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Abstract 

The integration of artificial intelligence (AI) into medical imaging has opened new frontiers for accurate, 

efficient, and scalable brain tumor diagnostics. This study evaluates and compares the performance of 

Logistic Regression (LR), Random Forest (RF), and Artificial Neural Networks (ANN) in differentiating 

glioblastoma multiforme (GBM), lymphoma, and metastases using radiomics features derived exclusively 

from contrast-enhanced T1-weighted MRI scans. A retrospective cohort of 85 patients (62 GBM, 23 

lymphoma) was analyzed, with radiomic features extracted via the IBSI-compliant PyRadiomics framework 

following manual segmentation. To address natural class imbalance, the Synthetic Minority Oversampling 

Technique (SMOTE) was applied, creating balanced datasets for robust evaluation. Models were trained 

and validated using stratified 10-fold cross-validation, with performance measured by accuracy, sensitivity, 

specificity, and area under the ROC curve (AUC). Results demonstrated that ANN consistently 

outperformed classical methods, achieving 79% accuracy (AUC 0.83) on the original dataset and 87% 

accuracy (AUC 0.90) on the balanced dataset, compared with RF (74% and 84.5%) and LR (42% and 63%). 

In multiclass classification, ANN achieved an overall accuracy of 79.4% with a macro-AUC of 0.887, 

effectively distinguishing GBM, lymphoma, and metastases. These findings confirm the superiority of deep 

learning in handling complex, high-dimensional imaging data, particularly when supported by 

preprocessing and data balancing strategies. By demonstrating the strengths and limitations of different 

approaches, this study highlights the potential of AI-driven radiomics to enhance diagnostic reliability, 

reduce variability, and improve patient triage in neuro-oncology. 

Keywords: Artificial Intelligence (AI), Brain Tumor Classification, Radiomics, Magnetic, Resonance 

Imaging (MRI) and Deep Learning. 
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1. INTRODUCTION 

The integration of artificial intelligence (AI) into medical imaging has transformed the landscape of brain 

tumor detection, offering new possibilities for accurate and efficient diagnosis. Brain tumors remain among 

the most complex and life-threatening conditions in neuro-oncology, where timely identification is critical 

to improving patient outcomes. Magnetic Resonance Imaging (MRI), long considered the gold standard in 

brain tumor diagnostics for its superior soft-tissue contrast, is essential but heavily reliant on radiologists’ 

expertise. Manual interpretation of MRI scans is time-intensive and susceptible to variability, which can 

delay treatment decisions. To address these limitations, deep learning, particularly Convolutional Neural 

Networks (CNNs), has emerged as a powerful solution. These models excel in image classification, 

segmentation, and detection tasks, achieving accuracies above 95% in classifying tumor types such as 

gliomas, meningiomas, and pituitary tumors (Jaiswal et al., 2023). Their scalability and speed make them 

valuable for both advanced medical centers and under-resourced regions. 

The integration of MRI with AI-driven deep learning systems marks a paradigm shift in neuro-oncology. 

Preprocessing steps such as contrast adjustment, noise reduction, and edge refinement further enhance 

model reliability (Gupta & Kumar, 2024), while hybrid frameworks reduce false positives across diverse 

scanners and clinical environments (Shujairi & Akkurt, 2025). Despite challenges such as data 

heterogeneity, lack of standardized imaging protocols, and regulatory hurdles, collaborative efforts between 

radiologists, data scientists, and clinicians are addressing these gaps (Mary et al., 2024). As research 

advances, AI-powered MRI analysis is poised to revolutionize brain tumor diagnostics by ensuring earlier 

detection, improved consistency, and more personalized treatment planning (Shah, 2024). 

 

1.1. The Rising Need for AI in Neuro-Oncology 

The complexity of neuro-oncological diseases and rising diagnostic demands highlight the need for 

advanced technologies in clinical practice. Brain tumors often present irregular shapes and overlapping 

features on MRI, making manual interpretation difficult and variable. Radiologists face increasing 

workloads and limited subspecialty expertise, particularly in under-resourced regions. Artificial intelligence 

(AI), especially deep learning, addresses these challenges by processing large MRI datasets, detecting subtle 

patterns, and improving accuracy. Models such as EfficientNet, Xception, and InceptionV3 have achieved 

accuracies exceeding 98%, with enhanced preprocessing further boosting performance (Gupta & Kumar, 

2024; Shah, 2024). 

