IJCRT.ORG ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Rapid Maxillary Expansion In Adults: A Review

¹AISHWARYA.S, ² AJANTHA.J, ³ DR.P. RAJAKUMAR MDS, ⁴ DR.NIVEDHITA.A.T BDS, ⁵DR.M.K.KARTHIKEYAN MDS

¹HOUSE SURGEON, ²HOUSE SURGEON, ³PROFESSOR, ⁴LECTURER, ⁵PROFESSOR AND HOD

Thai Moogambigai Dental College And Hospital

DR.M.G.R EDUCATIONAL RESEARCH AND INSTITUTE

Abstract:

Maxillary Transverse Deficiency (MTD) in adults presents with constricted maxillary arches, posterior crossbites, dental crowding, and functional and aesthetic concerns. Unlike pediatric patients, adult midpalatal sutures are often fused or highly interdigitated, limiting conventional rapid maxillary expansion (RME) and increasing the risk of dental tipping and alveolar bending. Contemporary approaches, including Surgically Assisted Rapid Maxillary Expansion (SARME) and Mini-implant Assisted RME (MARPE), enable predictable skeletal expansion while minimizing dental side effects. SARME involves osteotomies to overcome sutural resistance, whereas MARPE utilizes skeletal anchorage via palatal miniscrews to transmit expansion forces directly to the basal bone. Both methods improve occlusal function, facial aesthetics, and airway dimensions, though complications such as root resorption, periodontal changes, or surgical risks may occur. Careful patient selection, imaging assessment, appliance design, and retention protocols are essential for long-term stability. Advances in digital planning and minimally invasive techniques continue to enhance the safety and efficacy of adult RME.

Keywords: Rapid Maxillary Expansion, MARPE, SARME, Adult Orthodontics, Maxillary Transverse Deficiency

Introduction

Maxillary Transverse Deficiency (MTD), also referred to as maxillary hypoplasia, is a skeletal anomaly characterized by a reduced transverse width of the maxilla. Clinically, it manifests as a constricted maxillary arch, often presenting with unilateral or bilateral posterior crossbites, a narrow and high-arched palate, and decreased intermolar width. MTD can occur alone or alongside other sagittal or vertical malocclusions, frequently resulting in dental crowding due to insufficient arch space. Beyond dental misalignment, MTD affects facial aesthetics and function, presenting with features such as widened buccal corridors and narrowing of the nasal base.[1] In adults, untreated MTD can lead to several complications, including malocclusion with posterior crossbites, dental crowding, functional mandibular shifts due to occlusal interferences, localized periodontal issues such as bone loss and gingival recession, airway constriction

increasing the risk of mouth breathing and obstructive sleep apnea, and aesthetic concerns related to altered facial proportions. ²

The outcomes of rapid maxillary expansion (RME) differ significantly between pediatric and adult patients. In children, RME is highly effective due to the incomplete fusion of the midpalatal suture, allowing true skeletal expansion with minimal dental tipping, better alveolar adaptation, and greater long-term stability. In adults, however, the midpalatal suture is often fused or highly interdigitated, limiting nonsurgical skeletal expansion.³ Conventional tooth-borne expanders primarily induce alveolar bending and dental tipping, which increases the risk of gingival recession and relapse. To overcome these limitations, surgically assisted rapid palatal expansion (SARPE) and mini-implant assisted devices (MARPE/MSE) have been developed, offering enhanced skeletal expansion while minimizing dental side effects. Given the rising demand for adult orthodontic treatment for both functional and esthetic reasons, reviewing contemporary techniques and outcomes of adult RME is essential.⁴ This article gives an overview on Rapid Maxillary Expansion in Adults

