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Abstract:

Sometimes it happens that the arrival of the quantity of items differ from the ordered quantity and this
quantity is needed to give some time for service to each item instead of a fixed time of service for all items
in the inventory before allowing it for sell. After servicing all items with the rate of service greater than the
rate of demand items stars to be depleted from the inventory up to the zero level of inventory. This service
time is cost of holding on all received items in the inventory. The optimal order quantity depends only on the
mean and standard deviation of the amount arrived and if we can reduce the service time by increasing service
persons or facilities the total cost goes near to cost of EOQ model with uncertain arrival of quantity.

Key words Inventory system, Demand rate, Service rate, Replenishment rate, Lead time, Queuing system
Service time, re-order point.

1. Introduction

It is seen that when the quantity arrives to the shop and it some fixed time is allotted for servicing all
received items with the condition that the quantity arrives is uncertain, the best or minimum order quantity
turns out to depends only on the mean and standard deviation of the amount received. Here it was assumed
that after servicing all items within a fixed time, all will put for sell together. It is also interesting to know
that if instead of service time for all items we have service rate what could be the best order quantity? In this
paper we have assumed the same criteria. That is quantity arrives in uncertain amount with deterministic
service rate and after completion of service for all items we will put items together for selling. It is also
assumed that the demand rate is constant and known to us. Also to avoid queue of customers we have assumed
that service rate is more than demand rate. That is the waiting time of customer is that much small so that it
can be negligible.

2. Literature review

Edward A. Silver (1976) worked on the quantity received from a supplier may not match the quantity
ordered—due to defects, shortages, shipping issues, etc. Silver's extended Economic Order Quantity (EOQ)
model tackles this by considering that only the mean and standard deviation of the received amount matter
in determining the optimal order quantity. Traditional models generally assume one-sided randomness but A.
Hamid Noori and Gerald Keller ((1986)) extended the classic continuous-review (Q, r) inventory model to
account for uncertainty in both demand during lead time and supply availability. Chirag Trivedi, Y.K. Shan,
Nita H. Shah. (1994), present an EOQ model in which a temporary price discount is offered, but the supply
received is random rather than equal to the order. Nita H. Shah, Chirag J. Trivedi (1996), extended the classic
Economic Order Quantity (EOQ) model is by considering both random lead times and random demand
instead of fixed values. Karush (1957) showed that inventory with random demand and lead times can be
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modelled as a queuing system. Berman O. Kaplan E.H., and Shimshak D.G. (1993) considered the inventory
during the provision of service and inventory depleted according to the demand rate when there are no
customers waiting in the queue and when customers are waiting in a queue it is depleted according to service
rate. Ha (1997) worked on single-item make-to-stock production system and considered poison demand and
exponential production times and used an M/M/1/S queuing system for modeling the system. Arda and
Hennet (2006) analyzed inventory control of a multi-supplier strategy in a two-level supply chain with
random arrival for customers and random delivery time for suppliers, the system was represented as a
queuing network. Jung Woo Baek and Seung Ki Moon (2014), provides a queueing-theoretic model for
production-inventory systems with lost sales, develops exact analytical results for performance evaluation,
and offers managerial insights into balancing production, inventory levels, and customer service.
Seyedhoseini et al. (2015) applied queuing theory to propose a mathematical model for inventory systems
with substitute flexibility.

3. Notations and Assumptions for the model:
The model is developed under the very stringent assumption and the notations used for the derivation are
as under:
e = the order quantity
q* = Economic order quantity to be determined.
Cs = Replenishment cost per order which is known and constant
Ci = Holding cost per unit per unit time which is known and constant
L = Lead time which is zero.
The stockout cost is zero.
b = the bias factor
A = Demand rate is constant and known
%: Total Service time to serve y items.

e T =Total Cycle time.
2ACs

e FOQ = - The economic quantity in units.
1

E(ylq) = bq

ECPUT (q) = Expected costs per unit time if a requisition quantity q is used
ECWS(Q) = Expected cost without service

qws = Economic order quantity without service

The time horizon if infinite.

