) ∙ (𝜎𝑦|𝑞

2 + (𝑏𝑞)2) + 𝐶3 

 

By the result of Renewal Reward Process, if a cycle is completed every time a renewal occurs and the 

long-run average reward per unit time is equal to the expected reward earned during a cycle divided by the 

expected length of a cycle. Thus, we have, the expected cost per unit time is 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
𝐸(𝐶|𝑞)

𝐸(𝑇|𝑞)
 

Substituting values of 𝐸(𝐶|𝑞) and 𝐸(𝑇|𝑞) in the above equation we have, 

 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
𝐶1 ∙ (

2𝜆 + 𝜇
2𝜆𝜇

) ∙ (𝜎𝑦|𝑞
2 + (𝑏𝑞)2) + 𝐶3

𝑏𝑞(𝜆 + 𝜇)
𝜆𝜇

 

 

=
𝐶1 ∙ (2𝜆 + 𝜇) ∙ (𝜎𝑦|𝑞

2 + (𝑏𝑞)2) + 𝐶3 ∙ 2𝜆𝜇

2𝑏𝑞(𝜆 + 𝜇)
 

 

=
𝐶1 ∙ (2𝜆 + 𝜇) ∙ (𝜎𝑦|𝑞

2 + (𝑏𝑞)2) + 𝐶3 ∙ 2𝜆𝜇

𝑏𝑞(𝜆 + 𝜇)
 

 

=
2𝜆𝐶1𝜎𝑦|𝑞

2 + 2𝜆𝐶1(𝑏𝑞)2 + 𝜇𝐶1𝜎𝑦|𝑞
2 + 𝜇𝐶1(𝑏𝑞)2 + 𝐶3 ∙ 2𝜆𝜇

2𝑏𝑞(𝜆 + 𝜇)
 

 

𝐸𝐶𝑃𝑈𝑇(𝑞)  will be minimum if  
𝑑(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞
= 0 and for its solution  

𝑑2(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞2 > 0 

Let  
𝑑(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞
= 0, then we have, 

 

1

2𝑏(𝜆 + 𝜇)
[
𝑞(4𝜆𝐶1𝑏2𝑞 + 2𝜇𝐶1𝑏2𝑞) − (2𝜆𝐶1𝜎𝑦|𝑞

2 + 2𝜆𝐶1(𝑏𝑞)2 + 𝜇𝐶1𝜎𝑦|𝑞
2 + 𝜇𝐶1(𝑏𝑞)2 + 𝐶3 ∙ 2𝜆𝜇)

𝑞2
]

= 0 
 

𝑞(4𝜆𝐶1𝑏2𝑞 + 2𝜇𝐶1𝑏2𝑞) − (2𝜆𝐶1𝜎𝑦|𝑞
2 + 2𝜆𝐶1(𝑏𝑞)2 + 𝜇𝐶1𝜎𝑦|𝑞

2 + 𝜇𝐶1(𝑏𝑞)2 + 𝐶3 ∙ 2𝜆𝜇) = 0 

 

2𝜆𝐶1(𝑏𝑞)2 + 𝜇𝐶1(𝑏𝑞)2 − 𝐶1𝜎𝑦|𝑞
2(2𝜆 + 𝜇) − 𝐶3 ∙ 2𝜆𝜇 = 0 

 

𝐶1(𝑏𝑞)2(2𝜆 + 𝜇) − 𝐶1𝜎𝑦|𝑞
2(2𝜆 + 𝜇) − 2𝜆𝜇𝐶3 = 0 

 

𝐶1(𝑏𝑞)2(2𝜆 + 𝜇) = 𝐶1𝜎𝑦|𝑞
2(2𝜆 + 𝜇) + 2𝜆𝜇𝐶3 

 

𝑞2 =
𝐶1𝜎𝑦|𝑞

2(2𝜆 + 𝜇) + 2𝜆𝜇𝐶3

𝐶1𝑏2(2𝜆 + 𝜇)
 

 

𝑞 =
1

𝑏
√

𝐶1𝜎𝑦|𝑞
2(2𝜆 + 𝜇) + 2𝜆𝜇𝐶3

𝐶1(2𝜆 + 𝜇)
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𝑞 =
1

𝑏 √𝜎𝑦|𝑞
2 +

2𝜆𝐶3

𝐶1 (
2𝜆
𝜇 + 1)

 

Provided 𝑏 ≠ 0, 𝐶1 ≠ 0. 