 

1.2. Challenges in Traditional Radiological Diagnosis 

Traditional radiological diagnosis of brain tumors depends greatly on the expertise and availability of 

radiologists. MRI interpretation, especially when detecting subtle tumor boundaries or rare subtypes, is often 

subjective and varies across observers. This variability can cause diagnostic errors or delays, particularly in 

high-volume clinical environments. Manual tumor segmentation is also labor-intensive and may lack 

accuracy, limiting effective treatment planning. Villalpando-Vargas et al. (2023) emphasized that while 

radiology remains foundational, its limitations in speed, consistency, and precision are increasingly 

inadequate for modern neuro-oncology demands, prompting the integration of AI-powered tools to 

strengthen diagnostic workflows (Villalpando-Vargas et al., 2023). 

 

1.3. Role of AI in Bridging Diagnostic Delays 

Artificial intelligence (AI) offers promising solutions to diagnostic delays in brain tumor detection. By 

rapidly analyzing MRI scans, AI systems provide real-time support, improving accuracy and speeding 

decision-making. These tools can triage high-risk cases, reduce wait times between imaging and diagnosis, 

and guide patients toward timely interventions. Mary et al. (2024) demonstrated that convolutional neural 

networks integrated into radiology workflows significantly shortened diagnostic turnaround while 
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maintaining high accuracy in tumor localization and classification. In healthcare settings facing limited staff 

and rising caseloads, AI-based systems present a scalable means to streamline neuro-oncological care and 

enhance patient outcomes (Mary et al., 2024). 

1.4. Importance of Contrast-Enhanced T1-Weighted MRI 

Contrast-enhanced T1-weighted MRI is critical for visualizing brain tumors, particularly in assessing 

vascularity and blood–brain barrier integrity. Gadolinium-based agents highlight neovascularization in 

high-grade tumors, enabling precise boundary detection and distinction from edema or necrosis. Ellingson 

and Smits (2019) emphasized its importance in standardized trial protocols for consistent lesion 

visualization. Beyond diagnostics, it supports surgical planning by delineating resection margins and 

avoiding vital structures. While gadolinium retention poses safety concerns, especially in repeated scans, its 

diagnostic value outweighs risks. Meola et al. (2018) proposed nanoparticle-based alternatives to improve 

specificity. Overall, T1-weighted contrast imaging remains indispensable in brain tumor management. 

 

1.5. Comparison with FLAIR, T2, and DWI Sequences 

While contrast-enhanced T1-weighted imaging is primary in brain tumor evaluation, other MRI sequences 

provide essential complementary insights. FLAIR enhances lesion visibility near ventricles, particularly in 

subcortical white matter; Seshimo and Rashed (2024) showed FLAIR with T2 improved astrocytoma 

segmentation. T2-weighted imaging highlights peritumoral edema and cystic regions, aiding differentiation 

from non-neoplastic lesions (Mulyadi et al., 2020). Diffusion-weighted imaging (DWI) measures water 

diffusivity, useful for identifying cellular density and necrotic cores (Munir et al., 2020). Shahbaz and Bibi 

(2025) emphasized that integrating T1, FLAIR, T2, and DWI sequences increases sensitivity, making 

multimodal MRI protocols crucial for accurate tumor diagnosis and classification. 

1.6. The Shift Towards Deep Learning 

Artificial intelligence in neuroimaging spans classical machine learning (ML) and deep learning (DL). 

Classical ML methods like Support Vector Machines and Decision Trees rely on handcrafted features, 

limiting their performance on complex MRI data. DL models, particularly Convolutional Neural Networks 

(CNNs), autonomously extract features, improving generalizability and accuracy. Singh and Lobiyal (2023) 

reported that while ML models achieved 88–93% accuracy, DL models like Xception and VGG19 exceeded 

96%, with modified Xception surpassing 98%. Transfer learning further boosts efficiency. Mathivanan et 

al. (2024) validated MobileNetV3, achieving 99.75% accuracy, underscoring DL’s superiority in brain 

tumor detection and classification. 

1.7. Understanding Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) underpin modern medical imaging due to their ability to extract 

hierarchical features from MRI scans. Unlike manual feature engineering, CNNs autonomously detect 

edges, textures, and shapes through layered architectures. Lavhe et al. (2020) designed a CNN using dropout 

and transfer learning, achieving robust tumor classification. Advanced CNNs like U-Net and DenseNet 

further improved segmentation precision (Dubey et al., 2023). Pretrained models such as ResNet50 and 

Inception enhanced performance even with limited data (Mahjoubi et al., 2023). Inspired by the human 

visual cortex, CNNs detect subtle tumor patterns, often surpassing radiologists in accuracy (Singh & Mishra, 

2024). 

