IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

The Multifaceted Benefits Of Isomalt In Paracetamol Syrup Formulations: Enhancing Stability, Patient Compliance, And Health

Dr. Reddy Nazemoon ¹, K. Rugvedi Rao², K. Ramya Sree ³, K. Prem Kumar ⁴, J. Akhila⁵

- 1. Professor, Department of Pharmaceutics, Bharat Institute of Technology.
- 2. Student, Department of Pharmaceutics, Bharat Institute of Technology.
- 3. Student, Department of Pharmaceutics, Bharat Institute of Technology.
- 4. Student, Department of Pharmaceutics, Bharat Institute of Technology.
- 5. Student, Department of Pharmaceutics, Bharat Institute of Technology.

Abstract:

Paracetamol syrup is a crucial pediatric formulation, but traditional sucrose-based versions present challenges such as dental caries, high glycemic impact, and stability issues. Isomalt, a promising sugar alcohol, offers a superior alternative. This review highlights the positive attributes of isomalt as an excipient in paracetamol syrup, focusing on its enhanced stability, significant health benefits, and improved patient compliance. Ultimately, isomalt offers an overall advantage for these formulations.

Keywords: Isomalt, Paracetamol Syrup, Sweeteners, Sucrose, Pediatric Formulations, Dental Health, Non-Cariogenic, Low Glycemic Index, Reduced Caloric Value, Prebiotic Effects, Gut Health, Stability, Patient Compliance, Thermal Stability, Low Hygroscopicity, Excipient, Sugar alcohols.

Introduction:

Paracetamol Syrup: A Common Pediatric Formulation:

Paracetamol syrup is vital for pediatric patients, necessitating palatable and safe formulations. Sweeteners are essential for masking paracetamol's bitter taste.

Challenges with Traditional Sweeteners (e.g., Sucrose):

Sucrose is a conventional sweetener, but it poses several drawbacks in pharmaceutical formulations, including high caloric content, cariogenicity, and a high glycemic index, raising concerns for diabetic or pre-diabetic patients. Furthermore, its hygroscopicity can lead to stability issues, and thermal instability may cause caramelization or decomposition upon heating.

Introducing Isomalt: A Promising Alternative:

• Isomalt is a sugar alcohol derived from sucrose. This article comprehensively reviews isomalt's specific benefits, particularly in paracetamol syrup, emphasizing its superior properties over traditional sugars.

Understanding Sweeteners: Sucrose vs. Isomalt

- Sucrose: The Traditional Standard (Brief Overview of Disadvantages):
- Sucrose is composed of glucose and fructose with an \alpha,\beta-(1→2) glycosidic bond. While it is a white, crystalline, and sweet substance, its pharmaceutical disadvantages include thermal instability, which can affect product aesthetics and stability during manufacturing and storage. Its high hygroscopicity can lead to moisture absorption, caking, microbial growth, and degradation of active pharmaceutical ingredients (APIs) like paracetamol. Key health concerns also include its high glycemic impact and cariogenicity.

Isomalt: A Superior Sugar Alternative for Pharmaceutical Formulations:

Isomalt consists of two glucose molecules linked by an $\alpha-(1\rightarrow 6)$ glycosidic bond and is derived from sucrose through enzymatic and hydrogenation+n processes. It is a white, crystalline solid or powder.

Key Advantages of Isomalt:

- Reduced Sweetness and Synergistic Potential: Isomalt is 40-60% as sweet as sucrose, allowing for controlled sweetness and synergy with high-intensity sweeteners, which is important for taste masking without excessive sweetness.
- Low Hygroscopicity: This property is crucial for syrup stability, as it prevents moisture absorption, extends shelf life, inhibits microbial growth, and protects the API.
- Exceptional Thermal Stability: Isomalt can withstand high temperatures (150-180°C) without browning or degradation. This benefits manufacturing processes like sterilization and ensures long-term product integrity.
- **Resistance to Crystallization:** This property helps maintain a smooth, non-gritty texture in syrups and prevents "sugaring out".
- Clean Taste Profile & Flavor Enhancement: Isomalt offers a mild, sugar-like taste without an aftertaste, allowing the primary flavor of the syrup (e.g., fruit flavor for palatability) to be prominent.
- Minimal Cooling Effect: Unlike some other polyols, isomalt does not leave an undesirable cooling sensation, making it suitable for oral liquid formulations.

