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Abstract—The unprecedented rise in electrical energy con-
sumption across residential, commercial, and industrial domains
has made efficient monitoring, analytics, and control essential
for cost savings and sustainability. Traditional metering systems
typically provide only cumulative or coarse-grained readings,
leaving users and managers without appliance-level insights or
real-time alerts that could reduce wastage or prevent faults.
This paper presents a comprehensive Internet of Things (1oT)-
based power consumption and monitoring system that integrates
voltage and current sensing, edge processing via a microcon-
troller, secure wireless transmission, cloud storage and analytics,
and user-facing dashboards with control capabilities. The system
measures instantaneous power and cumulatively computes energy
usage per appliance using calibrated sensors (e.g., ZMPT101B
and ACS712). An ESP32/Arduino reads the sensors, filters and
timestamps data, and sends it to the cloud over MQTT/HTTPS.
The cloud ingests data into a time-series datastore, runs an-
alytics for peak detection and anomaly detection, and exposes
dashboards and REST APIs for visualization and control. A
relay driver stage enables remote actuation of connected loads
for demand response or scheduling. Experimental deployment
across multiple household appliances demonstrates measurement
accuracy within acceptable error margins, consistent real-time
reporting, and effective remote control. The design emphasizes
modularity and scalability, allowing additional nodes to be added
and future integration with machine learning for predictive
maintenance and demand forecasting. This work shows that 10T-
enabled energy monitoring is a practical, cost-effective route
toward smarter energy usage and tangible operational savings
while providing a foundation for integration with smart grid
and renewable energy systems.

Index Terms—IloT, Energy Monitoring, Power Consumption,
Cloud Analytics, Remote Control, Smart Grid, Predictive Main-
tenance

. INTRODUCTION

Energy underpins modern life: manufacturing plants, com-
mercial buildings, and households all depend on a reliable
supply. Yet today’s energy landscape faces multiple pressures
— rising demand, cost volatility, and an urgent need to reduce
greenhouse gas emissions. Conventional electricity meters pro-
vide total consumption over billing intervals but do not provide
the granular, real-time data required for optimization, fault

Swetha M
Dept. of Information Science and Engineering
HKBK College of Engineering, Bangalore, India
1hk22is114@hkbk.edu.in

Thrishul Rai
Dept. of Information Science and Engineering
HKBK College of Engineering, Bangalore, India
1hk22is118@hkbk.edu.in

detection, or appliance-level decision making. Without such
detail, inefficient loads remain undetected, opportunities for

load shifting or demand response are missed, and preventive
maintenance cannot be informed by energy behavior patterns.

The Internet of Things (10T) enables a new approach. Small,
inexpensive sensors combined with microcontrollers and se-
cure networks can deliver continuous streams of measurement
data. When combined with cloud storage and analytics, this
stream becomes actionable: operators can identify peak loads,
detect anomalies that suggest faults, and implement control
strategies — for example, to shed noncritical loads during
a peak tariff period. Furthermore, integration with predictive
models enables forecasting of future consumption and detec-
tion of emerging faults before they become critical.

This paper describes an end-to-end loT-based power con-
sumption and monitoring system. Core objectives are: (1)
appliance-level, real-time measurement of voltage, current,
power, and energy; (2) robust, low-latency telemetry to cloud
platforms; (3) visualization and remote-control for end-users;
(4) amodular, scalable design that can be extended to buildings
and microgrids; and (5) a pathway to add machine-learning
based forecasting and anomaly detection. The architecture
uses calibrated sensors (e.g., ACS712 for current, ZMPT101B
for voltage), an ESP32 or similar microcontroller for edge
processing, MQTT for telemetry, time-series storage on the
cloud, and a web/mobile dashboard for visualization and
control. The system includes relay-based control hardware to
enable demand management and automation. Later sections
explain related work, detailed system architecture, methodol-
ogy, circuit-level implementation, flow, experimental results,
discussion, and future scope in depth.

Il. RELATED WORK

Energy monitoring has been an active research area
with multiple approaches and technological advances. Tradi-
tional utility-grade smart meters provide billing accuracy, but
not appliance-level visibility. Non-intrusive load monitoring
(NILM) attempts to infer appliance usage from a single point
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measurement but has limitations in accuracy and requires
complex signal processing and training. Researchers have in-
creasingly turned to loT-based approaches for finer granularity
and direct per-appliance sensing.

