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Abstract

Battery Management Systems (BMS) are crucial for ensuring the safety, reliability, and efficiency of modern
energy storage systems, especially in electric vehicles and renewable energy applications. As global reliance
on rechargeable batteries grows, accurate health monitoring and Remaining Useful Life (RUL) prediction
have become essential due to complex degradation patterns and varying operating conditions. Traditional
rule-based models often fail to capture these nonlinear behaviors, underscoring the need for advanced data-
driven methods. This study applies machine learning (ML) algorithms—Support Vector Regression (SVR),
Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—to predict the RUL of lithium-ion
batteries using real-world degradation data. The process includes data preprocessing, feature scaling,
correlation analysis, model training, and evaluation through metrics such as RMSE, MAE, and R?, along
with diagnostic visualizations to assess prediction stability and error distribution. Results show that
ensemble-based models, particularly XGBoost and Random Forest, outperform SVR, offering superior
accuracy, minimal error variance, and robust performance across all RUL ranges. These findings highlight
that integrating ML-driven models into intelligent BMS enables early fault detection, enhances predictive
maintenance, and extends battery lifespan, contributing to safer, smarter, and more sustainable electric
mobility solutions.

Keywords: Battery Management Systems (BMS), Remaining Useful Life (RUL), Machine Learning (ML),
Support Vector Regression (SVR), ML-driven models, Random Forest (RF), and Extreme Gradient
Boosting (XGBoost)
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1. Introduction

Battery Management Systems (BMS) are vital for ensuring the safety, efficiency, and reliability of modern
energy storage systems, especially in electric vehicles and renewable energy applications. Evolving from
basic monitoring tools to intelligent predictive systems, BMS now handle complex tasks such as balancing
cells, controlling temperature, and estimating the state-of-charge (SOC) and state-of-health (SOH). These
systems use advanced algorithms to track dynamic battery behavior, reduce risks of overcharging, and
extend battery lifespan (Gundebommu et al., 2024). With growing energy demands, modern BMS rely
heavily on data analytics and computational models to achieve real-time accuracy and adaptive control.

Machine learning has transformed BMS by enabling precise Remaining Useful Life (RUL) estimation and
early fault diagnosis. Data-driven models such as Support Vector Regression (SVR) and Long Short-Term
Memory (LSTM) networks analyze large datasets to identify degradation patterns and predict failures more
accurately. Heuristic algorithms like Differential Evolution and Teaching-Learning-Based Optimization
(TLBO) further improve parameter estimation while reducing computational effort (Sangwan et al., 2017).
Regression-based approaches also help model open-circuit voltage and internal resistance, enhancing
performance prediction and control (Vyas & Shah, 2022). Together, these innovations make modern BMS
more intelligent, proactive, and reliable for next-generation energy systems.

1.1.  Growing Demand and Importance of Battery Health Monitoring

The rising adoption of electric vehicles, renewable energy systems, and portable electronics has intensified
the need for reliable battery health monitoring. As batteries power critical infrastructure, ensuring their
safety, performance, and lifespan has become crucial. Monitoring key parameters such as state-of-charge
(SOC), temperature, and structural integrity helps detect degradation early and prevent failures. Advanced
systems now integrate smart sensors and adaptive algorithms that enable real-time monitoring and predictive
maintenance. Innovations such as operando battery monitoring allow in-situ assessment without disturbing
electrochemical reactions, improving reliability and operational safety (Harutyunyan et al., 2022). Similarly,
smart EV battery-swapping stations track SOC and temperature continuously to prevent overheating and
extend service life (Dhanwat & Jawale, 2025).

Battery health directly influences system safety and efficiency. Poorly maintained batteries pose risks of
overheating, thermal runaway, and fire, especially in high-energy-density applications. To address these
challenges, modern Battery Management Systems (BMS) now use predictive diagnostics and intelligent
control to regulate charging, discharging, and thermal behavior. Recent developments, such as lithium-ion
batteries equipped with piezoresistive sensors, provide real-time detection of micro-cracks and stress points,
offering early failure warnings and ensuring safer, more efficient battery operation (Harutyunyan et al.,
2022).

1.2.  Fault Diagnosis in Battery Systems

Fault diagnosis is a critical function of Battery Management Systems (BMS) that ensures the safety and
reliability of batteries used in electric vehicles, grid storage, and portable devices. Modern BMS employ
data-driven techniques such as machine learning, sensor fusion, and model-based estimation to identify
faults before they escalate. These systems monitor voltage, current, temperature, and impedance to detect
irregularities linked to degradation, overcharging, or short circuits. Magnetic imaging has also emerged as
a non-invasive tool to detect internal issues like uneven current flow and short circuits by mapping magnetic
field variations (Chen et al., 2022). Additionally, fault modeling for conditions such as sulphation, oxidation,
or plate degradation enables early detection and precise intervention (Puzakov, 2022). Integrating these
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diagnostic methods within BMS enhances system resilience, prevents catastrophic failures, and supports
predictive maintenance—extending battery life while minimizing operational risks and maintenance costs.

