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Abstract:  Effective and systematic prioritization of functional requirements is critical and crucial for 

successful software development, especially in complex projects. Most traditional methods often overlook the 

linguistic nuances of requirement specifications, such as modal verbs, which convey varying levels of priority. 

This study explores the integration of modal verb analysis with machine learning classifiers to automate the 

prioritization process. Functional requirements are classified into High, Medium, and Low priority levels 

based on the presence of modal verbs such as must, will, should, would, may, can, might. Using a dataset of 

375 requirement descriptions from 25 different projects, we employed TF-IDF vectorization for feature 

extraction and evaluated various classifiers including Random Forest, Logistic Regression, Naive Bayes, and 

Linear SVM.  Linear SVM emerged as the best-performing model, achieving 96% accuracy with superior 

precision, recall, and F1-score metrics. This work demonstrates the potential of Natural Language Processing 

features and Machine Learning to enhance requirement prioritization, making software development 

workflows more efficient and automated. 

 

Index Terms - Functional Requirement Prioritization, Modal Verbs, Machine Learning, Natural Language 

Processing, Requirement Engineering, TF-IDF Vectorization, Linear SVM, Classifier Comparison, Software 

Development, Automated Prioritization. 

1. Introduction 

Prioritizing functional requirements is an important milestone of successful software development, that 

enables teams to allocate resources efficiently, meet stakeholder expectations, and deliver high-quality 

products on time [1]. Traditionally, in complex projects, the huge volume of requirements can make manual 

prioritization tedious, error-prone, and subjective. Automating the prioritization process often offers 

significant advantages, ensuring consistency, scalability, and precision in identifying high-priority needs. [2] 

As an additional aspect of MOSCoW method of requirement prioritization [3], we can make use of the 

modal verbs, such as must, will, should, would, may, can, might which apparently indicate varying levels of 

priority. These modal verbs provide linguistic cues that can be leveraged to classify requirements into 

categories like High, Medium, and Low priority. The existing traditional prioritization methods fail to work 

on these nuances, leading to inconsistent prioritization outcomes.  

This study is carried out to find the most effective machine learning model for automating modal verb-

based requirement prioritization. By combining natural language processing techniques, such as TF-IDF 

vectorization [4], with various machine learning classifiers, this work aims to evaluate their performance in 

accurately classifying requirements as High, Medium or Low. Specifically, this research seeks to determine 
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the best-performing model among Random Forest, Logistic Regression, Naive Bayes, and Linear SVM, 

offering insights into their applicability and effectiveness in the context of software requirement prioritization. 

This Research paper is organized as follows. The section that follows contains findings of few papers that 

are related to the topic and work. The third section contains the methodology of the work. This also includes 

the dataset description, steps involved, classifiers considered and evaluation metrics. Next section of the 

research paper consists of the libraries and modules used for coding. Results and Discussion follows. The 

paper concludes with a conclusion and also contains a mention about the future work associated. 

 

2. Research Objectives 

This study aims to: 

 

i. Propose an innovative approach for requirement prioritization 

ii. Evaluate the effectiveness of machine learning classifiers 

iii. Demonstrate the potential of linguistic features in prioritization 

iv. Provide insights into efficient requirement management 

 

3. Related work  

 

In their paper, Hujainah, F. etal [5] introduce “SRPTackle”, a semi-automated technique for prioritizing 

requirements in software system projects. It addresses the challenges of scalability and subjectivity in 

requirements prioritization, especially in large-scale projects. The authors validated “SRPTackle” through 

case studies and experiments with software projects.  Results demonstrated improved efficiency, reduced 

prioritization time, and consistency in prioritization outcomes. The semi-automated approach was especially 

beneficial in managing large sets of requirements. Talele, P. etal [6], focuses on the application of machine 

learning techniques to classify and prioritize software requirements efficiently. It aims to address the 

challenges of manual prioritization and classification in large-scale software development. Machine learning 

