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A Review Paper On Energy-Efficient Iot Networks 

Using AI-Based Edge Computing 
 

 

Abstract: The rapid proliferation of Internet of Things (IoT) devices in modern power systems has 

transformed the landscape of energy management, enabling real-time monitoring, predictive maintenance, 

and decentralized control. However, the exponential growth in data generation poses significant challenges 

for conventional cloud computing (CC) infrastructures, including high latency, bandwidth congestion, and 

security vulnerabilities. To address these limitations, emerging paradigms such as fog computing (FC) and 

edge computing (EC) offer localized processing closer to the data source, reducing latency and optimizing 

network resources. This review paper examines the integration of CC, FC, and EC within smart grid 

architectures, highlighting their technical advantages, implementation challenges, and contributions to 

enhancing system efficiency, resilience, and adaptability. Furthermore, the paper analyzes hierarchical EC 

architectures, including device, edge server, and cloud layers, and their role in enabling real-time energy 

management, fault detection, and adaptive control. The findings underscore the critical role of hybrid 

computing models in supporting large-scale, latency-sensitive, and data-intensive smart energy systems, while 

emphasizing the need for continued research in secure, scalable, and intelligent computational 

Keywords: Smart Grids, Edge Computing, Cloud-Fog Integration 

1 INTRODUCTION  
The increasing demand for smart energy systems has driven a rapid expansion in the deployment and variety 

of Internet of Things (IoT)-based smart devices within power systems [1]. IoT technologies have emerged as 

key enablers of smart grids, providing real-time monitoring, predictive maintenance, and decentralized control 

capabilities that enhance the efficiency, resilience, and adaptability of modern energy systems [2]. However, 

the exponential growth of IoT devices has generated massive volumes of data, creating significant demands 

for high-bandwidth communication networks and robust data processing infrastructures. Early projections 

highlighted the scale of this growth: Cisco Internet Business Solutions Group (IBSG) anticipated 

approximately 25 billion connected devices by 2015 and 50 billion by 2020 [3].  
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In terms of data generation, the International Data Corporation (IDC) reported that in 2010, over 1 zettabyte 

of digital data was generated globally, and by 2012, daily data generation reached approximately 2.5 exabytes 

[4]. Dell Technologies further estimated that by 2025, the number of IoT devices worldwide would reach 41.6 

billion, collectively generating 79.4 zettabytes of data [5]. This unprecedented surge underscores the urgent 

need for innovative solutions capable of handling large-scale data traffic while efficiently managing network 

resources. 

 

The massive volume of data produced by IoT devices necessitates advanced big data analytics and processing 

capabilities. Cisco’s 2018–2023 report emphasizes the critical need for innovative network architectures and 

data management frameworks to address the challenges posed by this data explosion [6]. To meet these 

demands, cloud computing (CC) emerged as a transformative technology, offering scalable, flexible, and 

distributed data management solutions. Introduced by IBM and Google in 2007, cloud computing provided 

methodologies for developing internet-scale applications without relying on on-premises infrastructure [7,8]. 

While CC enables centralized storage, access, and processing of vast datasets, it also introduces significant 

security and privacy challenges, particularly as providers host sensitive corporate and customer data [9,10]. 

 

The rapid expansion of IoT has highlighted the limitations of traditional cloud-centric architectures, 

particularly in latency-sensitive and real-time applications. Centralized cloud processing increases response 

times, intensifies bandwidth congestion, and raises privacy concerns. To address these limitations, fog 

computing (FC) emerged as an intermediate solution, offering localized storage and computation closer to the 

network edge [11]. However, while FC alleviates some latency and bandwidth issues, it remains insufficient 

for fully real-time, latency-critical applications [12]. To overcome these challenges, edge computing (EC) has 

been introduced, enabling data processing directly at the source. Unlike cloud computing, EC significantly 

reduces communication latency, minimizes bandwidth overhead, and improves responsiveness for time-

sensitive tasks such as real-time monitoring, fault detection, and control in smart grid systems [13,14]. In 

addition, EC offers potential benefits for energy efficiency, network optimization, and enhanced security by 

limiting data transmission to central servers [15]. 

Existing literature explores various aspects of EC implementation in smart grids, though many studies focus 

on specific components or theoretical frameworks. For example, some works provide overviews of EC 

potential in smart grids but note that practical deployments remain limited [16].  