Several implementations have been proposed: cloud-
connected smart meters that push data for visualization and
billing, edge analytics frameworks that perform some process-
ing locally before transmission, and hybrid systems combining
edge pre-processing with cloud analytics. Rashid et al. (2020)
implemented a cloud-dashboard based 10T energy monitor
suitable for residential deployment, demonstrating usability
but lacking control channels. Hossain (2019) incorporated ML
models to forecast consumption and detect anomalies; the
results were promising but the approach demanded significant
compute resources and high-quality labeled data. Other works
examine demand response in smart grids, showing how dis-
tributed control can reduce peak demand if accurate telemetry
and control are available.

The system presented here builds on that body of work
by emphasizing end-to-end practicality: low-cost, calibrated
sensors; edge pre-processing to reduce telemetry bandwidth;
secure and reliable cloud ingestion; baseline analytics (peak
detection, threshold alerts); and relay-based actuation. Unlike
NILM, the design favors instrumenting individual loads where
feasible, offering higher accuracy and simpler analytics at the
cost of more sensors. The presented architecture also con-
siders practical deployment constraints — sensor calibration,
isolation for safety, and network reliability — which many
academic prototypes do not fully address.

I1l. SYSTEM ARCHITECTURE
The proposed architecture is layered and modular:

A. Hardware Layer

Per-appliance sensing uses an appropriate current sensor
(ACS712 or SCT-013 with burden resistor) and a voltage
sensing transformer (ZMPT101B or resistive divider with
isolation). Sensors feed an analog front-end to the micro-
controller (ESP32/Arduino) that performs ADC sampling at
adequate rates (e.g., 1-5 kHz for waveform reconstruction
when needed). An isolated relay driver stage (optocouplers,
transistor drivers, and proper flyback diodes) controls mains
relays for switching loads.

B. Edge Processing Layer

The microcontroller performs calibration and filtering (mov-
ing average, windowed RMS calculation). Instantaneous power
P(t) = v (t) § I(t) is computed, then aggregated to compute
energy E = Pdt. Edge pre-processing reduces bandwidth
by sending summaries and periodic samples rather than raw
waveforms. The firmware supports MQTT or HTTPS with
TLS for secure transmission.

C. Communication Layer

MQTT is preferred for lightweight, pub/sub telemetry;
HTTP/REST can be used for configuration or on-demand

queries. Messages include timestamps, node 1D, instantaneous
power, cumulative energy, and status codes. Message QoS
and retry mechanisms ensure reliability under intermittent
connectivity.

D. Cloud and Analytics

A cloud ingestion pipeline stores data in a time-series
database (e.g., InfluxDB, Timescale, or cloud-managed al-
ternatives). Analytics modules compute peak detection,
hourly/daily summaries, anomaly detection (threshold or sta-
tistical), and prepare dashboards. Alerting integrates with push
notifications or email.

E. Application Layer

Web/mobile dashboards show per-appliance and aggregate
consumption, trends, and allow manual or scheduled control of
relays. APIs expose data for further processing or integration
with energy management systems.

F. Safety and Security

Design includes isolation, fusing, overcurrent detection,
and encrypted communications. Authentication and role-based
access control limit control actions to authorized users.

Voltage &
Current Sensors

Edge Processor (ESP32)

Relay Driver
(Actuation)

Cloud Platform
(DB & Analytics)

Dashboard
(Web/Mobile)

Fig. 1. Block Diagram of loT-Based Power Monitoring System

Block diagram showing sensors, edge processing, cloud
analytics, and dashboard.

IV. METHODOLOGY

The methodology spans sensor selection and calibration,
firmware design, cloud pipeline, dashboard development, and
evaluation.
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A. Sensor Selection & Calibration

Choose sensors with adequate dynamic range: ACS712
for j 30A loads, SCT-013 for clamp-based measurement on
higher currents. Voltage sensing must ensure isolation and
safety. Calibrate using a reference meter; apply offset and gain
corrections in firmware. Compute RMS values over windows
(e.g., 1-second windows) to get stable readings.

B. Firmware

Implement ADC sampling, band-pass filtering if needed,
RMS/Power calculation, and buffering. Provide OTA updates
and configuration via a local web endpoint. Transmit periodic
telemetry (e.g., every 5-60 s) and event-driven messages
(threshold exceedance).

C. Cloud Pipeline

Use a message broker (MQTT) with ingestion into a time-
series database. Implement analytic jobs to compute aggre-
gates, detect anomalies (z-score or change-point detection),
and trigger alerts. Persist raw telemetry for a defined retention
window for debugging and model training.

D. Dashboard and Control

Design dashboard widgets: live gauge for instantaneous
power, line charts for historical power/energy, per-appliance
tables, and control toggles for relays. Provide scheduling and
policy rules for automatic control (e.g., turn off non-critical
loads during peak tariff).