Which is the cost minimum value of q because it can be shown that 
𝑑2(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞2 > 0 

𝑞∗ =
1

𝑏 √𝜎𝑦|𝑞
2 +

2𝜆𝐶3

𝐶1 (
2𝜆
𝜇 + 1)

 

Provided 𝑏 ≠ 0, 𝐶1 ≠ 0. 

                              𝑞∗ =
1

𝑏 √𝜎𝑦|𝑞
2 +

𝐸𝑂𝑄2

(
2𝜆
𝜇 + 1)

           − − − − − (1)  

 

If the service time is taken zero there is no need for service for any item and we have the EOQ model with 

uncertain arrival y when the ordered quantity is q and hence, we have, 

𝑇(𝑦) =
𝑦

𝜆
 and 𝐶(𝑦) =

𝑦2

2𝜆
𝐶1 + 𝐶3 

 

𝐸(𝑇|𝑞) =
𝐸(𝑦|𝑞)

𝜆
=

𝑏𝑞

𝜆
 

 

 𝐸(𝐶|𝑞) =
𝐶1

2𝜆
∙ 𝐸(𝑦2|𝑞) =

𝐶1

2𝜆
(𝜎𝑦|𝑞

2 + (𝑏𝑞)2) + 𝐶3 

 

And expected cost without service will be, 

𝐸𝐶𝑊𝑆(𝑞) =
𝐸(𝐶|𝑞)

𝐸(𝑇|𝑞)
 

 

=

𝐶1

2𝜆
(𝜎𝑦|𝑞

2 + (𝑏𝑞)2) + 𝐶3

𝑏𝑞
𝜆

 

 

=
𝐶1𝜎𝑦|𝑞

2

2𝑏𝑞
+

𝐶1𝑏𝑞

2
+

𝜆𝐶3

𝑏𝑞
 

 

𝐸𝐶𝑊𝑆(𝑞)  will be minimum if  
𝑑(𝐸𝐶𝑊𝑆(𝑞))

𝑑𝑞
= 0 and its solution  

𝑑2(𝐸𝐶𝑊𝑆(𝑞))

𝑑𝑞2
> 0 

Let  
𝑑(𝐸𝐶𝑊𝑆(𝑞))

𝑑𝑞
= 0, then we have, 

 

𝑞𝑤𝑠
∗ =

1

𝑏
√

𝐶1𝜎𝑦|𝑞
2 + 2𝜆𝐶3

𝐶1
 

=
1

𝑏
√𝜎𝑦|𝑞

2 +
2𝜆𝐶3

𝐶1
 

=
1

𝑏
√𝜎𝑦|𝑞

2 + 𝐸𝑂𝑄2

 

 

𝑞𝑤𝑠
∗ = √𝜎𝑦|𝑞

2 + 𝐸𝑂𝑄2     − − − −(2)  

 

Which is the cost minimum value of q because it can be shown that 
𝑑2(𝐸𝐶𝑊𝑆(𝑄))

𝑑𝑞2
> 0 
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5. Sensitive Analysis 

In our model customers arrive as the demand rate 𝜆 and there will be no waiting for any customer and 

hence we must have the condition, 
𝑞

𝜇
<

1

𝜆
⇒ 𝜆𝑞 < 𝜇 

That is, 

𝑞∗ =
1

𝑏 √𝜎𝑦|𝑞
2 +

2𝜆𝐶3

𝐶1 (
2𝜆
𝜇 + 1)

<
𝜇

𝜆
 

 

If 𝜎𝑦|𝑞 = 0 we have  

𝑞∗ =
1

𝑏 √
2𝜆𝐶3

𝐶1 (
2𝜆
𝜇 + 1)

<
𝜇

𝜆
 

Even it can be seen that 𝑞∗ ∝ √𝐶3. That is, smaller the 𝐶3 we can prefer small batches and hence more 

frequent orders can be placed. Smaller batches, each batch doesn’t need very high service rate. But if b is 

small q* becomes large and hence service rate.  