Historical Perspective on Rapid Maxillary Expansion in Adults

Rapid maxillary expansion (RME) has a rich history dating back to 1860, when Emerson C. Angell first described lateral maxillary expansion by separating the maxillary sutures, successfully widening a 14-year-old patient's dental arch using a screw appliance an achievement notable for its time despite the absence of radiographic confirmation. Early adaptations by orthodontists such as Farrar, Goddard, G.V. Black, and Monson demonstrated variable success, though the procedure initially gained limited acceptance, particularly in adults, due to the progressive fusion and interdigitation of the midpalatal suture after adolescence.⁵ The technique was later repopularized in the mid-20th century, with Landsberger demonstrating skeletal effects using occlusal radiographs in 1956, followed by Korkhaus reintroducing RME in the United States, and Haas advancing its application in growing patients in the 1960s. Studies highlighted that while transverse growth at the midpalatal suture continues into late adolescence, nonsurgical RME in adults remained unpredictable due to sutural resistance, resulting predominantly in alveolar bending and dental tipping rather than true skeletal expansion.⁶

To address these limitations, surgically assisted rapid palatal expansion (SARPE) emerged in the late 20th century, allowing reliable skeletal expansion in skeletally mature patients. Further refinements, including corticotomies and the development of mini-implant assisted devices (MARPE/MSE), have enhanced skeletal anchorage, enabling effective maxillary expansion in adults without extensive surgery. Historical reports also emphasized the importance of careful diagnostic imaging to assess suture patency prior to intervention, and modern studies have continued to explore the biomechanical principles, clinical outcomes, and adjunctive strategies that optimize RME in adult patients. 8

Biological Basis of Adult Rapid Maxillary Expansion (RME)

In adults, the biological response to rapid maxillary expansion (RME) is markedly different from that in children due to the maturation and ossification of the midpalatal suture. Unlike pediatric patients, where the suture is patent and allows true skeletal expansion, adults typically exhibit a highly interdigitated and partially or fully fused midpalatal suture, which increases resistance to expansion forces. Consequently, traditional tooth-borne RME in adults often produces a combination of skeletal and dental-alveolar effects, including alveolar bending and dental tipping, rather than pure skeletal displacement. The progressive ossification of the suture, generally reaching stages D or E after approximately 15 years of age, correlates with increased bone density and interdigitation, making nonsurgical expansion challenging and less predictable. Factors influencing the success of adult RME include age, suture morphology, bone density, and gender differences, with males often exhibiting thicker palatal bone and more mature sutures, thereby necessitating surgical adjuncts or skeletal anchorage. Mini-implant assisted rapid palatal expanders (MARPE) have emerged as a significant advancement, enabling more predictable skeletal expansion by transmitting forces directly to the palatal bone. Careful patient selection is critical, guided by imaging modalities such as cone-beam computed tomography (CBCT) to assess suture maturation and anatomical

considerations, which helps determine the suitability of nonsurgical RME, MARPE, or surgically assisted approaches. Beyond orthodontic correction, RME in adults has also demonstrated functional benefits, particularly in the management of obstructive sleep apnea (OSA), where expansion of the maxilla increases upper airway volume, reduces airway resistance, and improves breathing, highlighting its role as both a therapeutic and functional intervention in adult patients.¹¹

Surgical Approaches: Surgically Assisted Rapid Maxillary Expansion (SARME)

Surgically Assisted Rapid Maxillary Expansion (SARME) is the preferred approach for adult patients with fused or highly interdigitated midpalatal sutures, where conventional nonsurgical RME is ineffective or carries significant risks. ¹² SARME effectively accelerates maxillary expansion, addressing complex transverse deficiencies while also enhancing facial aesthetics a critical consideration in adult patients and typically requires a coordinated interdisciplinary approach between orthodontists and surgeons. Indications for SARME include severe transverse maxillary deficiency exceeding the limits of orthopedic forces, persistent unilateral or bilateral posterior crossbites, the need for increased arch perimeter to alleviate crowding without extractions, preparation for orthognathic surgery, craniofacial syndromes with premature suture fusion, cleft palate with maxillary collapse, cases with nonsurgical RME complications such as pain or periodontal lesions, and situations where nasal airway improvement is desired. SARME involves various osteotomies tailored to facilitate safe maxillary expansion. ¹³