Health Benefits of Isomalt in Paracetamol Syrup

- 1.0 Dental Health: A Non-Cariogenic Sweetener: Isomalt is non-cariogenic because oral bacteria cannot easily metabolize it into acid. This is a significant benefit for pediatric patients who regularly consume medicated syrups.
- **2.0 Glycemic Control: Suitable for Diabetics and Health-Conscious Individuals:** Isomalt has a very low glycemic index and minimal impact on blood glucose and insulin levels. This highlights its suitability for diabetic patients and those managing blood sugar, thereby expanding the patient demographic.
- **3.0 Reduced Caloric Value: Supporting Weight Management:** Isomalt provides 2 kcal/g compared to sucrose's 4 kcal/g. Its role in reduced-calorie formulations aligns with public health trends.
- **4.0 Prebiotic Effects and Gut Health (Emerging Benefit):** Isomalt is poorly absorbed and ferments in the large intestine. Studies, such as Gostner et al., have shown a "significant increase in bifidobacteria" and "decreased activity of bacterial \beta-glucosidase". This promotes a "healthy colonic environment," serving as a unique and added positive attribute.

Manufacturing and Formulation Advantages of Isomalt in Paracetamol Syrup

- **1 Enhanced Stability and Shelf Life:** Isomalt's low hygroscopicity directly contributes to an extended shelf life and reduced degradation of paracetamol. Its thermal stability is beneficial during syrup preparation (heating, mixing) and storage, ensuring consistent product quality.
- **2 Improved Patient Compliance:** Isomalt's clean taste and good flavor release enhance palatability, crucial for masking bitter APIs. It also provides a smooth, non-gritty texture appealing to patients, especially children. Parents and caregivers may also be more accepting due to its tooth-friendly and low-glycemic properties.
- **3 Compatibility and Processing:** Existing food processing equipment can generally be used with isomalt. Its bulking properties provide the desired body and viscosity for the syrup.

Considerations and Limitations (Balanced Perspective)

- **1 Potential for Gastrointestinal Discomfort:** High doses of isomalt can lead to bloating, gas, or diarrhea in some individuals. However, moderation and regular consumption can lead to desensitization, and pharmaceutical formulations would be designed to minimize this effect.
- **2 Sweetness Level Adjustment:** As isomalt is less sweet than sucrose, formulations might require blending with high-intensity sweeteners to achieve the desired sweetness for taste masking.

Additional Points About Isomalt:

- Synergy with other excipients: Isomalt's physical properties, such as bulking, make it compatible and synergistic with other common pharmaceutical excipients like thickeners, preservatives, and flavoring agents used in syrup formulations.
- **Regulatory Status and Acceptance:** Isomalt has widespread regulatory approval (e.g., FDA GRAS, JECFA, EU), reinforcing its safety and global acceptance for pharmaceutical and food use.
- Target Patient Population Focus: For pediatric formulations, the "tooth-friendly" and "low glycemic" aspects of isomalt are paramount, making it an ethical and practical choice for widespread use in children.

Suggesting Sugar Alternatives Similar to Isomalt Other sugar alcohols (polyols) share characteristics with isomalt but possess unique profiles and specific applications. A brief comparison of some commonly used polyols highlights their diverse properties:

• Xylitol:

- **Source:** Naturally found in many fruits and vegetables, commercially produced from birch or corn cobs.
- **Sweetness:** Roughly as sweet as sucrose (1:1).
- **Calories:** 2.4 kcal/g.
- **Dental Health:** Highly non-cariogenic; actively inhibits the growth of *Streptococcus mutans*, a primary bacteria in tooth decay.
- Glycemic Impact: Very low glycemic index.
- Hygroscopicity: Moderately hygroscopic.
- Cooling Effect: Distinctive cooling sensation in the mouth, desirable in some products (e.g., mints) but undesirable in others (e.g., fruit syrups).
- GI Effects: Can cause laxative effects in high doses.
- Note: Highly toxic to dogs.