To check the effectiveness and utility of the current model along with the theoretical theory when we take 

the ratio of the quantity obtained by the current model to the quantity obtained by the basic EOQ model with 

uncertain arrival of items tends to 1 as the service time tends to zero. That is, if we ignore the service time, 

it becomes the EOQ mode with uncertain arrival of items. 

when 
1

𝜇
⟶ 0,  

𝑞∗ =
1

𝑏 √𝜎𝑦|𝑞
2 +

2𝜆𝐶3

𝐶1 (
2𝜆
𝜇 + 1)

⟶
1

𝑏
√𝜎𝑦|𝑞

2 + 𝐸𝑂𝑄2 = 𝑞𝑤𝑠
∗

 

 

lim
1
𝜇

→0

𝑞∗

𝑞𝑤𝑠
∗

= 1 

 

Inventory with service will have more total variable cost than the total variable cost in classical inventory 

because of service time and hence holding cost. If we reduce the service time by increasing service persons 

or facilities, we will have no difference between our model and classical inventory model. 

 

Case 1: Let 𝜎𝑦|𝑞 = 𝜎: If the standard deviation of the quantity received is independent of the quantity 

requisitioned: 

Thus, we have 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
2𝜆𝐶1𝜎2 + 2𝜆𝐶1(𝑏𝑞)2 + 𝜇𝐶1𝜎 + 𝜇𝐶1(𝑏𝑞)2 + 𝐶3 ∙ 2𝜆𝜇

2𝑏𝑞(𝜆 + 𝜇)
 

 

If 𝜎 = 0, received quantity will be certain, that is the quantity actually received will be the EOQ. 

And  

𝑞∗ =
1

𝑏 √0 +
2𝜆𝐶3

𝐶1 (
2𝜆
𝜇 + 1)

 

𝑞∗ =
1

𝑏

𝐸𝑂𝑄

√(
2𝜆
𝜇 + 1)

 

when 
1

𝜇
⟶ 0, 

𝑞𝑤𝑠
∗ =

1

𝑏
√𝐸𝑂𝑄2

 
=

𝐸𝑂𝑄

𝑏
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Which is the optimal quantity when arrival is random and standard deviation of quantity arrived is 

independent of the quantity q requisitioned. That is 𝜎𝑦|𝑞 = 𝜎 = 0. 

𝑞𝑤𝑠
∗ =

𝐸𝑂𝑄

𝑏
 

 

Case 2: Let 𝜎𝑦|𝑞 = 𝜎1𝑞: If the standard deviation of the quantity received is proportional to the quantity 

requisitioned: 

Thus, we have 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
2𝜆𝐶1𝜎1

2𝑞2 + 2𝜆𝐶1(𝑏𝑞)2 + 𝜇𝐶1𝜎1
2𝑞2 + 𝜇𝐶1(𝑏𝑞)2 + 𝐶3 ∙ 2𝜆𝜇

2𝑏𝑞(𝜆 + 𝜇)
 

 

=
1

2𝑏(𝜆 + 𝜇)
[2𝜆𝐶1𝜎1

2𝑞 + 2𝜆𝐶1𝑏2𝑞 + 𝜇𝐶1𝜎1
2𝑞 + 𝜇𝐶1𝑏2𝑞 +

2𝜆𝜇𝐶3

𝑞
] 

 

𝐸𝐶𝑃𝑈𝑇(𝑞)  will be minimum if  
𝑑(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞
= 0 and its solution  