Le Fort I osteotomy separates the maxilla from the nasal septum and pterygoid plates, sometimes combined with segmental surgery for complex deformities. Midpalatal osteotomy allows direct separation of the midpalatal suture, while pterygomaxillary separation disengages the maxilla from the pterygoid plates, a critical step enabling lateral movement of the maxillary halves, though it carries increased risk due to proximity to major vessels. Complications associated with SARME include hemorrhage, particularly during pterygomaxillary separation; infection or delayed healing; asymmetric expansion leading to midline deviations or bite discrepancies; root resorption or dental injury; palatal fistula or soft tissue trauma; postoperative pain, edema, and risk of relapse if retention is inadequate; and potential temporomandibular joint (TMJ) issues due to altered occlusion. Despite these risks, when properly indicated and executed, SARME remains a highly effective method to overcome skeletal resistance in adults, providing predictable, stable, and clinically significant maxillary expansion.

Non-Surgical Methods: Mini-implant Assisted Rapid Maxillary Expansion (MARPE)

Mini-implant assisted rapid maxillary expansion (MARPE) is a modern orthodontic technique designed to address transverse maxillary deficiencies in adolescents and adults by promoting skeletal expansion while minimizing unwanted dental effects.¹⁷ Unlike conventional tooth-borne expanders, MARPE utilizes temporary anchorage devices (miniscrews) inserted directly into the palatal bone, allowing for more predictable separation of the midpalatal suture and enhanced skeletal widening. Traditional tooth-borne devices, such as Hyrax or Haas expanders, transmit forces primarily through the teeth, often resulting in dental tipping, alveolar bending, and periodontal stress, particularly in adults with fused sutures.¹⁸ In contrast, MARPE delivers forces directly to the basal maxillary bone, either as a purely bone-borne device or as a hybrid tooth-bone-borne system, thereby maximizing skeletal effects and reducing dental side effects. MARPE is indicated in patients beyond the optimal age for conventional nonsurgical RME, particularly young adults with moderate to severe transverse deficiencies, individuals contraindicated for or unwilling to undergo surgical expansion (SARPE), and patients with obstructive sleep apnea, where expansion can improve airway volume.

It is also suitable for cases with significant suture interdigitation where traditional RME is unlikely to succeed.¹⁹ Limitations include reduced efficacy in very mature sutures with advanced ossification, anatomical variability necessitating careful CBCT evaluation for miniscrew placement, potential complications such as miniscrew loosening or mucosal irritation, and the requirement for patient compliance

during activation and retention.²⁰ While some dental tipping or alveolar bending may still occur, these effects are generally less pronounced than with tooth-borne expanders.²¹ Success depends on careful patient selection, detailed anatomical assessment, and meticulous clinical execution, and ongoing research continues to evaluate long-term stability and outcomes in older adults.²²

Clinical Outcomes of Rapid Maxillary Expansion (RME) in Adults

Rapid maxillary expansion in adults produces transverse widening at both the alveolar and basal bone levels; however, skeletal expansion is generally less pronounced than in adolescents due to increased resistance from the ossified midpalatal suture. Palatal width typically increases, extending to the nasal cavity in a triangular pattern, with the greatest expansion occurring at the dental crown level and diminishing toward the nasal floor. Maxillary basal bone expansion in adults averages around 1.3 mm following conventional RME, compared to approximately 2.7 mm in younger patients, with greater skeletal effects observed when skeletal anchorage (MARPE) or surgical assistance (SARME) is employed. Expansion also positively impacts airway dimensions, increasing nasal cavity volume and potentially benefiting patients with obstructive sleep apnea or compromised nasal breathing. In adult RME, tooth movement predominantly involves tipping rather than bodily translation, particularly with tooth-borne devices. Buccal inclination of molars increases, contributing to a greater intermolar angle post-expansion, while alveolar bone bending occurs in response to skeletal resistance. These dental-alveolar changes may predispose to mild periodontal concerns, including gingival recession and bone dehiscence, especially if excessive forces are applied or expansion is rapid. [5]