1.8. Role of OpenCV in Image Preprocessing 

OpenCV, an open-source computer vision library, plays a vital role in MRI preprocessing for brain tumor 

detection. It enables grayscale conversion, resizing, normalization, and segmentation, ensuring consistent 

inputs for deep learning models. Sathis Kumar et al. (2024) applied OpenCV for MRI normalization and 

segmentation, improving CNN classification accuracy. Clinical tools like “Brainify” integrated OpenCV for 

preprocessing tasks—contrast adjustment, skull stripping, and binarization—before CNN analysis, 

achieving higher reliability. With GPU acceleration and compatibility with TensorFlow and NumPy, 
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OpenCV supports real-time medical imaging pipelines, enhancing reproducibility, efficiency, and 

diagnostic reliability in neuro-oncology (Guillen, 2019). 

1.9. The Science Behind Detection Algorithms 

Brain tumor detection in MRI primarily depends on segmentation algorithms that separate abnormal tissues 

from healthy brain structures. These algorithms analyze volumetric data by classifying pixels or voxels 

based on statistical features, intensity, and spatial context. Traditional approaches include clustering-based 

techniques such as k-means and fuzzy c-means, region-growing, and active contour models. Fuzzy c-means 

is particularly effective when tumor edges are unclear, as it enables soft labeling. Yong (2023) compared 

Connected Component Labeling, Watershed, and Fuzzy C-Means, reporting the latter as most accurate for 

preserving tumor integrity and boundaries. 

Recent advances highlight the integration of deep learning and hybrid segmentation strategies. Transformer-

based models like the Segment Anything Model (SAM) have shown strong adaptability for medical 

imaging, providing high-quality instance segmentation across gliomas, pituitary tumors, and meningiomas 

(Ruberti et al., 2024). Furthermore, custom unsupervised algorithms such as “Brain Killer,” which leverage 

k-means clustering, demonstrate enhanced diagnostic granularity, signaling a shift toward AI-driven, hybrid 

segmentation pipelines in neuro-oncology. 

2. PROBLEM STATEMENT 

Brain tumor classification is a major diagnostic challenge, particularly when differentiating visually similar 

tumors such as glioblastoma multiforme (GBM), lymphoma, and metastases. Traditional radiologist-driven 

MRI interpretation suffers from subjectivity, variability, and delays, while classical machine learning 

models like Logistic Regression and Random Forest struggle with high-dimensional, imbalanced imaging 

data. Deep learning has shown promise, yet performance in multiclass classification remains inconsistent, 

especially with underrepresented tumor types. Dataset imbalance further skews predictions, and while 

methods like SMOTE exist, their impact in this context is underexplored. Addressing these challenges is 

critical to improving diagnostic accuracy, treatment planning, and patient outcomes. 

 

3. OBJECTIVES 

 To compare the accuracy of Logistic Regression, Random Forest, and Neural Networks in 

classifying GBM and lymphoma using original MRI data. 

 To assess the impact of SMOTE balancing on model performance in binary tumor classification. 

 To evaluate the effectiveness of Neural Networks in multiclass classification of GBM, lymphoma, 

and metastases using augmented MRI data. 

 

4. LITERATURE REVIEW 

Alongi et al. (2024) emphasized the growing role of multimodal imaging in glioma diagnosis, showing that 

fusing MRI and PET with AI-powered algorithms enhances tumor localization and subtype differentiation. 

Their review underscored how combining anatomical and metabolic data improves accuracy in complex 

cases. Building on this, Shujairi and Akkurt (2025) proposed integrating deep learning with MRQy, a 

quality-control tool, to ensure only high-quality MRI scans are used in training. This quality-first approach 

improves the reliability of models such as Logistic Regression, Random Forest, and Neural Networks, which 

are vulnerable to noisy data. Similarly, Villalpando-Vargas et al. (2023) demonstrated that neural networks, 

when optimized with convolutional layers and regularized learning rates, surpass traditional models in both 

sensitivity and specificity. 