𝑑2(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞2 > 0 

Let  
𝑑(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞
= 0, then we have, 

 
1

2𝑏(𝜆 + 𝜇)
[2𝜆𝐶1𝜎1

2 + 2𝜆𝐶1𝑏2 + 𝜇𝐶1𝜎1
2 + 𝜇𝐶1𝑏2 −

2𝜆𝜇𝐶3

𝑞2
] = 0 

 

2𝜆𝐶1𝜎1
2 + 2𝜆𝐶1𝑏2 + 𝜇𝐶1𝜎1

2 + 𝜇𝐶1𝑏2 −
2𝜆𝜇𝐶3

𝑞2
= 0 

 

2𝜆𝐶1𝜎1
2 + 2𝜆𝐶1𝑏2 + 𝜇𝐶1𝜎1

2 + 𝜇𝐶1𝑏2 =
2𝜆𝜇𝐶3

𝑞2
 

 

2𝜆𝐶1𝜎1
2 + 2𝜆𝐶1𝑏2 + 𝜇𝐶1𝜎1

2 + 𝜇𝐶1𝑏2 =
2𝜆𝜇𝐶3

𝑞2
 

 

𝑞∗ = √ 
2𝜆𝐶3

𝐶1
×

1

(
2𝜆
𝜇

+ 1) (𝜎1
2 + 𝑏2)

 

 

Provided 𝑏 ≠ 0, 𝐶1 ≠ 0 

𝑞∗ = √ 
𝐸𝑂𝑄2

(
2𝜆
𝜇 + 1) (𝜎1

2 + 𝑏2)

 

 

Which is the cost minimum value of q because it can be shown that 
𝑑2(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞2 > 0 

when 
1

𝜇
⟶ 0, 

𝑞𝑤𝑠
∗ =

𝐸𝑂𝑄

√ (𝜎1
2 + 𝑏2)

 

 

 

Which is the exact formula for the uncertain amount of received quantity when the standard deviation of 

the quantity received is proportional to the quantity requisitioned: 
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6. Hypothetical Numerical Example: 

Consider the following example: Annual demand D = 120000, Ordering Cost per order = 10, Holding cost 

per item per day =100 and the demand rate per month will be R= 333.33 

 

𝐸𝑂𝑄 = √
2𝑅𝐶3

𝐶1
= 8.16497 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 

 

Case 1: Let 𝜎𝑦|𝑞 = 𝜎 = 0 and for b =0.6, 0.8, 1, 1.2, 1.4, 1.6 

𝑞∗ =
1

𝑏

𝐸𝑂𝑄

√(
2𝜆
𝜇 + 1)

=
1

𝑏
×

8.16497

√(
2𝜆
𝜇 + 1)

    

 

𝑞𝑤𝑠
∗ =

𝐸𝑂𝑄

𝑏
=

8.16497

𝑏
  

 

For b= 0.6, 𝑞𝑤𝑠
∗ =

𝐸𝑂𝑄

𝑏
=

8.16497

0.6
= 13.608276  For b= 0.8, 𝑞𝑤𝑠

∗ =
𝐸𝑂𝑄

𝑏
=

8.16497 

0.8
= 10.206207 

 

  q* q*/𝑞𝑤𝑠
∗  

4500 0.074074 9.52501 0.933257 

5000 0.066667 9.587062 0.939336 

5500 0.060606 9.638745 0.9444 

6000 0.055556 9.682458 0.948683 

6500 0.051282 9.719915 0.952353 

7000 0.047619 9.752369 0.955533 

7500 0.044444 9.78076 0.958315 

8000 0.041667 9.805807 0.960769 

8500 0.039216 9.828067 0.96295 

9000 0.037037 9.847982 0.964901 

 

 

For b= 1, 𝑞𝑤𝑠
∗ =

𝐸𝑂𝑄

𝑏
=

8.16497

1
= 8.16497  For b= 1.2, 𝑞𝑤𝑠

∗ =
𝐸𝑂𝑄

𝑏
=

8.16497  

1.2
= 6.804138 

 