 

Others analyze the hardware and software architecture of EC-cloud integrated systems but offer little insight 

into application scenarios [17]. Further studies examine IoT and edge-based smart grid architectures, 

integration with SCADA systems, and challenges such as scalability, security, and resilience, while 

highlighting key applications like power distribution monitoring, microgrids, and advanced metering [18,19]. 

Reviews on fog and edge computing categorize emerging research areas and communication techniques, 

analyzing both architectural developments and practical deployment strategies [20,21]. Collectively, these 

studies underscore the growing importance of EC in managing the data-intensive and latency-sensitive 

demands of modern smart energy systems, paving the way for more efficient, resilient, and adaptive power 

grid infrastructures. 
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2 LITERATURE REVIEW 

2.1 Cloud Computing 
2.1.1 Overview of Cloud Computing 

Cloud computing (CC) represents a paradigm shift in the way computing resources are delivered, enabling 

on-demand access to storage, services, and applications via the Internet [22]. The National Institute of 

Standards and Technology (NIST) defines cloud computing as “a model for enabling ubiquitous, convenient, 

on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with minimal management 

effort or service provider interaction” [23]. Different types of computing is shown in figure 1. 

 
Figure 1 Different computing techniques 

 

This model offers a highly scalable, flexible, and cost-effective framework for centralized data processing and 

management. In modern applications such as industrial automation, IoT-enabled infrastructures, and energy 

systems, CC plays a vital role in efficiently handling vast datasets through virtualization, multi-tenancy, and 

elastic resource allocation. 

2.1.2 Advantages and Functional Capabilities 

The core capabilities of cloud computing—such as scalability, elasticity, and centralized control—make it 

ideal for managing large-scale, data-intensive applications. Through dynamic provisioning of computational 

resources, cloud systems optimize operational efficiency and minimize capital expenditure. The ability to 

centralize data storage and computation enables enhanced data analytics, simulation, and decision support for 

complex systems, including energy management and smart grid control. 

2.1.3 Challenges and Limitations 

Despite its numerous benefits, cloud computing presents several technical and operational challenges. Its 

centralized architecture increases vulnerability to cyberattacks, such as data breaches, Distributed Denial-of-

Service (DDoS) attacks, and exploitation of insecure APIs [24,9]. In IoT-integrated smart grids, these security 

issues pose risks to data privacy and system reliability. 

Another significant limitation is latency—the physical distance between cloud servers and IoT devices 

introduces delays, making it difficult to meet the real-time response requirements of applications like 

frequency stabilization, power distribution control, and demand-response operations [25,26]. Although 
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heuristic optimization techniques such as Genetic Algorithms (GA) have been employed to minimize latency 

[27], these methods often fall short in time-critical scenarios. 

2.1.4 Hybrid and Distributed Computing Solutions 

To mitigate these challenges, hybrid architectures combining fog computing (FC) and edge computing (EC) 

have emerged. Fog computing introduces an intermediate layer between cloud servers and IoT devices, 

enabling pre-processing, data aggregation, and localized computation closer to data sources [28]. Edge 

computing extends this concept further by performing computations directly at the device or network edge, 

thereby minimizing communication delays and reducing bandwidth usage [13,14]. These distributed models 

improve system responsiveness, enhance energy efficiency, and support intelligent power management in 

smart grids. 

2.1.5 Applications in Smart Grids 

Cloud computing continues to play a central role in enabling advanced smart grid functionalities. Cloud 

infrastructures facilitate predictive maintenance, large-scale simulation, and dynamic energy optimization 

through self-healing mechanisms and centralized monitoring platforms [29]. By utilizing time-shared 

processing cores, multiple energy management algorithms can run concurrently without performance 

degradation [31]. 

Furthermore, cloud-based simulation environments allow operators to perform scenario analysis, forecast 

demand-generation patterns, and integrate renewable energy sources effectively [32,33]. CC also supports 

hybrid energy storage management by hosting predictive algorithms that extend battery lifespan and improve 

flexibility. 

2.1.6 Integration of IoT and Cloud Computing 

The convergence of IoT and CC amplifies the benefits of centralized computation. IoT devices continuously 

generate large volumes of heterogeneous data—such as voltage, current, frequency, and environmental 

parameters—that require rapid analysis for efficient energy management. 

