
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509506 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e398

Modal Verb Based Software Requirements

Prioritization Through Classification - A Novel

Approach Using Machine Learning And Natural

Language Processing

1Suchetha Vijayakumar, 2Suresha D

1Research Scholar, Srinivas University and Associate Professor, St Aloysius (Deemed to be University),

Mangalore, India
2Professor, Srinivas Institute of Technology, Mangalore, India

Abstract: Effective and systematic prioritization of functional requirements is critical and crucial for

successful software development, especially in complex projects. Most traditional methods often overlook the

linguistic nuances of requirement specifications, such as modal verbs, which convey varying levels of priority.

This study explores the integration of modal verb analysis with machine learning classifiers to automate the

prioritization process. Functional requirements are classified into High, Medium, and Low priority levels

based on the presence of modal verbs such as must, will, should, would, may, can, might. Using a dataset of

375 requirement descriptions from 25 different projects, we employed TF-IDF vectorization for feature

extraction and evaluated various classifiers including Random Forest, Logistic Regression, Naive Bayes, and

Linear SVM. Linear SVM emerged as the best-performing model, achieving 96% accuracy with superior

precision, recall, and F1-score metrics. This work demonstrates the potential of Natural Language Processing

features and Machine Learning to enhance requirement prioritization, making software development

workflows more efficient and automated.

Index Terms - Functional Requirement Prioritization, Modal Verbs, Machine Learning, Natural Language

Processing, Requirement Engineering, TF-IDF Vectorization, Linear SVM, Classifier Comparison, Software

Development, Automated Prioritization.

1. Introduction

Prioritizing functional requirements is an important milestone of successful software development, that

enables teams to allocate resources efficiently, meet stakeholder expectations, and deliver high-quality

products on time [1]. Traditionally, in complex projects, the huge volume of requirements can make manual

prioritization tedious, error-prone, and subjective. Automating the prioritization process often offers

significant advantages, ensuring consistency, scalability, and precision in identifying high-priority needs. [2]

As an additional aspect of MOSCoW method of requirement prioritization [3], we can make use of the

modal verbs, such as must, will, should, would, may, can, might which apparently indicate varying levels of

priority. These modal verbs provide linguistic cues that can be leveraged to classify requirements into

categories like High, Medium, and Low priority. The existing traditional prioritization methods fail to work

on these nuances, leading to inconsistent prioritization outcomes.

This study is carried out to find the most effective machine learning model for automating modal verb-

based requirement prioritization. By combining natural language processing techniques, such as TF-IDF

vectorization [4], with various machine learning classifiers, this work aims to evaluate their performance in

accurately classifying requirements as High, Medium or Low. Specifically, this research seeks to determine

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509506 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e399

the best-performing model among Random Forest, Logistic Regression, Naive Bayes, and Linear SVM,

offering insights into their applicability and effectiveness in the context of software requirement prioritization.

This Research paper is organized as follows. The section that follows contains findings of few papers that

are related to the topic and work. The third section contains the methodology of the work. This also includes

the dataset description, steps involved, classifiers considered and evaluation metrics. Next section of the

research paper consists of the libraries and modules used for coding. Results and Discussion follows. The

paper concludes with a conclusion and also contains a mention about the future work associated.

2. Research Objectives

This study aims to:

i. Propose an innovative approach for requirement prioritization

ii. Evaluate the effectiveness of machine learning classifiers

iii. Demonstrate the potential of linguistic features in prioritization

iv. Provide insights into efficient requirement management

3. Related work

In their paper, Hujainah, F. etal [5] introduce “SRPTackle”, a semi-automated technique for prioritizing

requirements in software system projects. It addresses the challenges of scalability and subjectivity in

requirements prioritization, especially in large-scale projects. The authors validated “SRPTackle” through

case studies and experiments with software projects. Results demonstrated improved efficiency, reduced

prioritization time, and consistency in prioritization outcomes. The semi-automated approach was especially

beneficial in managing large sets of requirements. Talele, P. etal [6], focuses on the application of machine

learning techniques to classify and prioritize software requirements efficiently. It aims to address the

challenges of manual prioritization and classification in large-scale software development. Machine learning

models can effectively handle the classification and prioritization of software requirements, even in large

datasets. The use of NLP enhances the system's ability to understand and process requirements written in

natural language. Automating these processes reduces manual effort and ensures consistency in decision-

making. According to Rahamathunnisa, U etal [7] , artificial intelligence (AI) techniques can address risks

associated with software requirements during the software development lifecycle. The paper focuses on risk

identification, analysis, and mitigation to enhance project success rates. This paper highlights the effectiveness

of AI in addressing software requirement risks, providing actionable solutions to improve requirement quality

and reduce project failures. It advocates for the integration of AI with emerging technologies to enhance

software development practices in Industry 4.0. Kadhim, A. I. [8] in his paper provides a comprehensive

survey of supervised machine learning techniques used for automatic text classification. The authort examines

existing methods, their applications, and challenges in processing and categorizing textual data. The paper

serves as a foundational resource for understanding supervised machine learning methods in text

classification. It underscores the importance of algorithm selection, feature engineering, and evaluation

metrics in achieving effective and accurate classification.