Short-term stability after RME is generally favorable, with retention appliances maintained during bone remodeling. Long-term stability, however, depends on skeletal maturity, the magnitude of expansion, and adherence to post-expansion retention protocols. Relapse is influenced by incomplete suture opening, dental tipping, soft tissue resistance, and patient compliance, with adults exhibiting a higher tendency toward relapse due to reduced skeletal remodeling compared to younger patients. Use of skeletal anchorage devices or surgical approaches can enhance long-term stability by promoting true skeletal expansion. Adults typically experience mild to moderate discomfort during activation, often greater than in younger patients. Aesthetic benefits, such as a broader smile and reduced buccal corridors, contribute to high patient satisfaction. Some temporary functional effects, including altered speech or increased salivation, may occur during treatment.²³

Table1: Comparison Between MARPE and SARPE in Adult Rapid Maxillary Expansion

Parameter	`	SARPE (Surgically Assisted Rapid Palatal Expansion)
Type of Approach	Nonsurgical, minimally invasive	Surgical, invasive
Mechanism of Action	Uses miniscrews anchored in palatal bone to apply skeletal forces directly	Involves osteotomies (Le Fort I, midpalatal, pterygomaxillary) to release skeletal resistance
Anesthesia	Usually performed under local anesthesia	Requires general or regional anesthesia
Indications	deficiency; partially fused sutures; patients	Moderate to severe transverse maxillary deficiency; fully fused sutures; complex skeletal discrepancies
Age Suitability	Late adolescents and young adults (up to ~25 years)	Adults with complete skeletal maturity (>25 years)

Parameter	` -	SARPE (Surgically Assisted Rapid Palatal Expansion)
Skeletal Expansion	• `	Greater and more stable skeletal expansion (3–5 mm or more)
Dental Effects	Minimal dental tinning due to skeletal	Minimal dental effects if performed correctly; risk reduced with segmental control
Pattern of Expansion	"V-shaped" expansion—wider anteriorly	"Parallel" expansion—uniform separation along midpalatal suture
Airway Improvement		Produces significant airway enlargement; beneficial in moderate to severe OSA
Stability		High skeletal stability with lower relapse rates
Complications	Miniscrew loosening, mucosal irritation, partial suture opening, dental tipping	Hemorrhage, infection, asymmetric expansion, postoperative pain, root injury
Recovery Time	Norter recovery and minimal downtime	Longer recovery period; requires postoperative care
Cost	Relatively cost-effective	Higher due to surgical and hospitalization expenses
Patient Comfort	Better tolerance; mild discomfort	Greater post <mark>operative discomfort and swelling</mark>
Clinical Settings	Can be done in orthodontic clinic	Requires hospital or surgical setting
Adjunctive Use		Often combined with orthognathic surgery or corticotomy for complex deformities

Complications and Limitations of Rapid Maxillary Expansion (RME) in Adults

Rapid maxillary expansion in adults, while effective, carries certain complications and limitations that must be carefully considered. Root resorption is generally minimal when forces are controlled and appliances are properly designed, but excessive or rapid expansion and uncontrolled dental tipping can increase the risk. Bone-borne devices such as MARPE reduce stress on the periodontal ligaments compared to traditional tooth-borne expanders, thereby minimizing the potential for root resorption.²⁴ Gingival recession, particularly on the buccal aspects of anchor teeth, may occur due to alveolar bone bending and dental tipping, with some evidence suggesting female patients may experience more significant attachment loss. Proper appliance fabrication, controlled activation, and meticulous oral hygiene can mitigate these risks, and long-term periodontal outcomes have been reported as clinically acceptable when nonsurgical RME is properly managed.²⁵

