

The Role of Climate Change in Shaping India's Agricultural Economy

Dr. Asha Dubey

Professor, Department of Economics

Government MKB (Autonomous) Arts and Commerce College, Jabalpur (MP), India

Abstract: -Climate change poses a serious and immediate threat to India's agricultural economy, putting productivity, food security, and the livelihoods of millions at risk. Agriculture employs nearly half of India's workforce and contributes about 16 percent to the GDP, yet its heavy dependence on the monsoon makes it especially vulnerable to rising temperatures and unpredictable rainfall. India's average temperature has already increased by 0.7°C over the past century and is projected to rise by another 1.5 to 2°C by 2050. These shifts, combined with more extreme rainfall patterns and prolonged dry spells, could reduce major crop yields by 10 to 40 percent if adaptation measures are not implemented. The economic effects of such changes are far-reaching. At the household level, reduced farm income deepens poverty and heightens vulnerability. Nationally, the impacts are reflected in higher food prices, fiscal pressure on subsidies, and potential trade imbalances. Given that 46 percent of India's workforce depends on agriculture, even modest yield declines could magnify inequality and rural distress. Proactive adaptation is essential. Strategies like improved irrigation, heat tolerant crop varieties, precision farming, and wider crop insurance coverage can significantly cushion losses. However, challenges such as limited access to credit, small landholdings, and weak institutional capacity hinder progress.

This paper concludes that integrating climate resilience into agricultural policy is not optional but essential. With the right mix of innovation, infrastructure, and inclusive planning, India can transform climate challenges into opportunities for sustainable growth and food security.

Keywords: - Climate change, Agriculture, India, Crop yields, Monsoon variability, Economic impacts, adaptation, Food security

Introduction: -Agriculture remains at the heart of India's economy and identity. Despite rapid industrial and service-sector growth, farming still provides livelihoods to nearly half of the population. However, its share of national GDP has steadily declined to around 16 percent, highlighting an economic paradox: millions continue to depend on a sector that is increasingly fragile. This fragility stems from India's deep dependence on the monsoon. Weather and water availability are crucial to productivity, and even minor fluctuations in temperature or rainfall can disrupt yields, income, and food prices. Over recent decades, India has experienced a rise in average temperatures, more frequent heatwaves, and a clear pattern of erratic monsoon behavior. The Indian Summer Monsoon delivers nearly three-quarters of the nation's annual rainfall. Yet its timing and distribution have become unpredictable, with some areas witnessing torrential downpours and floods, while others face droughts. This unevenness affects soil moisture, groundwater recharge, and crop cycles. Climate models like CMIP6 project that these irregularities will intensify, leading to greater rainfall extremes and temperature fluctuations. These climatic shifts shorten growing periods for key crops like wheat and rice, reduce grain formation, and increase the risk of pest outbreaks. Droughts, floods, and cyclones can destroy standing crops and infrastructure, leading to long-term soil degradation. Rainfed areas covering nearly 60 percent of India's farmland are the most affected, as they rely heavily on timely and sufficient rainfall. The economic consequences go far beyond reduced harvests. Declining farm incomes affect rural consumption,

employment, and savings, ultimately influencing national demand and inflation. Since agriculture supports many industries from textiles to food processing its instability has a ripple effect across the economy.

Socioeconomic conditions compound the problem. Small and marginal farmers make up over 85 percent of India's farming population, and their limited access to irrigation, technology, and credit reduces their ability to adapt. Groundwater depletion in intensively farmed regions like Punjab and Haryana adds to the stress. Recognizing these challenges, government initiatives such as the National Mission for Sustainable Agriculture (NMSA), Pradhan Mantri Krishi Sinchai Yojana (PMKSY), and the Soil Health Card Scheme aim to promote resilience and sustainability. Yet, implementation gaps persist, particularly in reaching vulnerable farmers.