models can effectively handle the classification and prioritization of software requirements, even in large 

datasets. The use of NLP enhances the system's ability to understand and process requirements written in 

natural language. Automating these processes reduces manual effort and ensures consistency in decision-

making. According to  Rahamathunnisa, U etal [7] , artificial intelligence (AI) techniques can address risks 

associated with software requirements during the software development lifecycle. The paper focuses on risk 

identification, analysis, and mitigation to enhance project success rates. This paper highlights the effectiveness 

of AI in addressing software requirement risks, providing actionable solutions to improve requirement quality 

and reduce project failures. It advocates for the integration of AI with emerging technologies to enhance 

software development practices in Industry 4.0. Kadhim, A. I. [8] in his paper provides a comprehensive 

survey of supervised machine learning techniques used for automatic text classification. The authort examines 

existing methods, their applications, and challenges in processing and categorizing textual data. The paper 

serves as a foundational resource for understanding supervised machine learning methods in text 

classification. It underscores the importance of algorithm selection, feature engineering, and evaluation 

metrics in achieving effective and accurate classification.  

 

4. Methodology 

The methodology employed in this research aims to prioritize functional requirements in software 

requirement specifications using machine learning techniques, leveraging modal verbs as a key feature. To 

achieve this, we adopted a structured approach that involves dataset preparation, feature engineering, model 

training, and performance evaluation. 

 
Figure. 1 Workflow diagram for Requirement Classification and Prioritization 
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3.1 Dataset Description  
We have used a dataset that contains software requirements along with their project names, requirement, 

assigned priorities, and actual ordering. This structure provides a comprehensive base for testing the efficacy 

of prioritization techniques. It contains Software Requirements of 25 different projects and contains 375 rows 

of data in the form of requirements. All these are functional requirements of different projects done by the 

Post Graduate students. Here is a brief explanation of the columns: 

 

Table 1. Brief Description of the dataset 

 

Column name Description Purpose 

Project Name 

Represents the 

name of the 

project to which 

the requirement 

belongs. 

Allows project-

specific 

prioritization 

and 

comparison. 

Requirement ID 

A unique 

identifier (e.g., 

R1, R2, ...) for 

each 

requirement 

within a project. 

Ensures 

traceability and 

differentiation 

of individual 

requirements. 

Requirement 

A textual 

description of 

the functional 

requirement. 

Often includes 

modal verbs 

(e.g., "must," 

"should," 

"may") that 

help infer 

priority levels. 

Priority 

Indicates the 

assigned 

priority level 

(e.g., High, 

Medium, Low) 

of the 

requirement. 

Derived based 

on modal verbs 

that are  

manually 

annotated. 

Actual Order 

Specifies the 

rank or order of 

the 

requirements 

after 

prioritization. 

Useful for 

validating the 

model’s 

predictions 

against the true 

order 

 

4.1 Text Pre-processing 

To prepare the requirements for analysis, a series of pre-processing steps were applied, including converting 

Requirements to lowercase to ensure uniformity. A routine was initiated to check if the data contained any 

missing values and they were handled suitably. 

 

4.2 Feature Engineering 

In software requirements engineering, accurately determining the priority of requirements is a critical task. 

Traditional requirement prioritization methods rely on subjective assessments, which may lead to 

inconsistencies. To automate and enhance this process, we leverage Natural Language Processing (NLP) 

techniques, specifically feature extraction from textual requirements. 

 

4.2.1 Modal Verb Extraction 

Modal verbs such as must, will, should, would, may, can, might are integral to this research as they signal 

varying levels of priority in requirements [9] as they serve as linguistic indicators of obligation, possibility, 
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and necessity. These modal verbs play a crucial role in determining the priority of requirements, as different 

levels of obligation correlate with varying levels of requirement importance. Table 2 presents the 

categorization of modal verbs into priority levels. 

 

To extract this information from the dataset, each requirement was analysed for the presence of modal verbs. 