• Erythritol:

- **Source:** Naturally found in some fruits and fermented foods, commercially produced by fermentation of glucose.
- Sweetness: About 60-80% as sweet as sucrose.
- Calories: Very low, almost zero (0.2 kcal/g), which is its main distinguishing feature.
- Dental Health: Non-cariogenic.
- Glycemic Impact: Virtually no impact on blood glucose or insulin levels.
- **Hygroscopicity:** Non-hygroscopic.
- Cooling Effect: Noticeable cooling sensation.
- o **GI Effects:** Generally well-tolerated with fewer digestive issues than other polyols due to higher absorption in the small intestine; less likely to cause laxative effects.
- Note: Its extremely low caloric value and high digestive tolerance make it very popular.

Maltitol:

- **Source:** Produced by the hydrogenation of maltose (derived from starch).
- **Sweetness:** About 90% as sweet as sucrose.
- o **Calories:** 2.1 kcal/g.
- o **Dental Health:** Non-cariogenic.
- **Glycemic Impact:** Has a higher glycemic index than isomalt, xylitol, or erythritol (still lower than sucrose), so it can have a more significant impact on blood sugar.
- **Hygroscopicity:** Moderately hygroscopic.
- o **GI Effects:** Can cause significant laxative effects in lower doses compared to other polyols.

• Sorbitol:

- Source: Found naturally in various fruits, commercially produced from glucose.
- **Sweetness:** About 60% as sweet as sucrose.
- o Calories: 2.6 kcal/g.
- Dental Health: Non-cariogenic.
- **Glycemic Impact:** Low glycemic index.
- **Hygroscopicity:** Highly hygroscopic, which can be a disadvantage in some applications.

GI Effects: Common for causing laxative effects even at moderate doses; often used as a laxative.

Conclusion: Isomalt offers overarching benefits in paracetamol syrup, including enhanced stability, improved patient compliance through palatability and health benefits (dental, glycemic, caloric), and potential prebiotic effects. It is an ideal bulk sweetener for replacing sugar in this critical pharmaceutical application, advancing safer, healthier, and more patient-friendly pharmaceutical formulations

References:

- 1) Sentko A, Willibald-Ettlie I. Isomalt. Sweeteners and sugar alternatives in food technology. 2012 Sep 7:243-74.
- 2) Gostner A, Blaut M, Schaffer V, Kozianowski G, Theis S, Klingeberg M, Dombrowski Y, Martin D, Ehrhardt S, Taras D, Schwiertz A. Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. British Journal of Nutrition. 2006 Jan;95(1):40-50.
- 3) Bolhuis GK, Engelhart JJ, Eissens AC. Compaction properties of isomalt. European journal of pharmaceutics and biopharmaceutics. 2009 Aug 1;72(3):621-5.
- 4) Rose T, Kunz M. Production of isomalt. Landbauforsch. Volk. 2002;241:75-80.
- 5) Gostner A, Schaffer V, Theis S, Menzel T, Lührs H, Melcher R, Schauber J, Kudlich T, Dusel G, Dorbath D, Kozianowski G. Effects of isomalt consumption on gastrointestinal and metabolic parameters in healthy volunteers. British journal of nutrition. 2005 Oct;94(4):575-81.
- 6) Borde B, Ces à ro AT. A DSC study of hydrated sugar alcohols. Isomalt. Journal of thermal analysis and calorimetry. 2001 Oct 1;66(1):179-95.
- 7) Schweitzer L, Wouters R, Theis S. Replacing sugar with the polyol isomalt: technological advances and nutritional benefits focusing on blood glucose management. International Journal on Nutraceuticals, Functional Foods and Novel Foods. 2024 Apr 11.
- 8) Thiebaud D, Jacot E, Schmitz H, Spengler M, Felber JP. Comparative study of isomalt and sucrose by means of continuous indirect calorimetry Metabolism. 1984 Sep 1;33(9):808-13.