4. Methodology

The methodology employed in this research aims to prioritize functional requirements in software

requirement specifications using machine learning techniques, leveraging modal verbs as a key feature. To

achieve this, we adopted a structured approach that involves dataset preparation, feature engineering, model

training, and performance evaluation.

Figure. 1 Workflow diagram for Requirement Classification and Prioritization

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509506 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e400

3.1 Dataset Description
We have used a dataset that contains software requirements along with their project names, requirement,

assigned priorities, and actual ordering. This structure provides a comprehensive base for testing the efficacy

of prioritization techniques. It contains Software Requirements of 25 different projects and contains 375 rows

of data in the form of requirements. All these are functional requirements of different projects done by the

Post Graduate students. Here is a brief explanation of the columns:

Table 1. Brief Description of the dataset

Column name Description Purpose

Project Name

Represents the

name of the

project to which

the requirement

belongs.

Allows project-

specific

prioritization

and

comparison.

Requirement ID

A unique

identifier (e.g.,

R1, R2, ...) for

each

requirement

within a project.

Ensures

traceability and

differentiation

of individual

requirements.

Requirement

A textual

description of

the functional

requirement.

Often includes

modal verbs

(e.g., "must,"

"should,"

"may") that

help infer

priority levels.

Priority

Indicates the

assigned

priority level

(e.g., High,

Medium, Low)

of the

requirement.

Derived based

on modal verbs

that are

manually

annotated.

Actual Order

Specifies the

rank or order of

the

requirements

after

prioritization.

Useful for

validating the

model’s

predictions

against the true

order

4.1 Text Pre-processing

To prepare the requirements for analysis, a series of pre-processing steps were applied, including converting

Requirements to lowercase to ensure uniformity. A routine was initiated to check if the data contained any

missing values and they were handled suitably.

4.2 Feature Engineering

In software requirements engineering, accurately determining the priority of requirements is a critical task.

Traditional requirement prioritization methods rely on subjective assessments, which may lead to

inconsistencies. To automate and enhance this process, we leverage Natural Language Processing (NLP)

techniques, specifically feature extraction from textual requirements.

4.2.1 Modal Verb Extraction

Modal verbs such as must, will, should, would, may, can, might are integral to this research as they signal

varying levels of priority in requirements [9] as they serve as linguistic indicators of obligation, possibility,

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509506 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e401

and necessity. These modal verbs play a crucial role in determining the priority of requirements, as different

levels of obligation correlate with varying levels of requirement importance. Table 2 presents the

categorization of modal verbs into priority levels.

To extract this information from the dataset, each requirement was analysed for the presence of modal verbs.

The following algorithm was applied:

Step 1: Convert the requirement text to lowercase to ensure case insensitivity.

Step 2: Check for the presence of modal verbs using pattern matching.

Step 3: Assign a priority label based on the strongest modal verb present.

Step 4: If multiple modal verbs exist, the most significant one determines the priority.

Step 5: If no modal verb is found, a default priority of Low is assigned.

Table 2: Modal verbs, their meaning and Requirement Category mapping

Modal

Verb

Intuition/Meaning Requirement

Category

Must Necessity/obligation

High
Will Certainty/intention

Would Conditional certainty

Should Probability/advise

May Possibility/permission/possible
Medium

Can Possibility/permission

Might Low possibility/polite

permission Low

Could Possibility/permission/possible

4.2.2 TF-IDF Vectorization

In natural language processing (NLP), text-based features need to be transformed into numerical

representations for machine learning models to process. TF-IDF (Term Frequency-Inverse Document

Frequency) is a widely used text vectorization technique that converts textual data into numerical values by

capturing the importance of words in a given document relative to the entire dataset.[10]

In software requirement prioritization, textual descriptions of requirements contain varying degrees of

importance based on the presence of modal verbs (e.g., "must", "should", "may"). A simple Bag of Words

(BoW) model only considers the presence or absence of words, ignoring their importance across documents.

TF-IDF improves upon this by:

• Reducing the weight of common words that appear frequently but do not contribute to meaning

(e.g., "the", "is").

• Increasing the importance of rare but significant words (e.g., "must", "should", "critical").