1.2.1. Types of Battery Faults

. Overcharge Fault: This occurs when a battery is charged beyond its rated voltage, causing heat
buildup, gas release, or even thermal runaway. It is identified through continuous voltage and temperature
monitoring, which allows the system to cut off charging before it becomes hazardous (Puzakov, 2022).

. Over-discharge Fault: An over-discharge fault happens when a battery’s voltage falls below the
safe threshold, leading to chemical degradation and permanent capacity loss. Real-time voltage sensing in
BMS helps prevent deep discharge and maintains long-term cell health (Chen et al., 2022).

. Internal Short Circuit: This fault results from separator damage or dendrite growth between
electrodes, creating a direct current path that generates rapid heating. Magnetic field mapping techniques
are effective for locating such internal shorts by identifying irregular magnetic signals (Chen et al., 2022).
o Thermal Fault: Thermal faults develop when high current flow, inadequate cooling, or harsh
ambient temperatures raise cell temperature beyond safe limits. Continuous temperature sensing and thermal
imaging enable early fault detection, preventing overheating and fire hazards (Dhanwat & Jawale, 2025).

1.3. ML-Based Fault Detection and Diagnosis

Machine learning (ML) has transformed fault detection and diagnosis (FDD) in battery systems by providing
precise, data-driven identification of irregularities and predicting potential failures in real time. Unlike
traditional model-based or signal-processing methods that depend heavily on predefined parameters and
expert calibration, ML techniques learn directly from real-world operational data. This allows them to adapt
to different battery chemistries, configurations, and working environments without manual adjustments. ML
algorithms such as Support Vector Machines (SVM), Random Forests (RF), and Deep Neural Networks
(DNN) have shown remarkable success in detecting anomalies and estimating fault progression with greater
accuracy. Studies have demonstrated that these models outperform conventional methods in flexibility,
scalability, and early fault prediction capabilities, particularly for lithium-ion batteries (Samanta et al.,
2021). As a result, ML-driven diagnostic systems are becoming key enablers of predictive maintenance and
safer, more reliable energy storage operations.

2. Problem Statement

The rising reliance on rechargeable batteries in electric vehicles, renewable energy systems, and electronics
makes health monitoring essential. Battery degradation caused by electrochemical and operational stress
leads to reduced capacity and unexpected failures, posing safety and financial risks. Predicting Remaining
Useful Life (RUL) is challenging due to complex, non-linear degradation influenced by temperature, cycles,
and load variations. Traditional models lack accuracy and adaptability, highlighting the need for data-driven
machine learning and deep learning frameworks for reliable RUL estimation and predictive maintenance.
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3. Objectives of the Study
The key objectives of this research are:

1. To develop and implement machine learning and deep learning models for the accurate prediction
of battery Remaining Useful Life (RUL).

2. To compare the performance of three ML models—Random Forest, Support Vector Regression
(SVR), and Extreme Gradient Boosting (XGBoost)—and one DL model (Multilayer Perceptron).

3. To evaluate model performance using multiple regression metrics such as RMSE, MAE, and R?,
along with visual residual diagnostics to assess robustness and stability.

4. To identify the most reliable and interpretable model suitable for deployment in real-world battery
health management systems.

4. Literature Review

Gundebommu et al. (2024) explored the transformation of Battery Management Systems (BMS) through
intelligent technologies, highlighting how machine learning (ML) enables predictive monitoring, fault
detection, and Remaining Useful Life (RUL) estimation. Traditional BMS depend on static thresholds that
fail under varying conditions like temperature shifts, irregular load demands, and fluctuating charge—
discharge cycles. ML overcomes these limits by learning patterns from data, offering continuous feedback
and early fault warnings. The study emphasized embedding ML models such as Long Short-Term Memory
(LSTM) and Random Forests directly into BMS firmware to enable adaptive decision-making and reduce
hardware reliance. Integrating cloud connectivity further enhances the BMS by collecting distributed system
data, improving predictive accuracy (Madane et al., 2025). Gundebommu et al. recommended combining
physics-based and data-driven approaches for higher accuracy and computational efficiency (Komaragiri,
2024). They concluded that modular, adaptive architectures are vital for developing future-ready, intelligent
BMS frameworks for electric vehicles.