 

  q* q*/𝑞𝑤𝑠
∗  

4500 0.074074 6.350006 0.933257 

5000 0.066667 6.391375 0.939336 

5500 0.060606 6.42583 0.9444 

6000 0.055556 6.454972 0.948683 

6500 0.051282 6.479943 0.952353 

7000 0.047619 6.501579 0.955533 

7500 0.044444 6.520507 0.958315 

8000 0.041667 6.537205 0.960769 

8500 0.039216 6.552045 0.96295 

9000 0.037037 6.565322 0.964901 

 

For b= 1.4, 𝑞𝑤𝑠
∗ =

𝐸𝑂𝑄

𝑏
=

8.16497  

1.4
= 5.832118  For b= 1.6, 𝑞𝑤𝑠

∗ =
𝐸𝑂𝑄

𝑏
=

8.16497  

1.6
= 5.103104 

 

 

 

 

  q* q*/𝑞𝑤𝑠
∗  

4500 0.074074 12.70001 0.933257 

5000 0.066667 12.78275 0.939336 

5500 0.060606 12.85166 0.9444 

6000 0.055556 12.90994 0.948683 

6500 0.051282 12.95989 0.952353 

7000 0.047619 13.00316 0.955533 

7500 0.044444 13.04101 0.958315 

8000 0.041667 13.07441 0.960769 

8500 0.039216 13.10409 0.96295 

9000 0.037037 13.13064 0.964901 

  q* q*/𝑞𝑤𝑠
∗  

4500 0.074074 7.620008 0.933257 

5000 0.066667 7.66965 0.939336 

5500 0.060606 7.710996 0.9444 

6000 0.055556 7.745967 0.948683 

6500 0.051282 7.775932 0.952353 

7000 0.047619 7.801895 0.955533 

7500 0.044444 7.824608 0.958315 

8000 0.041667 7.844645 0.960769 

8500 0.039216 7.862454 0.96295 

9000 0.037037 7.878386 0.964901 
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From the above table it can be seen that the optimal quantity q* with service time tends to the optimal 

quantity qws* without service time when arrival is uncertain and standard deviation of quantity arrived is 

independent of the quantity q requisitioned when the service time tends to zero. 

 

Case 2: Let 𝜎𝑦|𝑞 = 𝜎1 ∙ 𝐸𝑂𝑄 and for b =0.6, 0.8, 1, 1.2, 1.4, 1.6 

Assume that y follows uniform distribution with q=EOQ and the y is in the range from 0.9EOQ to 

1.1EOQ. That is  

𝑦~𝑈(0.9𝐸𝑂𝑄, 1.1𝐸𝑂𝑄) and 𝜎𝑦|𝑞 =
1.1𝐸𝑂𝑄−0.9𝐸𝑂𝑄

√12
= 0.0577 × 𝐸𝑂𝑄 and hence 𝜎1 = 0.0577 

For above example, 

𝜎𝑦|𝑞 = 0.0577 × 8.16497 = 0.471119 

 

𝑞𝑤𝑠
∗ =

𝐸𝑂𝑄

√𝜎1
2 + 𝑏2

 

=
8.16497

√0.00333 + 𝑏2
 

 

𝑞∗ =
𝐸𝑂𝑄

√ (
2𝜆
𝜇 + 1) (𝜎1

2 + 𝑏2)
 

=
8.16497

√ (
2𝜆
𝜇 + 1) (0.00333 + 𝑏2)

 

 

 

 

 

 

 

 

For b= 0.6, 𝑞𝑤𝑠
∗ =

8.16497

√0.00333+𝑏2
= 13.545771  For b= 0.8, 𝑞𝑤𝑠

∗ =
8.16497

√0.00333+𝑏2
= 10.179758 

 

  q* q*/𝑞𝑤𝑠
∗ 

4500 0.074074 9.500326 0.933257 

5000 0.066667 9.562218 0.939336 

5500 0.060606 9.613767 0.9444 

6000 0.055556 9.657367 0.948683 

6500 0.051282 9.694726 0.952353 

7000 0.047619 9.727096 0.955533 

7500 0.044444 9.755414 0.958315 

8000 0.041667 9.780395 0.960769 

8500 0.039216 9.802598 0.96295 

9000 0.037037 9.822462 0.964901 

 