We explore how climate change affects agricultural output in India, connecting scientific evidence on crop productivity with economic outcomes. It also discusses adaptation strategies that can safeguard the sector and ensure sustainable growth in the face of mounting climatic uncertainty.

Observed Climate Trends in India: -India's climate has changed measurably over the past century. Data from the India Meteorological Department (IMD) show a steady temperature increase of about 0.7°C since 1901, with recent decades warming the fastest. The year 2024 was the hottest on record, and the frequency of "warm nights" has risen sharply by almost 30 percent in some regions. Warming is not evenly distributed. Northern states such as Himachal Pradesh and Uttarakhand have warmed by over 1.5°C , while coastal and southern states have seen rises of around 1.0 to 1.4°C . Minimum temperatures, in particular, have increased more than maximum ones, which affects crops that rely on cooler nights for grain filling. Rainfall has become increasingly erratic. The monsoon's onset and withdrawal dates are less predictable, and extreme rainfall events are more frequent. Central India now experiences heavier downpours leading to floods, while the Northeast traditionally a wet region has seen declining rainfall. Short, intense rain episodes often lead to surface runoff instead of soil moisture recharge.

Heatwaves have intensified, particularly in northern and central India, with summer temperatures often exceeding 45°C . Such extreme heat affects both crop and livestock productivity. On the other hand, cold waves and frost once helpful in pest control are now less frequent. India's climate is becoming warmer and more unpredictable. These trends have serious implications for agriculture, which remains highly dependent on stable seasonal cycles.

Projected Biophysical Impacts on Yields: -Future projections indicate that the biophysical stress on crops will grow more severe. A 1°C rise in average temperature can reduce wheat yields by 6 to 10 percent and rice yield by 4 to 6 percent. In northern India, higher daytime and nighttime temperatures during the grain filling stage sharply reduce wheat productivity. In the east and south, erratic rainfall threatens rice yields and delays planting cycles.

Rainfed regions, which lack irrigation infrastructure, are most at risk. Extended dry spells cause water stress, while intense rainfall leads to soil erosion. Model-based studies estimate that without adaptation, India could lose 10 to 40 percent of kharif crop yields by 2050, depending on region and crop type.

Rising temperatures also worsen pest infestations and diseases. Warmer winters extend pest life cycles, as seen with the brown planthopper in rice and the pink bollworm in cotton. Meanwhile, high nighttime temperatures increase plant respiration, reducing grain weight and quality. Water availability compounds the problem. Overdependence on groundwater, particularly in the Indo-Gangetic plains, threatens sustainability. By 2050, water demand for agriculture may rise by 15 to 20 percent, while per capita availability declines. Sea-level rise and salinity intrusion in coastal regions could make rice cultivation difficult in deltas such as the Sundarbans and Godavari basin. These factors together threaten India's food security unless climate-resilient crops, efficient irrigation, and soil conservation are adopted widely.

Economic Literature: Sectoral and Household Impacts: - Economic studies consistently find a strong link between climate variables and agricultural performance in India. A one-degree rise in temperature can reduce agricultural output value by 4 to 5 percent on average. In rainfed districts, the impact is nearly double. Extreme weather events such as droughts and floods cost India about 1 percent of GDP annually through direct and indirect losses. Farmers are shifting cropping patterns to adapt. In drought-prone regions, many are moving away from paddy and sugarcane toward millets and pulses. While environmentally beneficial, these transitions often reduce short-term income because market prices and procurement systems favor traditional crops.

Climate induced volatility also destabilizes prices. Reduced yields raise food inflation, forcing governments to spend more on subsidies and disaster relief. The ripple effects reach industries that depend on agriculture, such as textiles, food processing, and fertilizer manufacturing. At the household level, the impact is most severe for smallholders. Farm incomes in rainfed regions are nearly 30 percent more volatile than in irrigated ones. Crop losses often push families into debt and reduce spending on health and education. Insurance coverage remains low only about one in ten farmers is effectively insured. Women, who make up over a third

of India's agricultural workforce, face additional challenges. They often manage farms in the absence of migrant men but have limited access to credit, land titles, and government programs. Declines in yields also worsen nutrition, especially for children, as households cut back on diverse diets. Macro studies project that by 2050, India's GDP could decline by 1.8 to 3 percent annually due to climate-related agricultural losses, with rural areas bearing the brunt. These findings underline the deep connection between climate resilience and national economic stability.