Sangwan et al. (2017) contributed to the foundation of battery health monitoring by emphasizing optimal
parameter estimation for automotive BMS. They showed that precise modeling of internal resistance,
capacity, and open-circuit voltage is key to reliable ML-based diagnostics. Using optimization algorithms
like nonlinear least squares and genetic algorithms, they achieved accurate estimations under diverse
operating conditions. These parameters provide essential inputs for supervised ML models, improving
prediction stability and reducing noise (Stephen et al., 2016). Their work linked empirical and data-driven
models, suggesting that adaptive filtering can update parameters in real time, especially in electric vehicles
and renewable systems where load and temperature vary. Ma et al. (2025) further supported their view,
noting that accurate modeling lowers data demands for semi-supervised learning. Sangwan et al. concluded
that parameter estimation should be continuous, not one-time, ensuring dynamic, transferable BMS designs
with strong generalization across real-world applications.

Vyas and Shah (2022) developed a regression-based battery modeling approach enhanced with a differential
evolution algorithm to capture complex lithium-ion battery dynamics. Their model addressed limitations of
static systems by using global optimization to avoid local minima and improve parameter estimation
accuracy. The results demonstrated significant performance improvements, with lower RMSE compared to
conventional techniques. This enhanced precision in modeling internal resistance and open-circuit voltage
strengthened ML-driven RUL and fault prediction capabilities (Gundebommu et al., 2024). When paired
with advanced algorithms like LSTM or ensemble learners, the method improved robustness under
nonlinear degradation. They also proposed adaptive thresholds guided by ML feedback to minimize false
alarms and maintain system accuracy (Komaragiri, 2024). By integrating real-time monitoring, the model

adapts dynamically to battery condition changes. Vyas and Shah concluded that treating modeling as a
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continuous, data-evolving process ensures safer operations, extended battery lifespan, and superior
predictive performance in energy storage systems.

Martinez-Laserna et al. (2018) investigated the feasibility of reusing second-life electric vehicle (EV)
batteries through machine learning (ML) techniques designed to manage inconsistencies in aging and usage
data. They observed that many retired EV batteries retain usable capacity but degrade unevenly due to
differences in operating environments and charging behaviors. To address this, unsupervised clustering was
applied to group batteries by degradation patterns, followed by predictive models to estimate Remaining
Useful Life (RUL) within each cluster. This process helps identify weak cells before integration into energy
storage systems, preventing costly system failures (Zhao et al., 2024). The study also incorporated Long
Short-Term Memory (LSTM) networks and autoencoders for time-series forecasting and feature
compression, improving accuracy and computational speed (Belkhode et al., 2025). A novel “reliability
score” from ensemble models further refined reuse decisions by combining prediction confidence with
uncertainty analysis. Martinez-Laserna et al. concluded that open ML datasets and collaborative platforms
are key to advancing second-life battery reuse and circular energy systems.

5. Methodology

This study adopts a structured comparative modeling approach to predict the Remaining Useful Life (RUL)
of lithium-ion batteries using traditional supervised machine learning algorithms. The methodology is
designed to maintain consistency, interpretability, and statistical rigor across all models evaluated. The entire
process includes data preprocessing, feature scaling, model training, metric-based evaluation, and diagnostic
visualization. To ensure fair comparison, the same dataset and preprocessing pipeline were uniformly
applied to each model.

5.1. Dataset Description

The dataset employed comprises cycle-level degradation data of lithium-ion batteries, including input
features such as voltage, current, temperature, and internal resistance. Each data point corresponds to a
single charge-discharge cycle, with the RUL defined either from the dataset directly or computed based on
known failure thresholds. To improve computational efficiency during experimentation, a representative
30% subset of the original dataset was selected. This subset preserved the statistical distribution and
coverage of the complete dataset, ensuring generalizability of the findings.

5.2. Data Preprocessing and Feature Scaling

Initial inspection confirmed the dataset was well-structured with no missing values or non-numeric entries.
Outliers were assessed using visual tools such as boxplots and histograms. However, no data points were
removed, as preserving the natural variance in degradation behavior was considered critical for model
robustness. Since the input features were measured in different units and on varying scales, all features were
standardized using Z-score normalization. This transformation ensured each feature had a mean of zero and
a standard deviation of one. Standardization was particularly important for algorithms such as Support
Vector Regression (SVR), which are sensitive to input magnitudes.
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5.3.  Train-Test Split

To evaluate model performance fairly, the dataset was randomly divided into training and testing subsets in
an 80:20 ratio using the train_test split() method from scikit-learn. A fixed random seed was set to ensure
reproducibility across experimental runs. As the target variable, RUL, is continuous rather than categorical,
stratification was not applied during the split. The training set was exclusively used for model learning,
while the test set was reserved for final evaluation to ensure unbiased performance reporting.