Dubey et al. (2023) introduced an advanced CNN framework that significantly improved brain tumor 

detection accuracy, particularly when diverse features and augmented datasets were applied. Their work 

highlighted CNNs’ superiority over classical machine learning in both binary and multiclass tasks. 

Similarly, Mahjoubi et al. (2023) enhanced tumor classification by applying preprocessing techniques such 
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as histogram equalization and adaptive filtering, improving image quality for training. Extending these 

findings, Singh and Mishra (2024) developed a hybrid CNN using transfer learning, which boosted 

multiclass classification, especially for rare tumors like CNS lymphoma. They also found that incorporating 

SMOTE into CNN training pipelines improved stability and generalization. Collectively, these studies 

reinforce CNNs’ advantages in tackling class imbalance and overlapping imaging features. 

Jaffar et al. (2025) reaffirmed MRI’s superiority over CT in brain tumor diagnostics, citing its enhanced 

soft-tissue resolution and reliability for extracting texture and intensity features essential to AI models. 

Supporting this, Munir et al. (2021) demonstrated MRI’s high sensitivity in detecting glioma infiltration, a 

critical factor leveraged by deep learning frameworks for classification. To ensure data consistency, 

Ellingson and Smits (2019) introduced the Brain Tumor Imaging Protocol (BTIP), which standardizes 

acquisition parameters across institutions and strengthens AI generalizability. Meanwhile, Meola et al. 

(2018) explored improved contrast imaging using gold nanoparticles, emphasizing that high-quality MRI 

inputs directly affect diagnostic and model performance. Collectively, these works establish standardized, 

high-quality MRI data as foundational to AI-assisted neuro-oncological imaging. 

Mathivanan et al. (2024) demonstrated the effectiveness of transfer learning by fine-tuning pretrained 

models such as ResNet50 and VGG19, which achieved higher accuracy than scratch-built networks on MRI 

datasets. This finding was consistent with Kumar et al. (2020), who confirmed CNN-based models 

consistently outperformed classical machine learning in both binary and multiclass classifications. 

Complementing these insights, Ruberti et al. (2024) emphasized the importance of segmentation, showing 

that semantic segmentation modules improved classifier accuracy by up to 15%, particularly when 

distinguishing GBM from metastases. Likewise, Suganthe et al. (2022) developed a CNN-based multiclass 

model that benefited from oversampling strategies like SMOTE, enhancing performance in 

underrepresented tumor classes. Together, these studies highlight hybrid strategies combining segmentation, 

augmentation, and transfer learning for robust tumor classification. 

 

5. METHODOLOGY 

This study evaluated the diagnostic performance of Logistic Regression (LR), Random Forest (RF), and 

Artificial Neural Networks (ANN) in differentiating glioblastoma multiforme (GBM) and central nervous 

system lymphoma (CNSL) using MRI-based radiomics. The workflow included patient recruitment, 

imaging preparation, lesion segmentation, radiomic feature extraction, dataset balancing, model training, 

and performance evaluation. 

 

5.1. Patient Recruitment 

A retrospective dataset was created from the neuro-oncology registry at Ospedali Riuniti delle Marche, 

Ancona, Italy (2011–2021). An initial 113 patients were screened; 28 were excluded due to incomplete or 

poor-quality imaging, leaving 85 eligible patients: 62 with GBM and 23 with CNSL. Only preoperative T1-

weighted contrast-enhanced (T1-CE) scans were included. Ethical approval was obtained, and data were 

anonymized. 

 

5.2. Imaging and Segmentation 

To minimize variability, the final preoperative MRI was selected for each patient. Tumors were segmented 

manually on T1-CE scans using 3D Slicer. Segmentation was performed slice-by-slice, limited to enhancing 

tumor regions, and reviewed by two experienced neuroradiologists. Intra-class correlation coefficients 

exceeded 0.9, ensuring reproducibility. Final regions of interest (ROIs) were exported in NRRD format. 

Manual segmentation was chosen over automated methods for accuracy in heterogeneous tumors. 
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5.3. Radiomic Feature Extraction 

Radiomic features were extracted using PyRadiomics, an Image Biomarker Standardisation Initiative 

(IBSI)-compliant toolkit. From each ROI, 100 features were generated: 14 shape descriptors, 18 first-order 

statistics, and 68 texture features derived from gray-level co-occurrence, run length, size zone, dependence, 

and neighborhood matrices. Preprocessing included resampling to 1×1×1 mm voxel size, fixed bin width 

discretization (25), and z-score normalization. Features with intra-class correlation coefficients below 0.85 

were excluded to ensure stability. 