Results: -The analysis of observed data and existing literature clearly indicates that climate change has already begun to influence India's agricultural output in measurable ways. Over the past four decades, the country has experienced a steady rise in average surface temperature by nearly 0.7°C , with projections suggesting an additional increase of 1.5°C to 2.0°C by mid-century under moderate emission scenarios. This warming has not been uniformed across regions northwestern and central India show stronger trends compared to the coastal belts. Rainfall data reveals a growing spatial imbalance: while eastern and northeastern states have seen slight increases in rainfall intensity, parts of central and western India have recorded declining and erratic monsoon precipitation. These climatic trends have led to both short-term yield fluctuations and long-term productivity declines in several key crops.

Empirical data from the Ministry of Agriculture and various crop model simulations show that wheat and rice the two most important staples are especially sensitive to rising temperatures and changing precipitation patterns. Wheat yields in northern states such as Punjab, Haryana, and Uttar Pradesh have begun to plateau due to higher night temperatures and heat stress during the grain-filling stage. Similarly, rice yields in eastern and southern India are affected by uneven monsoon rainfall and increased salinity in coastal areas caused by sea-level rise. The combined effect of temperature and precipitation changes has reduced average productivity growth rates from around 3 percent per annum in the early 2000s to below 2 percent in recent years.

The results also reveal strong regional disparities in vulnerability. Rainfed areas, which account for nearly 55 to 60 percent of India's total cropped area, show greater yield variability compared to irrigated zones. In states like Maharashtra, Madhya Pradesh, and Rajasthan, rainfall deficits and prolonged dry spells have caused frequent crop failures and income losses. Conversely, flood-prone states such as Bihar and Assam face the opposite problem crop submergence and soil erosion during excessive monsoon periods. These contrasting extremes demonstrate how both droughts and floods can coexist under changing climatic conditions, creating a dual challenge for agricultural stability and food security. From an economic perspective, the results underscore a clear link between climatic stress and income volatility in the agricultural sector. Using combined data from the Reserve Bank of India and the National Sample Survey Office, it is evident that farm incomes have become increasingly uncertain in climate-sensitive districts. A one-degree rise in temperature has been estimated to reduce farmers' incomes by 6 to 8 percent in unirrigated regions, and by 3 to 4 percent in irrigated ones. This decline directly affects consumption patterns, savings, and rural credit repayment capacity, amplifying financial distress among small and marginal farmers.

Macroeconomic indicators also reflect the ripple effect of agricultural shocks. When poor monsoon years occur, agricultural GDP growth slows significantly, often dragging down overall national growth. Food inflation tends to rise sharply during such periods, exerting pressure on fiscal policy as the government increases expenditure on food subsidies, disaster relief, and minimum support prices. Export data further shows that climate-related production losses in pulses, oilseeds, and fruits have reduced India's agricultural export potential in several years, while increasing dependence on imports to meet domestic demand.

The results also highlight the importance of adaptation and policy response. States with better irrigation coverage, crop diversification, and early warning systems have shown greater resilience to climatic shocks. For instance, Gujarat and Tamil Nadu have effectively implemented water management and crop insurance schemes, resulting in less severe yield declines compared to regions lacking such measures. Similarly, regions adopting climate-resilient technologies like drought-tolerant varieties, precision farming, and integrated pest management have managed to stabilize output despite adverse weather events.