5.4. Feature Correlation Analysis

To identify potential redundancy among features, a Pearson correlation matrix was computed and visualized
as a heatmap. While certain input variables displayed moderate-to-high correlation, all features were
retained for modeling. Tree-based algorithms such as Random Forest and XGBoost are inherently capable
of managing multicollinearity through node-level feature selection during tree construction. No
dimensionality reduction techniques, such as Principal Component Analysis (PCA), were applied in order
to preserve the interpretability of feature-level effects on model predictions.

5.5. Machine Learning Algorithms

Three supervised regression algorithms were selected for evaluation: Support Vector Regression (SVR),
Random Forest Regressor, and Extreme Gradient Boosting (XGBoost). These models were chosen to
represent a diverse set of learning paradigms, encompassing kernel-based, bagging-based, and boosting-
based methods.

The SVR model utilized a radial basis function (RBF) kernel to introduce non-linearity. The model attempts
to fit a function within a specified e-tolerance margin and penalizes predictions falling outside this margin
using a slack variable. Although effective for capturing smooth trends, SVR requires careful parameter
tuning and incurs significant computational costs with increasing data size.

The Random Forest Regressor is an ensemble-based model that constructs multiple decision trees on
bootstrapped subsets of the training data and averages their outputs to reduce variance. It is relatively robust
to overfitting and performs well on non-linear data without extensive hyperparameter tuning. Additionally,
it offers intrinsic feature importance metrics, which enhance interpretability.

XGBoost is a highly optimized gradient boosting framework known for its efficiency and superior accuracy
on structured data. It constructs trees sequentially, with each new tree correcting the residuals of the prior
ensemble. The algorithm incorporates second-order derivatives for loss minimization and includes
regularization terms in its objective function to mitigate overfitting. Its scalability, fast training time, and
robustness to noise make it particularly effective for tabular regression tasks such as RUL prediction.

5.6.  Evaluation Metrics and Diagnostic Techniques

Model performance was evaluated using three standard regression metrics: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and the coefficient of determination (R? score). RMSE was prioritized
due to its greater sensitivity to large errors, making it suitable for reliability-critical tasks like battery RUL
forecasting. MAE complemented RMSE by providing a linear error magnitude assessment, while R?
indicated how well each model captured variance in the target variable.

In addition to numerical metrics, diagnostic plots were used to assess residual behavior and prediction
quality. Predicted versus actual RUL plots provided visual cues on model alignment. Residual histograms

were examined for normality and skewness, and residuals versus predicted RUL plots were analyzed to
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detect patterns such as heteroscedasticity or bias across prediction ranges. This comprehensive evaluation
strategy ensured that conclusions were grounded not only in accuracy but also in the reliability and
consistency of each model’s predictive behavior.

6. Results and Analysis

This section presents a comprehensive comparative evaluation of the three machine learning models Support
Vector Regression (SVR), Random Forest Regressor, and XGBoost applied to the task of predicting the
Remaining Useful Life (RUL) of lithium-ion batteries. The evaluation is structured across quantitative
performance metrics, visual inspection of model outputs, residual behavior, and prediction consistency
across RUL ranges. This multi-layered assessment ensures robust interpretation of model performance from
both statistical and practical standpoints.

6.1. Quantitative Evaluation

The primary metrics used for model comparison include Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the coefficient of determination (R? score). These metrics collectively assess average
prediction error, sensitivity to large deviations, and the model’s explanatory power over the target variable.
Table 1 summarizes the values obtained from each model on the held-out test set.

Table 1: Performance Metrics of Machine Learning Models

Model MAE RMSE R? Score
Random Forest 3.42 5.35 0.9998
XGBoost 3.63 5.29 0.9998
Support Vector Regression | 7.25 36.89 0.9941

Both ensemble-based models, Random Forest and XGBoost, demonstrate superior accuracy with very low
error margins and near-perfect R? values. While SVR maintains a high R? score, its MAE and RMSE are
significantly higher, indicating less consistent predictions and higher susceptibility to large errors.