E. Evaluation

Deploy several nodes in a test environment, log readings,
compare against calibrated reference meters to compute errors
(MAE, RMSE), measure latency from event to cloud to
dashboard, and test control round-trip time.

V. CIRCUIT IMPLEMENTATION

The circuit comprises sensor front-ends, ADC interface,
microcontroller, and relay drivers:

A. Sensor Front-End

For current: ACS712 provides an analog voltage propor-
tional to current; feed into ADC after biasing. For voltage:
ZMPT101B or an isolated divider and op-amp stage to present
a safe ADC-level signal. Include RC filtering to reduce high-
frequency noise.

B. ADC and Microcontroller

ESP32 has built-in ADCs (with calibration). Sample syn-
chronized voltage and current signals if power factor and
waveform shape are relevant. Compute instantaneous power
and integrate for energy.

C. Relay and Safety

Use opto-isolated drivers and MOSFET/triac drivers de-
pending on AC/DC loads. Add fuses, surge protectors, and
proper PCB creepage/clearance distances for mains work.
Follow electrical safety standards applicable to your region.

Start / Initialize

Sensor Calibration

Sample V
& I (ADC)

Compute P =
V xI, RMS, Energy

Transmit Telemetry
(MQTT/HTTPS)

Cloud Processing
& Analytics

Dashboard
Update & Alerts

User Commands
/ Auto Control

Relay Actuation
/ Device Control

i

Loop / Continue
Monitoring

Fig. 2. Working Flowchart of IoT Power Monitoring System

VI. WORKING FLOWCHART

Working flowchart: initialization, sampling, compute, trans-
mit, analytics, control loop.

VII.

A testbed of four instrumented appliances (fan, LED lamp,
refrigerator, heater) was used. Each node sampled voltage and
current, computed power, and transmitted 1-second aggregated
telemetry to the cloud.

RESULTS AND DISCUSSION

A. Accuracy

Comparisons against a calibrated reference meter showed
mean absolute error (MAE) in power measurement typically
under 3-5% for steady resistive loads (lamp, heater). More
complex loads (refrigerator with compressor start-up) showed
transient errors, but RMS and energy totals over 1-hour
windows were within 5-7% of the reference — acceptable for
monitoring, though not sufficient for billing-grade purposes.

B. Latency

Telemetry to dashboard latency averaged 1.2-2.5 seconds
under normal network conditions, sufficient for near-real-time
monitoring and alerts. Relay control round-trip time (dash-

board click — relay actuated) averaged 1.5-3.0 s including
cloud processing, acceptable for manual control and automated
scheduling.

C. Use Cases

- Peak shaving: By scheduling noncritical loads to run off-
peak, measured energy costs can be reduced. - Fault detection:
Sudden sustained increase in current flagged as anomaly —
helpful to detect failing motors. - User engagement: Visual
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dashboards increased awareness; simple behavioral changes
led to measured reductions in simulated test energy usage.

D. Limitations

- Sensor placement: Per-appliance instrumentation requires
more hardware compared to NILM. - Transient events: High-
frequency transients require higher sampling rates for full
waveform capture. - Billing-grade accuracy requires dedicated,
certified metering hardware.

VIIL.

This paper presented a practical and modular 10T-based
power consumption and monitoring system that provides per-
appliance visibility, real-time telemetry, and remote control.
By combining calibrated sensing, edge computation, robust
telemetry, cloud analytics, and a user-friendly dashboard, the
system enables actionable insights and demand management
strategies that can reduce consumption and provide early
fault detection. The test deployment demonstrated acceptable
accuracy for monitoring and diagnostic purposes, low-latency
telemetry suitable for near-real-time control, and clear benefits
in terms of energy awareness and operational flexibility. The
architecture is explicitly designed for scalability and safety,
and includes measures for isolation and secure communica-
tions. While not a replacement for billing-grade metering,
this system provides a cost-effective route to granular energy
monitoring and paves the way toward integrating predictive
models, renewable sources, and smart-grid interactions.

CONCLUSION

IX. FUTURE WORK

Future enhancements will focus on three axes: analytics,
integration, and certification. Analytics: integrate machine
learning models (LSTM or gradient-boosted trees) for short-
term load forecasting and anomaly detection, enabling predic-
tive maintenance and proactive shedding. Integration: support
for distributed energy resources (solar, battery), enabling op-
timization strategies that minimize costs and carbon footprint.
Certification and reliability: for commercial deployment, work
toward calibration and certification per metering standards, and
rigorous testing for EMI/EMC and safety. Additional features
include demand response automation, tariff-aware scheduling,
device-level recommendations to users (based on cost/time
of use), and edge ML to reduce reliance on continuous
connectivity.
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