TC(q) = Average total cost per cycle

e The replenishment rate is infinite

Consider the following figure. Where inventory has taken time % for the process to be done on all items

before it starts for depletion. After the time it—/ items are depleted at the rate of A and the inventory becomes

zero at time T.

y — At

— < —r

T <
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4. The Mathematical Model:

For developing the expected costs per unit time, we consider the time as being made up of cycles and the
new cycle begins each time when the q quantity is ordered. As the lead time is zero the order will be placed
when the inventory level drops to zero.

When the ordered quantity arrives at the inventory it takes some time for packing each item or labelling
each item or do some required process on each item before put all for selling. In each order the quantity q is
ordered and it is assumed that this processing or service rate is u. That is total time taken for service will be

% and we don’t want customer to wait for item for neglecting the waiting cost we have also assumed that % <

% . In real life it may happen that instead of ordered quantity some other quantity arrives at shop. Suppose

that the quantity y is received instead of q. That is y is a random variable and its maximum value is q. Because
when the quantity y arrives, and all y items are labelled or packed or assembled one by one with the service
rate W, it stays for some time duration in the inventory for service before the selling. This stay is delayed by

the service time %, which affects the inventory depletion rate.

So % < % means the whole batch is served in less time than it typically takes to consume one unit. That is,

service is extremely fast compared to demand — we finish service of q items before, on an average, a single
item is demanded.

Therefore, the Inventory level at any time t, 0 < t < T will be,

. Y
y fost<=
f u

I(t) = y

Y
a(e-2) g l<esr
4 u f u

Where the total cycle time is

Yy, y_yld+tw
T = — _—= ——
) p 3 B
The expected value of T(y) is given by
A1+ bq(A+ w)
E(T|q) = E =————
Tl =— p 1) i

Let C(y) be the costs in the current cycle. And hence it will be,
T

C(y) = clfl(t)dt + G
0

y/u T
0 y/u

Letting (t - %) = u we have

1/p v/
= le ydt+le [y — Aul du + C5
0

0
Thus, we have,

2 2

y y
c)==+=|c,+¢
) <u+21> 1+ C3

20+
C(y)=y2< 2n )Cl+63
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The expected value of C(y) is given by

2A+u
E(Clq) = C (
lq 1 22

)-E(yzlq)+63

As E(y|q) = bq and E(y*|q) = 0y,4° + [E(|@)]?

22
ECle) = - (GE) - (o + Ga)?) +

By the result of Renewal Reward Process, if a cycle is completed every time a renewal occurs and the
long-run average reward per unit time is equal to the expected reward earned during a cycle divided by the
expected length of a cycle. Thus, we have, the expected cost per unit time is

E(C
ECPUT(q) = %

Substituting values of E(C|q) and E(T|q) in the above equation we have,

22+
C1 ' (T,u'u) ' (O-y|q2 + (bQ)Z) + C3

bg(A + 1)
Ap

ECPUT(q) =

_C A+ p) - (ayg% + (bg)?) + C5 - 22u
| 2bq(A + )

QA+ (0y14% + (bg)?) + C5 - 22p

bq(A + 1)
_ 22C10y14% + 22C(b@)? + pCyoy)4® + puCi(bq)? + C3 - 22
2bq(A + 1)
2
ECPUT(q) will be minimum if M%ZT@) = ( and for its solution “%ZT@) >0
Let d(ECI;—ZT(q)) = 0, then we have,