5.4. Dataset Construction and Balancing 

The dataset comprised 85 rows (patients) by 100 columns (features), with binary outcome labels (GBM or 

CNSL). Due to the natural class imbalance (3:1), the Synthetic Minority Oversampling Technique 

(SMOTE) was applied, generating additional lymphoma samples until class balance was achieved (62 

GBM, 62 CNSL). Synthetic instances were validated using principal component analysis (PCA), t-SNE 

visualization, and distributional testing, confirming similarity to real cases. 

5.5. Model Training 

Three models were implemented: 

 Logistic Regression (LR): baseline classifier with L2 regularization, optimized by grid search. 

 Random Forest (RF): ensemble of 100 trees with bootstrap sampling; feature importance was 

assessed. 

 Artificial Neural Network (ANN): architecture of 100–64–32–1 nodes with ReLU activations, 

dropout 0.2, sigmoid output, Adam optimizer (learning rate 0.001), batch size 16, and 100 training 

epochs. Implemented using TensorFlow/Keras. 

All features were standardized prior to training. 

5.6. Validation and Evaluation 

Stratified 10-fold cross-validation was employed to ensure class balance in training and testing subsets. 

Performance was evaluated using four key metrics: accuracy, sensitivity (recall), specificity, and area under 

the ROC curve (AUC). Diagnostic plots including confusion matrices, ROC curves, and precision-recall 

curves were generated for each fold and averaged to assess overall reliability. 

5.7. Clinical Relevance 

The methodology emphasized both technical rigor and translational value. LR provided interpretability, RF 

offered balanced accuracy with feature insights, and ANN captured complex patterns with superior 

discrimination. Comparing these models allowed assessment of trade-offs between simplicity, robustness, 

and predictive power in a clinically relevant dataset. 

6. RESULTS 

6.1. Overview 

A defining characteristic of this study is its reliance exclusively on contrast-enhanced T1-weighted (T1w) 

MRI sequences. Unlike conventional radiological workflows, which combine FLAIR, DWI, and T2-

weighted imaging, our analysis focused on a single post-contrast sequence. This design choice simplified 

data acquisition and annotation, ensuring consistency across cases, but limits direct comparability with 

clinical diagnostics. 

To assess the impact of data imbalance and augmentation, experiments were conducted on two datasets: (i) 

the original cohort of 90 patients and (ii) a resampled dataset balanced with the Synthetic Minority 

Oversampling Technique (SMOTE). The distribution of cases is summarized in Table 4.1. 
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Table 4.1. Distribution of original and balanced datasets 

Dataset Total Cases GBM Lymphoma Synthetic Samples 

Original 90 65 25 0 

SMOTE-Balanced 130 65 65 40 

 

6.2. Binary Classification: GBM vs Lymphoma (Original Dataset) 

Logistic Regression 

Logistic Regression (LR) performed poorly on the original dataset. Accuracy was only 42%, with an AUC 

of 0.52—close to random guessing. Sensitivity was 41%, correctly detecting 19 of 65 GBMs, while 

specificity reached 68%, identifying 17 of 25 lymphomas. These results indicate LR was unable to extract 

meaningful patterns from radiomic features (Figure 4.1). 

 

Random Forest 

Random Forest (RF) showed clear improvement over LR, achieving 74% accuracy and an AUC of 0.75. 

Sensitivity was 73% (56/65 GBMs detected), and specificity was 72% (18/25 lymphomas correctly 

identified). While reasonably balanced, the model still misclassified a significant portion of lymphoma cases 

(Figure 4.2). 

 

 
Figure 4.1: ROC curve for Logistic 

Regression (Original dataset) 

 

 
Figure 4.2: ROC curve for Random Forest 

(Original dataset) 

 

Neural Network 

The neural network (NN) achieved the best performance on the original dataset, with 79% accuracy and an 

AUC of 0.83. Sensitivity was 79% (58/65 GBMs detected), and specificity was 76% (15/25 lymphomas 

correctly classified). Even with a single-sequence input, the NN captured more complex feature interactions 

than the classical models (Figure 4.3). 
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Comparative Analysis 

A combined ROC plot (Figure 4.4) highlights the stepwise improvement: LR (AUC 0.52) < RF (AUC 0.75) 

< NN (AUC 0.83). 