For b= 1, 𝑞𝑤𝑠
∗ =

8.16497

√0.00333+𝑏2
= 8.16497   For b= 1.2, 𝑞𝑤𝑠

∗ =
8.16497

√0.00333+𝑏2
= 6.796285 

 

  q* q*/𝑞𝑤𝑠
∗  

4500 0.074074 4.762505 0.933257 

5000 0.066667 4.793531 0.939336 

5500 0.060606 4.819373 0.9444 

6000 0.055556 4.841229 0.948683 

6500 0.051282 4.859957 0.952353 

7000 0.047619 4.876184 0.955533 

7500 0.044444 4.89038 0.958315 

8000 0.041667 4.902903 0.960769 

8500 0.039216 4.914034 0.96295 

9000 0.037037 4.923991 0.964901 

  q* q*/𝑞𝑤𝑠
∗  

4500 0.074074 5.442863 0.933257 

5000 0.066667 5.478321 0.939336 

5500 0.060606 5.507854 0.9444 

6000 0.055556 5.532833 0.948683 

6500 0.051282 5.554237 0.952353 

7000 0.047619 5.572782 0.955533 

7500 0.044444 5.589006 0.958315 

8000 0.041667 5.603318 0.960769 

8500 0.039216 5.616039 0.96295 

9000 0.037037 5.627419 0.964901 

  q* q*/𝑞𝑤𝑠
∗ 

4500 0.074074 12.64168 0.933257 

5000 0.066667 12.72404 0.939336 

5500 0.060606 12.79263 0.9444 

6000 0.055556 12.85065 0.948683 

6500 0.051282 12.90036 0.952353 

7000 0.047619 12.94343 0.955533 

7500 0.044444 12.98111 0.958315 

8000 0.041667 13.01436 0.960769 

8500 0.039216 13.0439 0.96295 

9000 0.037037 13.07033 0.964901 
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  q* q*/𝑞𝑤𝑠
∗ 

4500 0.074074 6.342677 0.933257 

5000 0.066667 6.383998 0.939336 

5500 0.060606 6.418413 0.9444 

6000 0.055556 6.447522 0.948683 

6500 0.051282 6.472464 0.952353 

7000 0.047619 6.494075 0.955533 

7500 0.044444 6.51298 0.958315 

8000 0.041667 6.529659 0.960769 

8500 0.039216 6.544482 0.96295 

9000 0.037037 6.557744 0.964901 

 

For b= 1.4, 𝑞𝑤𝑠
∗ =

8.16497

√0.00333+𝑏2
= 5.827170  For b= 1.6, 𝑞𝑤𝑠

∗ =
8.16497

√0.00333+𝑏2
= 5.099788 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above table it can be seen that the optimal quantity q* with service time tends to the optimal 

quantity 𝑞𝑤𝑠
∗ without service time when arrival is uncertain and the standard deviation is proportional to the 

q amount requisitioned when the service time tends to zero. 

 

 

7. Conclusion 

When the arrival of quantities is uncertain, the best order quantity depends on the mean and standard 

deviation of the amount actually received. In the situation, when the replenished items cannot be sold 

immediately, and they must undergo a processing stage one by one, the processing time increases the average 

customer waiting time and therefore raises the holding cost of all items in the system. Two cases of supply 

uncertainty are considered: (i) when the standard deviation of the received quantity is independent of the 

ordered amount, and (ii) when the standard deviation is proportional to the ordered amount. If we can reduce 

the process time on the product — that is, decrease the waiting time as much as possible — the new model 

simplifies to the classical case where there is no service time and the arrival of quantity is uncertain. 
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