1 q(4AC b2 q + 2uC1b?q) — (2AC,0y4% + 2AC1(bq)* + uCyoy)* + pnCi(bq)* + C3 - 2A4)
2b(A + w) q°
=0

q(4AC b2 q + 2uCib*q) — (2AC 044 + 2AC1(bq)? + uCyioy)4* + uCy(bq)* + C3 - 2Ap) = 0
2AC1(bq)? + uCi(bq)* — €10y, A+ ) — C3-24u =0
C(b@)? QA+ 1) — C10y,4* (24 + 1) — 24uC3 = 0
C(b@)*(2A + p) = Cy0y4* (A + p) + 24uCs

_ C10y° (2 + p) + 22uC5
B C,b2(2A + 1)

2

1 |C10yq* QA+ p) + 22uCy
1= C.2A+ )
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1 s, 20y
q =7 [0y|q
b 21
C, (7 n 1)

Provided b # 0,C; # 0.

2
Which is the cost minimum value of q because it can be shown that d(%qzﬂq)) >0
, 1 2 4 2AC3
4 =7 [%lq
b 22
C, (7 +1)
Provided b # 0,C; # 0.
1 E0Q?
* 24~  _____
U

If the service time is taken zero there is no need for service for any item and we have the EOQ model with
uncertain arrival y when the ordered quantity is q and hence, we have,

y y?

EGla) _ bq

A A

E(T|q) =

C C
EClq) = ;- EG?l) = 5; (0y° + (b)) + C

And expected cost without service will be,

ECWS(q) = E(Clg)

E(T|q)

C
_ ﬁ(”quz + (bQ)Z) + (3

bgq
2

_ C10y|q2 N Cibq N ACs
2bq 2 bq

d(ECWS(q)) d?(Ecws(q))

ECWS(q) will be minimum if = ( and its solution e >0
Let d(ECquS(q)) = 0, then we have,

1 [CGoyt+22C6 1 226 1 [, ——
Qws = E\/ C, = E O'y|q2 + C, = E 0y|q2 + E0Q?
qws = ’O_y|q2 +E0Q2 -———(2)

d?(ECWS(Q))

>0

Which is the cost minimum value of q because it can be shown that
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5. Sensitive Analysis
In our model customers arrive as the demand rate A and there will be no waiting for any customer and
hence we must have the condition,
a_1_,
. <324 <u
That is,

1 21Cs
C, (ZM—’1 + 1)

. _ U
=3 yiq* + <7

If Oylq = 0 we have

Even it can be seen that q* « \/6_3 . That is, smaller the C; we can prefer small batches and hence more
frequent orders can be placed. Smaller batches, each batch doesn’t need very high service rate. But if b is
small q* becomes large and hence service rate.

To check the effectiveness and utility of the current model along with the theoretical theory when we take
the ratio of the quantity obtained by the current model to the quantity obtained by the basic EOQ model with
uncertain arrival of items tends to 1 as the service time tends to zero. That is, if we ignore the service time,
it becomes the EOQ mode with uncertain arrival of items.

1
when " — 0,

Inventory with service will have more total variable cost than the total variable cost in classical inventory
because of service time and hence holding cost. If we reduce the service time by increasing service persons
or facilities, we will have no difference between our model and classical inventory model.

Case 1: Let gy, = o: If the standard deviation of the quantity received is independent of the quantity
requisitioned:
Thus, we have
2AC10% + 2AC;(bq)? + uCyo + uC,(bq)? + C3 - 2u

ECPUT(q) = TR

If 0 = 0, received quantity will be certain, that is the quantity actually received will be the EOQ.
And

q*zl 0+&
b cl(%+1)
oL _F00
? )

Wheni — 0,
EOQ

1
Givs = 7 EOQ? = —
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Which is the optimal quantity when arrival is random and standard deviation of quantity arrived is
independent of the quantity q requisitioned. That is gy = 0 = 0.