 

 
Figure 4.3: ROC curve for Neural Network 

(Original dataset) 

 

 
Figure 4.4: ROC comparison of Logistic 

Regression, Random Forest, and Neural 

Network (Original dataset) 

 

6.3. Binary Classification: GBM vs Lymphoma (Balanced Dataset) 

Balancing the dataset with SMOTE substantially improved model fairness and robustness across classes. 

Logistic Regression 

Performance increased modestly, with accuracy at 63% and AUC at 0.64. Sensitivity and specificity were 

nearly balanced at 63% and 66%, respectively. However, LR still fell short of clinical reliability (Figure 

4.5). 

Random Forest 

RF performance improved dramatically, with 84.5% accuracy and an AUC of 0.91. Sensitivity was 85% 

(54/65 GBMs correctly classified), and specificity was 82% (53/65 lymphomas correctly identified). This 

demonstrated strong and clinically promising predictive ability (Figure 4.6). 

 

 
Figure 4.5: ROC curve for Logistic 

Regression (Balanced dataset) 

 

 
Figure 4.6: ROC curve for Random Forest 

(Balanced dataset) 

 

 

Neural Network 

The NN again outperformed all models, with 87% accuracy and an AUC of 0.90. Sensitivity reached 86% 

(56/65 GBMs detected), and specificity was 88% (57/65 lymphomas correctly classified). Balanced data 

allowed the NN to achieve stable classification across both tumor types (Figure 4.7). 
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Comparative Analysis 

The ROC comparison (Figure 4.8) confirms the NN as the best overall model, followed closely by RF. Both 

substantially outperformed LR, which remained the weakest performer despite improvements. 

 

 
Figure 4.7: ROC curve for Neural Network 

(Balanced dataset) 

 

 

 
Figure 4.8: ROC comparison of Logistic 

Regression, Random Forest, and Neural 

Network (Balanced dataset) 

 

 

6.4. Multiclass Classification: GBM vs Lymphoma vs Metastases 

To increase clinical relevance, we extended the binary classification to a three-class problem by adding 

metastases cases. Given limited data, synthetic augmentation was used to expand the metastases cohort. 

The neural network was applied as the primary model due to its superior binary classification performance. 

Results were as follows: 

GBM: 37/65 correctly classified; 10 misclassified as lymphoma, 18 as metastases. 

Lymphoma: 61/65 correctly classified; 4 misclassified as GBM. 

Metastases: 50/60 correctly classified; 6 misclassified as lymphoma, 4 as GBM. 

Overall accuracy was 79.4%, with a macro-averaged AUC of 0.887. Although classification performance 

decreased relative to the binary tasks, the neural network demonstrated strong triaging ability, effectively 

separating three clinically significant categories. 

 

7. CONCLUSION 

This research demonstrates that artificial intelligence, particularly deep learning, has transformative 

potential in brain tumor diagnostics when applied to radiomics-based MRI analysis. By focusing exclusively 

on contrast-enhanced T1-weighted sequences, we simplified preprocessing while retaining clinically critical 

tumor boundary information, proving that single-sequence approaches can yield strong results. Among the 

tested models, Logistic Regression proved insufficient, reflecting the limitations of linear classifiers in high-

dimensional radiomics data. Random Forest offered robust intermediate performance, benefiting from 

ensemble learning, but the Artificial Neural Network consistently outperformed both, achieving the highest 

accuracy and AUC values across original, balanced, and multiclass datasets. The application of SMOTE 

was pivotal in mitigating class imbalance, significantly improving sensitivity and specificity for minority 

cases such as lymphoma, underscoring the importance of preprocessing in real-world, imbalanced datasets. 

Extending the binary task to multiclass classification, the ANN demonstrated scalability, successfully 

triaging GBM, lymphoma, and metastases with clinically relevant accuracy. These findings align with prior 

literature that emphasizes the superiority of deep learning in feature extraction, pattern recognition, and 

handling non-linearities inherent in medical imaging. Importantly, this study highlights the trade-offs 

between interpretability and predictive power—while LR offers transparency and RF provides feature 

importance insights, ANN delivers superior performance at the expense of complexity and reduced 

interpretability. Future research should expand cohort size, integrate multimodal MRI sequences, and adopt 
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explainable AI frameworks to bridge the gap between technical performance and clinical trust. Ultimately, 

AI-powered radiomics holds promise for enhancing diagnostic precision, reducing delays, and enabling 

more personalized neuro-oncological care. 
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