Surgical complications associated with SARME include hemorrhage especially from the internal maxillary artery during pterygomaxillary disjunction postoperative infection, delayed wound healing, palatal fistula formation, asymmetric expansion, root injury, postoperative pain and edema, temporomandibular joint disturbances, and potential relapse if retention or bone remodeling protocols are inadequate. Factors limiting skeletal expansion in adults include increased bone density and ossification of the midpalatal suture,

interdigitation or complete fusion of sutural margins, craniofacial structural resistance such as the zygomatic buttress and pterygopalatine junction, individual variability in skeletal anatomy, and age-related reductions in skeletal responsiveness. Additionally, poor anchorage design or concentration of forces on the teeth rather than the basal bone can result in dental tipping and alveolar bending instead of true skeletal expansion. ²⁶

Discussion

Rapid maxillary expansion (RME) in adults has emerged as a promising therapeutic option for managing maxillary transverse deficiencies, particularly in cases where conventional orthodontic approaches are less effective due to increased sutural resistance. Among the available methods, miniscrew-assisted rapid palatal expansion (MARPE) has gained popularity for its ability to achieve skeletal expansion with reduced dentoalveolar tipping, offering a less invasive alternative to surgically assisted rapid palatal expansion (SARPE). While MARPE demonstrates favorable outcomes in young adults and minimizes periodontal risks, SARPE remains the preferred choice in patients with advanced suture ossification or severe transverse discrepancies, as it provides more predictable skeletal widening, albeit with higher risks of surgical complications. ²⁷

Evidence suggests that both approaches can effectively correct crossbites and increase maxillary arch dimensions in adults, with MARPE associated with fewer dental side effects and SARPE offering enhanced stability when carefully indicated. Beyond orthodontic correction, RME has also been increasingly recognized for its role in managing obstructive sleep apnea, as maxillary expansion can enlarge the upper airway and improve respiratory function. Nevertheless, the success of RME in adults is highly dependent on patient selection, anatomical considerations, and retention strategies. Continued research is necessary to refine biomechanical approaches, reduce complications, and establish long-term evidence to guide clinical decision-making in adult populations. ²⁸

Conclusion

Rapid maxillary expansion in adults has evolved significantly, with advances such as MARPE, surgical assistance, and digital planning enhancing skeletal expansion while minimizing dental side effects. Current evidence demonstrates that both nonsurgical and surgically assisted approaches can effectively correct transverse deficiencies, improve occlusion, and positively impact airway function, though outcomes remain influenced by age, suture morphology, and individual anatomy. Careful patient selection, precise appliance design, and retention protocols are critical for optimizing stability and reducing complications. Future directions, including 3D-guided expansion, CAD/CAM-based devices, biomechanical optimization, and combination therapies with aligners or orthognathic surgery, hold promise for more predictable, minimally invasive treatment. Long-term, multicenter studies are needed to further validate outcomes, refine clinical guidelines, and expand the applicability of adult RME.

References

- 1. Andrucioli MCD, Matsumoto MAN. Transverse maxillary deficiency: treatment alternatives in face of early skeletal maturation. Dental Press J Orthod. 2020 Jan-Feb;25(1):70-79. doi: 10.1590/2177-6709.25.1.070-079.bbo. PMID: 32215481; PMCID: PMC7077945.
- 2. Bin Dakhil N, Bin Salamah F. The Diagnosis Methods and Management Modalities of Maxillary Transverse Discrepancy. Cureus. 2021 Dec 17;13(12):e20482. doi: 10.7759/cureus.20482. PMID: 35047300; PMCID: PMC8760022.
- 3. Sharma A, Goyal M, Mittal S, Aggarwal I, Vishavkarma P. Maxillary transverse discrepancy: Latest innovations in diagnosis and treatment planning [Internet]. *J Dent Panacea*. 2024 [cited 2025 Sep 19];6(2):63-72. Available from: https://doi.org/10.18231/j.jdp.2024.015
- 4. Rapid maxillary expansion in adult patients An integrated review. Res Soc Dev. 2024;13(7):e11713746386. Available from: https://rsdjournal.org/rsd/article/view/46386