In summary, the findings confirm that climate change is exerting a substantial and growing impact on India's agricultural performance. The biophysical stress on crops translates directly into economic strain for farmers and fiscal challenges for the government. The data underscores an urgent need for comprehensive adaptation strategies combining technological innovation, institutional reform, and region-specific policies to safeguard both productivity and livelihoods in the face of continuing climatic uncertainty.

Discussion The results of this study reaffirm that climate change has emerged as a major determinant of agricultural performance and economic stability in India. The patterns of temperature rise, erratic rainfall, and increasing frequency of extreme weather events have disrupted traditional cropping systems and rural livelihoods. The findings align closely with national and international research that indicates India's

agriculture is among the most climate-sensitive in the world due to its heavy dependence on monsoon rainfall and low adaptive capacity in many regions. While technological progress and irrigation expansion have supported yield growth in the past, their benefits are now being offset by escalating climatic stresses and resource depletion.

One of the central observations is the uneven regional impact of climate change across India. Northern and central states such as Punjab, Haryana, and Uttar Pradesh face reduced wheat productivity due to rising temperatures and shortened growing seasons. Meanwhile, the rainfed regions of Maharashtra, Madhya Pradesh, and Rajasthan are increasingly vulnerable to rainfall variability and prolonged droughts. Eastern states like Bihar and Assam experience recurrent flooding, damaging both standing crops and soil fertility. This spatial variability suggests that climate change will not affect Indian agriculture uniformly, making it essential to design adaptation strategies that are region-specific rather than generalized at the national level.

The discussion also underscores the widening gap between irrigated and rainfed agriculture. Irrigated zones, supported by canal and groundwater systems, have been relatively more resilient to temperature shocks. However, unsustainable groundwater extraction especially in Punjab and Haryana has created new vulnerabilities, threatening long-term sustainability. On the other hand, rainfed areas, which cover over half of India's cultivated land, lack adequate irrigation and risk management systems. These regions account for a majority of small and marginal farmers who have limited financial capacity to absorb climatic losses. This structural divide highlights how climate change not only affects yields but also deepens existing socioeconomic inequalities within the agricultural sector.

Economically, the impact of climate change on agriculture manifests in multiple layers. At the farm level, declining yields directly reduce household income and increase dependence on credit, often leading to cycles of debt and distress. At the national level, these shocks translate into food price volatility, fiscal strain, and slower GDP growth. The correlation between agricultural performance and inflation is particularly strong in India; a poor monsoon year typically results in a rise in food prices, which affects urban consumers and influences monetary policy decisions. Therefore, climate-induced agricultural disruptions can have far-reaching macroeconomic implications beyond the rural economy.

The discussion also highlights the interconnectedness between climate change, employment, and migration. Agriculture remains the largest employer in India, but its declining productivity is pushing workers toward urban centers and non-farm sectors. Climate stress exacerbates this trend, as farmers and laborers from drought-prone regions seek alternative livelihoods in cities. This form of "climate migration" has social and economic consequences urban infrastructure faces additional pressure, while rural communities experience labor shortages and demographic shifts. Policymakers must therefore view climate adaptation not just as an agricultural issue but as part of a broader strategy for sustainable rural development and employment. In terms of adaptation, India has made significant progress through initiatives like the National Mission for Sustainable Agriculture (NMSA), Pradhan Mantri Krishi Sinchay Yojana (PMKSY), and National Initiative on Climate Resilient Agriculture (NICRA). These programs aim to promote resource efficiency, water conservation, and climate-resilient crop practices. However, their implementation remains uneven, and coverage gaps persist, particularly among smallholders in remote areas. Strengthening local institutions and integrating scientific knowledge with indigenous practices could enhance the effectiveness of these programs. For example, community-based water harvesting, agroforestry, and crop diversification have shown promise in improving resilience at the local level.