The following algorithm was applied: 

 

Step 1: Convert the requirement text to lowercase to ensure case insensitivity. 

Step 2: Check for the presence of modal verbs using pattern matching. 

Step 3: Assign a priority label based on the strongest modal verb present. 

Step 4: If multiple modal verbs exist, the most significant one determines the priority. 

Step 5: If no modal verb is found, a default priority of Low is assigned. 

 

Table 2: Modal verbs, their meaning and Requirement Category mapping 

 

Modal 

Verb 

Intuition/Meaning  Requirement 

Category 

Must Necessity/obligation 

High 
Will Certainty/intention 

Would Conditional certainty 

Should Probability/advise 

May Possibility/permission/possible 
Medium 

Can Possibility/permission 

Might Low possibility/polite 

permission Low 

Could Possibility/permission/possible 

 

4.2.2 TF-IDF Vectorization 

In natural language processing (NLP), text-based features need to be transformed into numerical 

representations for machine learning models to process. TF-IDF (Term Frequency-Inverse Document 

Frequency) is a widely used text vectorization technique that converts textual data into numerical values by 

capturing the importance of words in a given document relative to the entire dataset.[10] 

 

In software requirement prioritization, textual descriptions of requirements contain varying degrees of 

importance based on the presence of modal verbs (e.g., "must", "should", "may"). A simple Bag of Words 

(BoW) model only considers the presence or absence of words, ignoring their importance across documents. 

TF-IDF improves upon this by: 

 

• Reducing the weight of common words that appear frequently but do not contribute to meaning 

(e.g., "the", "is"). 

• Increasing the importance of rare but significant words (e.g., "must", "should", "critical"). 

• Enhancing the distinction between high, medium, and low-priority requirements by 

emphasizing meaningful terms. 

 

The TF-IDF score of a term t in a document d is calculated as: 

 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡) 
 

Where: 

 

Term Frequency (TF) measures how frequently a term appears in a document 

 

𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
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Inverse Document Frequency (IDF) reduces the weight of common words and increases the weight of rare 

words 

𝐼𝐷𝐹(𝑡) = log (
𝑁

𝐷𝐹(𝑡)
+ 1) 

 

where N is the total number of documents, and DF(t) is the number of documents containing term t 

 

4.3 Classification Models 

To classify software requirements into High, Medium, and Low priority levels, we evaluated four widely used 

machine learning classification algorithms: Random Forest, Logistic Regression, Naïve Bayes, and Linear 

Support Vector Machines (SVM). These models were selected due to their proven effectiveness in text 

classification tasks and their ability to handle diverse dataset characteristics efficiently[11]. The reasons 

behind choosing the above models are tabulated in Table 3. 

Table 3: Comparison of Characteristics of Classification Algorithms used 

Classification 

Algorithm 

Characteristic feature 

Random Forest A method that uses multiple decision trees to make 

predictions. It also gives high accuracy and control 

overfitting [12]. 

Linear Regression A linear model widely used for binary and 

multiclass classification problems, offering 

interpretability and robustness [13]. 

Naive Bayes A probabilistic model that assumes independence 

between features, making it particularly efficient 

for text classification [14]. 

Linear Support 

Vector Machine 

A robust linear classifier that separates data points 

with a hyperplane, optimized for text-based tasks 

due to its ability to handle high-dimensional data 

[15]. 

 

Each classifier was trained and tested on the preprocessed dataset, where the requirements were vectorized 

using TF-IDF before being fed into the models. The models were implemented using Scikit-Learn, a widely 

used machine learning library in Python. The dataset was split into training (80%) and testing (20%) subsets 

to evaluate model performance. 

 

4.4 Evaluation Metrics 

The classifiers were assessed using standard performance metrics, including accuracy, precision, recall, and 

F1-score [16]. These metrics provide a holistic understanding of each model’s strengths and limitations in 

predicting requirement priorities. 