• Enhancing the distinction between high, medium, and low-priority requirements by

emphasizing meaningful terms.

The TF-IDF score of a term t in a document d is calculated as:

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡)

Where:

Term Frequency (TF) measures how frequently a term appears in a document

𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509506 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e402

Inverse Document Frequency (IDF) reduces the weight of common words and increases the weight of rare

words

𝐼𝐷𝐹(𝑡) = log (
𝑁

𝐷𝐹(𝑡)
+ 1)

where N is the total number of documents, and DF(t) is the number of documents containing term t

4.3 Classification Models

To classify software requirements into High, Medium, and Low priority levels, we evaluated four widely used

machine learning classification algorithms: Random Forest, Logistic Regression, Naïve Bayes, and Linear

Support Vector Machines (SVM). These models were selected due to their proven effectiveness in text

classification tasks and their ability to handle diverse dataset characteristics efficiently[11]. The reasons

behind choosing the above models are tabulated in Table 3.

Table 3: Comparison of Characteristics of Classification Algorithms used

Classification

Algorithm

Characteristic feature

Random Forest A method that uses multiple decision trees to make

predictions. It also gives high accuracy and control

overfitting [12].

Linear Regression A linear model widely used for binary and

multiclass classification problems, offering

interpretability and robustness [13].

Naive Bayes A probabilistic model that assumes independence

between features, making it particularly efficient

for text classification [14].

Linear Support

Vector Machine

A robust linear classifier that separates data points

with a hyperplane, optimized for text-based tasks

due to its ability to handle high-dimensional data

[15].

Each classifier was trained and tested on the preprocessed dataset, where the requirements were vectorized

using TF-IDF before being fed into the models. The models were implemented using Scikit-Learn, a widely

used machine learning library in Python. The dataset was split into training (80%) and testing (20%) subsets

to evaluate model performance.

4.4 Evaluation Metrics

The classifiers were assessed using standard performance metrics, including accuracy, precision, recall, and

F1-score [16]. These metrics provide a holistic understanding of each model’s strengths and limitations in

predicting requirement priorities.

5. Experimental setup:

This section outlines the experimental environment, tools used, and the configuration of the machine learning

models employed in the study. The experiments were conducted using Python as the programming language

in the Google Colab environment, which provides a cloud-based platform with access to GPUs for accelerated

computation. The following tools and libraries were utilized:

• Pandas: For data manipulation and preprocessing.

• Scikit-learn: For feature extraction (TF-IDF), machine learning model implementation, and

performance evaluation metrics.

• Joblib: For saving and loading the trained models and vectorizer.

• Google Colab Drive Integration: For data storage and model persistence.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509506 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e403

The dataset was split into training and testing subsets to ensure a robust evaluation of the models. The split

ratio was set at 80:20, meaning 80% of the data was used for training the models, and 20% was reserved for

testing their performance. A fixed random seed (random_state=42) was used to ensure reproducibility of the

results.

6. Results and Discussion

The results of the classifier evaluation for prioritizing functional requirements using modal verbs are presented

in the Table 4. The Qualtitative Analysis summary of the same is given in Table 5. Four classifiers—Random

Forest, Logistic Regression, Naive Bayes, and Linear SVM—were assessed using accuracy, precision, recall,

and F1-score as evaluation metrics. These metrics were calculated to provide a comprehensive view of each

model's performance in predicting requirement priorities.

Table 4: Quantitative Evaluation Metrics

Classifier Accuracy Precision Recall
F1-

Score

Random

Forest
0.92 0.937 0.837 0.879

Logistic

Regression
0.76 0.85 0.497 0.536

Naive Bayes 0.68 0.227 0.333 0.27

Linear SVM 0.96 0.981 0.918 0.947

Table 5: Qualitative Analysis Summary

Classifier Analysis

Random Forest
Its precision (0.937) and recall (0.837) indicate reliable

performance, although slightly lower than Linear SVM.

Logistic Regression

While the precision (0.850) is commendable, the recall

(0.497) is relatively low, suggesting that the model may

fail to identify certain high-priority requirements

Naive Bayes
The precision (0.227) and recall (0.333) indicate

significant challenges in handling the prioritization task.

Linear SVM

The high precision (0.981) indicates its ability to

accurately identify high-priority requirements, while its

strong recall (0.918) reflects its effectiveness in retrieving

most relevant requirements

Linear SVM emerged as the best-performing classifier, consistently outperforming others across all metrics.

Random Forest also showed strong performance, making it a viable alternative for this task. The relatively

lower performance of Logistic Regression and Naive Bayes underscores the importance of model selection in

text-based prioritization tasks. These findings emphasize the potential of machine learning models,

particularly Linear SVM, in leveraging modal verbs for accurate and efficient prioritization of functional

requirements.