. EOQ
Qws = T

Case 2: Let 0y4 = 01q: If the standard deviation of the quantity received is proportional to the quantity
requisitioned:
Thus, we have
2AC,0,%2q% + 2AC,(bq)? + uCy0,%2q% + uC,(bq)? + C3 - 2Au

ECPUT(q) =
(@) 2bq 2 + 1)
1 2AuCs
= TYZET) 2AC,0:%q + 2AC1b%*q + uCy0.%q + uCyb%q +
2
ECPUT(q) will be minimum if AECPUT(@) _ 0 and its solution d7(ECPUT(2)) >0
dq dq?
Let M%ZT@) = 0, then we have,
1 2AuCs
m[2/1610'12 + 2/161192 + ‘Llclo-lz + ,LlCle - qz - 0
2AuC
2C,0,% + 2AC,b% + pCyoy? + puCyb? — q“z 30
2AuC
2/1C10'12 + 2/1C1b2 + ,LlClo'lZ ar uCle = q‘uZ 3
2AuC
2/1(:10'12 + ZAcle + ,uC10'12 + MCle = qluz 3
| 2AC3 | 1
q =
C1 22 2 2
( = 1) (0,2 +b?)
Provided b # 0,C; # 0
N E0Q?
q =
21 ) )
(7 +1) (62 + b?)
2
Which is the cost minimum value of q because it can be shown that %;:T(q)) >0

when % — 0,
EOQ

Aws = F———=
ERACEED

Which is the exact formula for the uncertain amount of received quantity when the standard deviation of
the quantity received is proportional to the quantity requisitioned:
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6. Hypothetical Numerical Example:
Consider the following example: Annual demand D = 120000, Ordering Cost per order = 10, Holding cost
per item per day =100 and the demand rate per month will be R=333.33

RCs
E0Q =

= 8.16497 units per order
1

Case 1: Let 0, = 0 = 0 and for b=0.6, 0.8, 1, 1.2, 1.4, 1.6

1 EO0Q 1 8.16497
(@ + (Q +1
u u
. EOQ 8.16497
Qs = =—

For b=0.6, gy = —% = > = 13.608276 Forb=0.8, g = —% = 222" = 10.206207
B M Q* 9*/qws B Mu Q* a*/qws
4500 | 0.074074 | 12.70001 | 0.933257 4500 | 0.074074 9.52501 | 0.933257
5000 | 0.066667 | 12.78275 | 0.939336 5000 | 0.066667 | 9.587062 | 0.939336
5500 | 0.060606 | 12.85166 0.9444 5500 | 0.060606 | 9.638745 0.9444
6000 | 0.055556 | 12.90994 | 0.948683 6000 | 0.055556 | 9.682458 | 0.948683
6500 | 0.051282 | 12.95989 | 0.952353 6500 | 0.051282 | 9.719915 | 0.952353
7000 | 0.047619 | 13.00316 | 0.955533 7000 | 0.047619 | 9.752369 | 0.955533
7500 | 0.044444 | 13.04101 | 0.958315 7500 | 0.044444 9.78076 | 0.958315
8000 | 0.041667 | 13.07441 | 0.960769 8000 | 0.041667 | 9.805807 | 0.960769
8500 | 0.039216 | 13.10409 0.96295 8500 | 0.039216 | 9.828067 0.96295
9000 | 0.037037 | 13.13064 | 0.964901 9000 | 0.037037 | 9.847982 | 0.964901

For b= 1, gys = = = 27 = 8.16497 For b=1.2, g === = “=—" = 6.804138
B M Q* 9*/Qws B Mp Q* a*/qws
4500 | 0.074074 | 7.620008 | 0.933257 4500 | 0.074074 | 6.350006 | 0.933257
5000 | 0.066667 7.66965 | 0.939336 5000 | 0.066667 | 6.391375 | 0.939336
5500 | 0.060606 | 7.710996 0.9444 5500 | 0.060606 6.42583 0.9444
6000 | 0.055556 | 7.745967 | 0.948683 6000 | 0.055556 | 6.454972 | 0.948683
6500 | 0.051282 | 7.775932 | 0.952353 6500 | 0.051282 | 6.479943 | 0.952353
7000 | 0.047619 | 7.801895 | 0.955533 7000 | 0.047619 | 6.501579 | 0.955533
7500 | 0.044444 | 7.824608 | 0.958315 7500 | 0.044444 | 6.520507 | 0.958315
8000 | 0.041667 | 7.844645 | 0.960769 8000 | 0.041667 | 6.537205 | 0.960769
8500 | 0.039216 | 7.862454 | 0.96295 8500 | 0.039216 | 6.552045 0.96295
9000 | 0.037037 | 7.878386 | 0.964901 9000 | 0.037037 | 6.565322 | 0.964901