Frameworks like CloudIoT have been proposed to enhance interoperability, support real-time data analytics, 

and manage user demands within complex smart grid networks [34,35]. Research demonstrates that the 

integration of CC and IoT improves scalability, adaptability, and resilience, allowing predictive and proactive 

energy control across distributed systems [36,37]. 

However, challenges in big data handling, intermittent renewable generation, and cyber-physical security still 

persist. Continuous advancements in hybrid architectures are essential to achieve fully autonomous, efficient, 

and resilient energy systems of the future. 

 

2.2 Edge Computing 

2.2.1 Concept and Definition 

Edge Computing (EC) is a distributed network paradigm that shifts computational processes closer to the data 

source, reducing latency, improving bandwidth utilization, and enhancing real-time decision-making [38]. 

Rather than relying solely on centralized cloud servers, EC allows data to be processed locally at IoT devices, 

user terminals, or edge servers. 

As described in [12], EC is “a new computing model performed at the edge of the network,” combining 

computing and network resources positioned between the data source and the cloud data center. By placing 

storage and computation near mobile devices or sensors, EC delivers faster localized processing [39,40]. 
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2.2.2 Architecture and Operational Mechanism 

Technically, EC decentralizes both computation and storage by analyzing raw data locally before transmitting 

summarized information to the cloud [41]. This design extends cloud-like functionalities to the network’s 

periphery, improving throughput and responsiveness [42]. 

A typical EC architecture comprises three layers: 

1. Device Layer – Includes sensors, actuators, and intelligent electronic devices (IEDs) such as relays 

and analyzers deployed across power distribution networks. These devices acquire and preprocess 

electrical parameters like voltage and current. 

2. Edge Server Layer – Acts as an intermediary that performs higher-level computations, such as fault 

detection, adaptive load management, and control operations, thereby reducing communication 

latency. 

3. Cloud Layer – Handles large-scale data aggregation, machine learning-based analysis, and long-

term storage for predictive and strategic decision-making. 

2.2.3 Applications in Smart Grid Systems 

In smart grids, EC is crucial for achieving real-time monitoring, fault detection, and localized data 

analytics. By processing data closer to where it is generated, EC minimizes communication delays, ensures 

faster control responses, and supports energy-efficient operations. 

This layered architecture enables hybrid computing environments that combine the real-time benefits of EC 

with the extensive computational power of the cloud. As a result, systems achieve a balanced trade-off 

between performance, scalability, and responsiveness [21]. 

3 Conclusion  

The review demonstrates that cloud computing, while indispensable for large-scale data management and 

advanced analytics in smart grids, faces inherent limitations in latency-sensitive applications. Fog and edge 

computing paradigms complement cloud infrastructure by providing localized computation and storage, 

thereby reducing response times, optimizing bandwidth, and enhancing operational efficiency. In smart grid 

applications, EC facilitates real-time monitoring, rapid fault detection, and adaptive energy management, 

bridging the gap between IoT data generation and centralized processing. Overall, hybrid computing 

architectures that integrate cloud, fog, and edge resources provide a balanced solution, combining scalability, 

reliability, and responsiveness to meet the evolving demands of modern power systems. 

4 Future Scope 

The future of smart energy systems lies in the development of intelligent, autonomous, and secure hybrid 

computing frameworks. Potential research directions include: 

1. Enhanced AI-driven Edge Analytics: Integrating machine learning and predictive algorithms at the 

edge to enable autonomous decision-making and proactive maintenance. 

2. Energy-Efficient Architectures: Designing edge and fog devices with low power consumption to 

optimize overall system energy efficiency. 

3. Cybersecurity and Privacy: Developing robust encryption, access control, and anomaly detection 

mechanisms to safeguard sensitive energy and consumer data. 

4. Scalability and Interoperability: Establishing standardized protocols to facilitate seamless 

integration of heterogeneous IoT devices across diverse smart grid infrastructures. 

5. Real-Time Hybrid Optimization: Exploring hybrid cloud-edge-fog models that dynamically 

allocate computational tasks based on latency, bandwidth, and energy requirements for improved 

operational performance. 
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