7. Conclusion and Future Work:

This study highlights the effectiveness and importance of modal verbs as one of the key features for

requirement prioritization. Modal verbs serve as linguistic markers of obligation and importance, providing

an interpretable and reliable foundation for mapping textual requirements to priority levels. By including their

presence in requirement specifications, this approach highlights the potential of linguistic cues in enhancing

the prioritization process.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509506 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e404

In contrast to prior research and existing methods, which often emphasizes general keyword extraction or

rule-based approaches, this study demonstrates the utility of combining modal verbs with machine learning

classifiers. The extremely good performance of Linear SVM, which has achieved an accuracy of 96% and an

F1-score of 0.947, supports the value of pairing robust feature extraction techniques, such as TF-IDF, with

high-performing classification models. The findings validate the effectiveness of machine learning in

automating and improving requirement prioritization.

Building on the results of this study, the research towards exploring the use of advanced NLP techniques

for context-aware and semantic based prioritization seems to be open. This approach can enhance the

understanding of contextual nuances in requirement specifications, especially when modal verbs alone may

not suffice.

Acknowledgments

The authors would like to thank the post-graduate students who contributed their project requirements to this

research, enabling a comprehensive and diverse dataset.

References

[1] Bukhsh, F. A., Bukhsh, Z. A., & Daneva, M. (2020). A systematic literature review on requirement

prioritization techniques and their empirical evaluation. Computer Standards & Interfaces, 69,

103389.

[2] Hudaib, A., Masadeh, R., Qasem, M. H., & Alzaqebah, A. (2018). Requirements prioritization

techniques comparison. Modern Applied Science, 12(2), 62.

[3] Kravchenko, T., Bogdanova, T., & Shevgunov, T. (2022, April). Ranking requirements using

MoSCoW methodology in practice. In Computer Science On-line Conference (pp. 188-199). Cham:

Springer International Publishing.

[4] Soufyane, A., Abdelhakim, B. A., & Ahmed, M. B. (2021, January). An intelligent chatbot using

NLP and TF-IDF algorithm for text understanding applied to the medical field. In Emerging Trends

in ICT for Sustainable Development: The Proceedings of NICE2020.

[5] Hujainah, F., Bakar, R. B. A., Nasser, A. B., Al-haimi, B., & Zamli, K. Z. (2021). SRPTackle: A

semi-automated requirements prioritisation technique for scalable requirements of software system

projects. Information and Software Technology, 131, 106501.

[6] Talele, P., & Phalnikar, R. (2021). Software requirements classification and prioritisation using

machine learning. In Machine Learning for Predictive Analysis: Proceedings of ICTIS 2020 (pp. 257-

267). Springer Singapore.

[7] Rahamathunnisa, U., Subhashini, P., Aancy, H. M., Meenakshi, S., & Boopathi, S. (2023). Solutions

for Software Requirement Risks Using Artificial Intelligence Techniques. In Handbook of Research

on Data Science and Cybersecurity Innovations in Industry .

[8] Kadhim, A. I. (2019). Survey on supervised machine learning techniques for automatic text

classification. Artificial intelligence review, 52(1), 273-292.

[9] Usmonova, R. B. (2021). Semantic features of modal verbs in english grammar. Scientific

progress, 1(4), 227-234.

[10] Naeem, M. Z., Rustam, F., Mehmood, A., Ashraf, I., & Choi, G. S. (2022). Classification of

movie reviews using term frequency-inverse document frequency and optimized machine learning

algorithms. PeerJ Computer Science, 8, e914.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509506 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e405

[11] Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised

machine learning algorithms for disease prediction. BMC medical informatics and decision making,

19(1), 1-16.

[12] Parmar, A., Katariya, R., & Patel, V. (2019). A review on random forest: An ensemble

classifier. In International conference on intelligent data communication technologies and internet of

things (ICICI) 2018 (pp. 758-763). Springer International Publishing.

[13] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression

analysis. John Wiley & Sons.

[14] Salmi, N., & Rustam, Z. (2019, June). Naïve Bayes classifier models for predicting the colon

cancer. In IOP conference series: materials science and engineering (Vol. 546, No. 5, p. 052068). IOP

Publishing.

[15] Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019, February). A study on support vector

machine based linear and non-linear pattern classification. In 2019 International Conference on

Intelligent Sustainable Systems (ICISS) (pp. 24-28). IEEE.

[16] Erickson, B. J., & Kitamura, F. (2021). Magician’s corner: 9. Performance metrics for

machine learning models. Radiology: Artificial Intelligence, 3(3), e200126.

http://www.ijcrt.org/