Forb=14, g}, = 22 = 21%% _ 5832118 Forb=1.6, ¢}, = 222 = 31%%97 _ 5103104

b

1.4

b

1.6
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u

Al

q*

a*/ q;vs

4500

0.074074

5.442863

0.933257

n

Ap

q*

q*/q;vs

5000

0.066667

5.478321

0.939336

4500

0.074074

4.762505

0.933257

5500

0.060606

5.507854

0.9444

5000

0.066667

4.793531

0.939336

6000

0.055556

5.532833

0.948683

5500

0.060606

4.819373

0.9444

6500

0.051282

5.554237

0.952353

6000

0.055556

4.841229

0.948683

7000

0.047619

5.572782

0.955533

6500

0.051282

4.859957

0.952353

7500

0.044444

5.589006

0.958315

7000

0.047619

4.876184

0.955533

8000

0.041667

5.603318

0.960769

7500

0.044444

4.89038

0.958315

8500

0.039216

5.616039

0.96295

8000

0.041667

4.902903

0.960769

9000

0.037037

5.627419

0.964901

8500

0.039216

4914034

0.96295

9000

0.037037

4923991

0.964901

From the above table it can be seen that the optimal quantity gq* with service time tends to the optimal
quantity qws* without service time when arrival is uncertain and standard deviation of quantity arrived is
independent of the quantity q requisitioned when the service time tends to zero.

Case 2: Let 0,4 = 0, - EOQ and for b =0.6,0.8, 1, 1.2, 1.4, 1.6
Assume that y follows uniform distribution with g=EOQ and the y is in the range from 0.9EOQ to
1.1EOQ. That is
__ 1.1E0Q-0.9E0Q _

y~U(0.9E0Q, 1.1E0Q) and gy, q = N e - 0.0577 X EOQ and hence o; = 0.0577

For above example,
0y|q = 0.0577 X 8.16497 = 0.471119

. E0Q 8.16497
q — —
" JaZ+ b2 V0.00333 + b2
) EO0Q 8.16497
q = =
21 )
\/ (7 + 1) (0,2 + b?) J (7 + 1) (0.00333 + b?)

B P _ 816497 _ P _ 816497

For b=0.6, us" = e = 13.545771 For b=0.8, " = me . = 10.179758
u My Q* a*/qws" u AMp Q* a*/qws"
4500 | 0.074074 | 12.64168 | 0.933257 4500 | 0.074074 | 9.500326 | 0.933257
5000 | 0.066667 | 12.72404 | 0.939336 5000 | 0.066667 | 9.562218 | 0.939336
5500 | 0.060606 | 12.79263 0.9444 5500 | 0.060606 | 9.613767 0.9444
6000 | 0.055556 | 12.85065 | 0.948683 6000 | 0.055556 | 9.657367 | 0.948683
6500 | 0.051282 | 12.90036 | 0.952353 6500 | 0.051282 | 9.694726 | 0.952353
7000 | 0.047619 | 12.94343 | 0.955533 7000 | 0.047619 | 9.727096 | 0.955533
7500 | 0.044444 | 12.98111 | 0.958315 7500 | 0.044444 | 9.755414 | 0.958315
8000 | 0.041667 | 13.01436 | 0.960769 8000 | 0.041667 | 9.780395 | 0.960769
8500 | 0.039216 13.0439 0.96295 8500 | 0.039216 | 9.802598 0.96295
9000 | 0.037037 | 13.07033 | 0.964901 9000 | 0.037037 | 9.822462 | 0.964901