- 5. Kumar S, Kedia NB. Rapid maxillary expansion appliance in correction of unilateral skeletal crossbite in an adult female patient: A case review [Internet]. *IP Indian J Orthod Dentofacial Res*. 2024 [cited 2025 Sep 19];10(2):119-123. Available from: https://doi.org/10.18231/j.ijodr.2024.022
- 6. Agarwal A, Mathur R. Maxillary Expansion. Int J Clin Pediatr Dent. 2010 Sep-Dec;3(3):139-46. doi: 10.5005/jp-journals-10005-1069. Epub 2010 Sep 15. PMID: 27616835; PMCID: PMC4993819.
- 7. Timms DJ. The dawn of rapid maxillary expansion. Angle Orthod. 1999 Jun;69(3):247-50. doi: 10.1043/0003-3219(1999)069<0247:TDORME>2.3.CO;2. PMID: 10371430.
- 8. Baxi S, Vadher V, Tekade SS, Bhatiya V, Navlani M. Rapid maxillary expansion-A review [Internet]. *J Contemp Orthod*. 2022 [cited 2025 Sep 19];6(3):125-129. Available from: https://doi.org/10.18231/j.jco.2022.023
- 9. Allam A, Ahmed B, Ab Rahman N. Why does maxillary skeletal expansion work with some adults and fail with others?: A narrative review. Saudi Dent J. 2024;36(7):984-989.
- 10. Zhang W, Chung M, Zhu Y, et al, Midpalatal suture osteotomy combined with microimplant-assisted rapid palatal expansion for adult maxillary transverse deficiency treatment: a study protocol of a randomised controlled trial *BMJ Open* 2025;15:e094656. doi: 10.1136/bmjopen-2024-094656
- 11. Festa F, Festa M, Medori S, Perrella G, Valentini P, Bolino G, Macrì M. Midpalatal Suture Maturation in Relation to Age, Sex, and Facial Skeletal Growth Patterns: A CBCT Study. Children (Basel). 2024 Aug 20;11(8):1013. doi: 10.3390/children11081013. PMID: 39201947; PMCID: PMC11353169.
- 12. Budacu, C. C., Nechita, A., Forna, D. A., Forna, N., Stan, G., Earar, K., Trifautanu, P., & Miulescu, M. (2024). *Rapid maxillary expansion (sarms) surgically assisted in adult patients*. *16*(1), 511–519. https://doi.org/10.62610/rjor.2024.1.16.49
- 13. Althi A, Valluri DS, Vaddeswarapu A. Maxillary expansion in orthodontics a brief overview. Int J Curr Pharm Rev Res. 2024;16(5):48-58.
- 14. Pogrel MA, Kaban LB, Vargervik K, Baumrind S. Surgically assisted rapid maxillary expansion in adults. The International Journal of Adult Orthodontics and Orthognathic Surgery. 1992;7(1):37-41. PMID: 1453038.
- 15. Loriato L, Ferreira CE. Surgically-assisted rapid maxillary expansion (SARME): indications, planning and treatment of severe maxillary deficiency in an adult patient. Dental Press J Orthod. 2020 May;25(3):73-84. doi: 10.1590/2177-6709.25.3.073-084.bbo. Epub 2020 Aug 19. PMID: 32844966; PMCID: PMC7437145.
- 16. Suria L, Parul. Surgically assisted rapid palatal expansion: a literature review. Am J Orthod Dentofacial Orthop. 2008;133(2)
- 17. Carruitero, M. J. (2022). Non-surgical rapid maxillary expansion with mini-implants in adults: A Narrative Review. *Journal of Oral Research*, 11(6), 1–14. https://doi.org/10.17126/joralres.2022.064
- 18. Handelman CS. Nonsurgical rapid maxillary alveolar expansion in adults: a clinical evaluation. Angle Orthod. 1997;67(4):291-305; discussion 306-8. doi: 10.1043/0003-3219(1997)067<0291:NRMAEI>2.3.CO;2. PMID: 9267578.
- 19. Handelman CS, Wang L, BeGole EA, Haas AJ. Nonsurgical rapid maxillary expansion in adults: report on 47 cases using the Haas expander. Angle Orthod. 2000 Apr;70(2):129-44. doi: 10.1043/0003-3219(2000)070<0129:NRMEIA>2.0.CO;2. PMID: 10833001.
- 20. H. Almoabady, E., Alzamzami, A. A., Alrashdi, T. S., Mujthil, K. M., Almohammadi, K. S., Okashah, Y. A., Alotaibi, A. H., Alghamdi, M. I., Alamrani, S. A., Amanullah, F. S., Alzyiad, F. A., & Safhi, T. A. (2024). Definition, indication and outcome of miniscrew-assisted rapid palatal expansion. *International Journal Of Community Medicine And Public Health*, *12*(1), 487–492.
- 21. Labunet A, Iosif C, Kui A, Vigu A, Sava S. Miniscrew-Assisted Rapid Palatal Expansion: A Scoping Review of Influencing Factors, Side Effects, and Soft Tissue Alterations. Biomedicines. 2024 Oct 24;12(11):2438. doi: 10.3390/biomedicines12112438. PMID: 39595004; PMCID: PMC11591991.
- 22. Nojima LI, Nojima MDCG, Cunha ACD, Guss NO, Sant'Anna EF. Mini-implant selection protocol applied to MARPE. Dental Press J Orthod. 2018 Sep-Oct;23(5):93-101. doi: 10.1590/2177-6709.23.5.093-101.sar. PMID: 30427498; PMCID: PMC6266324.