5. Experimental setup:  

This section outlines the experimental environment, tools used, and the configuration of the machine learning 

models employed in the study. The experiments were conducted using Python as the programming language 

in the Google Colab environment, which provides a cloud-based platform with access to GPUs for accelerated 

computation. The following tools and libraries were utilized: 

• Pandas: For data manipulation and preprocessing. 

• Scikit-learn: For feature extraction (TF-IDF), machine learning model implementation, and 

performance evaluation metrics. 

• Joblib: For saving and loading the trained models and vectorizer. 

• Google Colab Drive Integration: For data storage and model persistence. 
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The dataset was split into training and testing subsets to ensure a robust evaluation of the models. The split 

ratio was set at 80:20, meaning 80% of the data was used for training the models, and 20% was reserved for 

testing their performance. A fixed random seed (random_state=42) was used to ensure reproducibility of the 

results. 

6. Results and Discussion 

The results of the classifier evaluation for prioritizing functional requirements using modal verbs are presented 

in the Table 4. The Qualtitative Analysis summary of the same is given in Table 5. Four classifiers—Random 

Forest, Logistic Regression, Naive Bayes, and Linear SVM—were assessed using accuracy, precision, recall, 

and F1-score as evaluation metrics. These metrics were calculated to provide a comprehensive view of each 

model's performance in predicting requirement priorities. 

Table 4: Quantitative Evaluation Metrics 

Classifier Accuracy Precision Recall 
F1-

Score 

Random 

Forest 
0.92 0.937 0.837 0.879 

Logistic 

Regression 
0.76 0.85 0.497 0.536 

Naive Bayes 0.68 0.227 0.333 0.27 

Linear SVM 0.96 0.981 0.918 0.947 

Table 5: Qualitative Analysis Summary 

Classifier Analysis 

Random Forest 
Its precision (0.937) and recall (0.837) indicate reliable 

performance, although slightly lower than Linear SVM. 

Logistic Regression 

While the precision (0.850) is commendable, the recall 

(0.497) is relatively low, suggesting that the model may 

fail to identify certain high-priority requirements 

Naive Bayes 
The precision (0.227) and recall (0.333) indicate 

significant challenges in handling the prioritization task. 

Linear SVM 

The high precision (0.981) indicates its ability to 

accurately identify high-priority requirements, while its 

strong recall (0.918) reflects its effectiveness in retrieving 

most relevant requirements 

Linear SVM emerged as the best-performing classifier, consistently outperforming others across all metrics. 

Random Forest also showed strong performance, making it a viable alternative for this task. The relatively 

lower performance of Logistic Regression and Naive Bayes underscores the importance of model selection in 

text-based prioritization tasks. These findings emphasize the potential of machine learning models, 

particularly Linear SVM, in leveraging modal verbs for accurate and efficient prioritization of functional 

requirements. 

7. Conclusion and Future Work: 

This study highlights the effectiveness and importance of modal verbs as one of the key features for 

requirement prioritization. Modal verbs serve as linguistic markers of obligation and importance, providing 

an interpretable and reliable foundation for mapping textual requirements to priority levels. By including their 

presence in requirement specifications, this approach highlights the potential of linguistic cues in enhancing 

the prioritization process. 
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In contrast to prior research and existing methods, which often emphasizes general keyword extraction or 

rule-based approaches, this study demonstrates the utility of combining modal verbs with machine learning 

classifiers. The extremely good performance of Linear SVM, which has achieved an accuracy of 96% and an 

F1-score of 0.947, supports the value of pairing robust feature extraction techniques, such as TF-IDF, with 

high-performing classification models. The findings validate the effectiveness of machine learning in 

automating and improving requirement prioritization. 

 

Building on the results of this study, the research towards exploring the use of advanced NLP techniques 

for context-aware and semantic based prioritization seems to be open. This approach can enhance the 

understanding of contextual nuances in requirement specifications, especially when modal verbs alone may 

not suffice. 
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