« 816497 _ P _ _ 816497
Forb=1, ys" = o = 8.16497 Forb=12, qys" = e = 6796285
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i M Q* a*/qws” 1 Mu Q* a*/qws”
4500 | 0.074074 | 7.607352 | 0.933257 4500 | 0.074074 | 6.342677 | 0.933257
5000 | 0.066667 | 7.656912 | 0.939336 5000 | 0.066667 | 6.383998 | 0.939336
5500 | 0.060606 | 7.698189 0.9444 5500 | 0.060606 | 6.418413 0.9444
6000 | 0.055556 | 7.733102 | 0.948683 6000 | 0.055556 | 6.447522 | 0.948683
6500 | 0.051282 | 7.763017 | 0.952353 6500 | 0.051282 | 6.472464 | 0.952353
7000 | 0.047619 | 7.788937 | 0.955533 7000 | 0.047619 | 6.494075 | 0.955533
7500 | 0.044444 | 7.811612 | 0.958315 7500 | 0.044444 | 6.51298 | 0.958315
8000 | 0.041667 | 7.831617 | 0.960769 8000 | 0.041667 | 6.529659 | 0.960769
8500 | 0.039216 | 7.849396 | 0.96295 8500 | 0.039216 | 6.544482 | 0.96295
9000 | 0.037037 | 7.865301 | 0.964901 9000 | 0.037037 | 6.557744 | 0.964901
For b= 1.4, qs" = 7 = 5.827170 For b= 1.6, qys* = 7o = 5.099788
n AMu q* a*/qws” n A q* a*/qws"
4500 | 0.074074 | 5.438245 | 0.933257 4500 | 0.074074 | 4.75941 | 0.933257
5000 | 0.066667 | 5.473673 | 0.939336 5000 | 0.066667 | 4.790417 | 0.939336
5500 | 0.060606 | 5.503181 0.9444 5500 | 0.060606 | 4.816241 0.9444
6000 | 0.055556 | 5.528139 | 0.948683 6000 | 0.055556 | 4.838084 | 0.948683
6500 | 0.051282 | 5.549525 | 0.952353 6500 | 0.051282 4.8568 | 0.952353
7000 | 0.047619 | 5.568054 | 0.955533 7000 | 0.047619 | 4.873016 | 0.955533
7500 | 0.044444 | 5.584264 | 0.958315 7500 | 0.044444 | 4.887202 | 0.958315
8000 | 0.041667 | 5.598564 | 0.960769 8000 | 0.041667 | 4.899718 | 0.960769
8500 | 0.039216 | 5.611274 | 0.96295 8500 | 0.039216 | 4.910841 | 0.96295
9000 | 0.037037 | 5.622644 | 0.964901 9000 | 0.037037 | 4.920792 | 0.964901

From the above table it can be seen that the optimal quantity gq* with service time tends to the optimal
quantity q,,¢" without service time when arrival is uncertain and the standard deviation is proportional to the
q amount requisitioned when the service time tends to zero.

7. Conclusion

When the arrival of quantities is uncertain, the best order quantity depends on the mean and standard
deviation of the amount actually received. In the situation, when the replenished items cannot be sold
immediately, and they must undergo a processing stage one by one, the processing time increases the average
customer waiting time and therefore raises the holding cost of all items in the system. Two cases of supply
uncertainty are considered: (i) when the standard deviation of the received quantity is independent of the
ordered amount, and (i1) when the standard deviation is proportional to the ordered amount. If we can reduce
the process time on the product — that is, decrease the waiting time as much as possible — the new model
simplifies to the classical case where there is no service time and the arrival of quantity is uncertain.
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