13CR

- 23. An JS, Seo BY, Ahn SJ. Differences in dentoskeletal and soft tissue changes due to rapid maxillary expansion using a tooth-borne expander between adolescents and adults: A retrospective Korean J Orthod. Mar observational study. 2022 25;52(2):131-141. 10.4041/kjod.2022.52.2.131. PMID: 35321952; PMCID: PMC8964468.
- 24. Sicca, N., Benedetti, G., Nieri, A., Vitale, S. G., Lopponi, G., Mura, S., Verdecchia, A., & Spinas, E. (2025). Comparison of Side Effects Between Miniscrew-Assisted Rapid Palatal Expansion (MARPE) and Surgically Assisted Rapid Palatal Expansion (SARPE) in Adult Patients: A Scoping Review. Dentistry Journal, 13(2), 47. https://doi.org/10.3390/dj13020047
- 25. Allam A, Ahmed B, Ab Rahman N. Maxillary skeletal expansion as a reliable technique for correction of transverse deficiencies in adults: a concise review. J Res Med Dent Sci. 2022;10(10):23-32.
- 26. Lione R, Franchi L, Cozza P. Does rapid maxillary expansion induce adverse effects in growing subjects? Angle Orthod. 2013 Jan;83(1):172-82. doi: 10.2319/041012-300.1. Epub 2012 Jul 23. PMID: 22827478; PMCID: PMC8805530.
- 27. de Moura, D. B., da Silva, E. A., Costa, N., da Ponte, A. R., dos Santos, W. R. A., & de Souza, J. M. (2024). Expansão rápida da maxila assistida por mini-implantes (MARPE), para correção de deficiência transversal maxilar em adulto: Revisão de literatura. Research, Society and Development, 13(12), e91131247735. https://doi.org/10.33448/rsd-v13i12.47735
- 28. Jambi, S., Salem, S., Alanazi, W., Alwusaydi, R. M., Alenezi, R., Alruwaili, H., & Elsayed, S. (n.d.). A Comprehensive Review of the Techniques and Outcomes of Various Maxillary Expansion *International* Approaches. Journal of Medicine in Developing Countries. https://doi.org/10.24911/ijmdc.51-1701023251