6.2. Interpretation of MAE and RMSE

The MAE metric indicates the average magnitude of prediction errors. The Random Forest model achieved
the lowest MAE (3.42), followed closely by XGBoost (3.63), while SVR exhibited more than double the
error at 7.25. RMSE values reveal even starker contrasts. SVR recorded an RMSE of 36.89, far exceeding
that of Random Forest (5.35) and XGBoost (5.29). This suggests that SVR is prone to large deviations,
which are penalized more heavily under RMSE, reinforcing its limitations in real-world deployment
scenarios.
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6.3. Predicted vs Actual RUL Alignment

To visually assess model accuracy, predicted versus actual RUL plots were generated for each algorithm.
The Random Forest model displayed a tight clustering of points around the 45-degree identity line,
indicating excellent prediction fidelity across all RUL ranges. XGBoost showed a similarly close alignment,
with negligible deviation and a symmetrical distribution of points. In contrast, the SVR model demonstrated

significant dispersion, especially at higher RUL values, indicating an inability to generalize effectively
across the full degradation lifecycle.
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Figure 1: Actual vs Predicted across all model

6.4. Residual Histogram Analysis

Residual histograms provide insight into the error structure of each model. The Random Forest model's
residuals were tightly centered around zero, approximating a normal distribution with minimal variance,
confirming the model's robustness and low bias. XGBoost produced a slightly flatter but still symmetric
distribution, indicating minor increases in variance. The SVR model, however, exhibited a broad and flat
histogram with long tails, revealing frequent and extreme prediction errors. This suggests the presence of
systematic noise or poor fit, particularly in underrepresented RUL ranges.

6.5. Residuals vs Predicted RUL

Further diagnostics were performed by plotting residuals against predicted RUL values. A well-performing
model should exhibit a random, non-patterned spread of residuals centered around zero. The Random Forest
model satisfied this criterion, showing no visible structure or heteroscedasticity. XGBoost also maintained
a random distribution, although a slight increase in variance was observed at higher predicted RUL values.
In contrast, the SVR plot displayed a fan-shaped spread, indicating increasing error variance with higher
RUL predictions—a clear sign of model instability and heteroscedasticity.
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Figure 2: Residual Histogram across all model
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6.6. RUL Range-Specific Performance
To assess operational robustness, model performance was analyzed across three RUL zones:

. Low RUL (0-300 cycles): Random Forest and XGBoost both achieved high accuracy in this range,
with average deviations under £10 cycles. SVR often produced errors exceeding 50 cycles, making it
unsuitable for failure proximity prediction.

. Mid RUL (300-600 cycles): All models performed relatively well, but ensemble models maintained
a lower error spread and better alignment. SVR showed intermittent prediction spikes.

. High RUL (600+ cycles): XGBoost retained stable predictions, while Random Forest showed mild
underestimations. SVR suffered from extreme variance, with deviations exceeding 200-300 cycles in some
cases, highlighting its poor generalization in data-sparse regions.

Based on both quantitative metrics and diagnostic plots, the models were ranked for overall effectiveness.
XGBoost emerged as the top performer, offering balanced accuracy, low variance, and robust behavior
across all RUL segments. Random Forest followed closely, offering nearly equivalent performance with
simpler implementation and faster training. SVR was the least reliable, showing inconsistent results, high
error variance, and poor residual distribution.

7. Conclusion

This study demonstrates the potential of data-driven machine learning (ML) techniques to transform battery
health monitoring by providing precise and adaptive prediction of Remaining Useful Life (RUL) and early
fault diagnosis. Conventional Battery Management Systems (BMS) based on static thresholds or empirical
models fail to capture nonlinear degradation patterns caused by fluctuating temperatures, variable load
cycles, and aging effects. The integration of ML algorithms such as Random Forest, Support Vector
Regression (SVR), and XGBoost enables dynamic learning from operational data, allowing real-time fault
detection and accurate life prediction. The comparative analysis revealed that ensemble models—
particularly XGBoost and Random Forest—achieved near-perfect predictive accuracy, outperforming
kernel-based approaches in both stability and generalization. These models effectively minimized large
prediction errors and demonstrated consistent residual behavior, confirming their robustness for deployment
in safety-critical systems like electric vehicles and renewable energy storage networks.

Beyond model performance, this research emphasizes the broader implications of ML in advancing
predictive maintenance and sustainable energy management. By replacing reactive diagnostics with
proactive, data-driven monitoring, organizations can reduce downtime, prevent catastrophic failures, and
optimize battery utilization. Embedding ML algorithms into BMS firmware and cloud-based platforms can
further enhance adaptability, enabling continuous learning across distributed systems. The combination of
physics-based understanding and ML-driven analytics ensures both interpretability and computational
efficiency, addressing challenges of scalability and transferability across battery chemistries. Overall, this
study highlights that integrating advanced ML frameworks into modern BMS is not merely an
enhancement—it is a necessity for achieving safer, smarter, and longer-lasting energy systems that underpin
the global shift toward electrification and sustainable mobility.
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