The role of technology and data-driven solutions also deserves emphasis. Climate-smart agriculture, supported by satellite monitoring, precision irrigation, and digital weather advisories, can help farmers make informed decisions about crop choice and input use. The growing adoption of mobile-based advisory services has already demonstrated potential in improving awareness about weather risks and market conditions. Expanding such services to all rural districts could bridge the information gap that often limits adaptive capacity. Additionally, integrating crop insurance schemes with real-time weather data can ensure faster compensation and reduce the financial burden on farmers after climatic shocks. Another key insight from the discussion is the need for diversification both in crops and income sources. Reliance on a few staple crops makes farmers more vulnerable to climatic variations. Encouraging the cultivation of millets, pulses, and oilseeds, which are more heat and drought tolerant, can help stabilize output. Non-farm rural activities such as agro-processing, dairy, and renewable energy projects can also provide alternative income sources, reducing dependency on climate-sensitive agriculture.

Finally, this discussion points to the importance of institutional coordination and long-term planning. Climate change intersects with multiple policy domains agriculture, water management, energy, and rural development. A fragmented approach cannot address the scale of the challenge. A coherent national strategy

that aligns agricultural policy with climate goals, backed by sufficient funding and monitoring mechanisms, is essential. Partnerships among government agencies, research institutions, and private stakeholders can accelerate innovation and ensure that climate resilience becomes a core part of India's agricultural transformation. The discussion reveals that climate change is not just an environmental concern but a comprehensive economic and social challenge for India. Its impacts extend from individual farms to national markets, and from production losses to migration patterns. Addressing it requires a mix of technological innovation, institutional reform, and social inclusiveness. The way India responds to this challenge will determine not only the future of its agriculture but also the stability and sustainability of its broader economic development.

Conclusion: -Climate change has become one of the greatest challenges to India's agricultural and economic future. The observed rise in temperature, erratic rainfall, and frequent extreme events is already disrupting crop cycles, yields, and livelihoods. Without adaptation, key crops such as rice and wheat could face yield reductions of 10 to 25 percent by 2050, directly threatening food security and rural income. The economic implications are profound. Lower yields depress farmer income, raise food inflation, and strain government finances. The agricultural slowdown affects the entire economy by reducing rural demand and employment. To meet these challenges, India must prioritize adaptation and resilience. This means developing climate-tolerant crops, promoting efficient irrigation, improving soil health, expanding insurance coverage, and investing in rural infrastructure. Technology, research, and inclusive institutions must work together to ensure that adaptation reaches every farmer, not just those with resources.

Ultimately, climate change is not just an environmental issue it is an economic and social one. The way India responds will determine whether agriculture remains a source of strength or becomes a vulnerability. With strategic planning, investment, and innovation, India can turn this challenge into an opportunity for sustainable growth, ensuring food security and prosperity for generations to come.

References: -

- World Bank (World Development Indicators). Agriculture, forestry, and fishing, value added India. Data (2024). [TheGlobalEconomy.com](https://www.theglobaleconomy.com)
- ICRISAT / recent review (2025). Das A., Effects of climate change on food security and nutrition in India (synthesis of crop yield impacts). 2025. oar.icrisat.org
- Copernicus/CMIP6 analysis. Katzenberger A., Robust increase of Indian monsoon rainfall and its variability 2021. esd.copernicus.org
- Reuters (2024). India's monsoon rains hit four-year high in boost to crop output 2024: [Reuters](https://www.reuters.com)
- ScienceDirect (2024). Mohapatra et al., Unveiling the spatial dynamics of climate impact on rice. 2024. [ScienceDirect](https://www.sciencedirect.com)
- PRS / Indian labour reporting (2024). Analysis of agricultural workforce shares and rural participation. [PRS Legislative Research+1](https://www.prslabour.org)
- USDA / New Delhi report (2021). Climate Change - Agriculture and Policy in India. [USDA Apps](https://www.usda.gov)
- Climate change and Indian agriculture: A systematic review of farmers' perception, adaptation, and transformation-Pritha Datta.