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1. Introduction  

Random fixed point theorems represent a stochastic extension of classical fixed point theorems. Itoh 

[8] expanded upon several well-known fixed point theorems, and subsequently, various stochastic 

dimensions of Schauder’s fixed point theorem have been explored by Sehgal and Singh [14], 

Papageorgiou [12], Lin [13], and numerous other authors. In a separable metric space, random fixed 

point theorems for contractive mappings were established by Spacek [15] and Hans [5,6]. Later, Beg 

and Shahzad [2], along with Badshah and Sayyad, examined the structure of common random fixed 

points and random coincidence points of a pair of compatible random operators, proving the random 

fixed point theorems for contraction random operators in random metric spaces. 
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2. Preliminaries: before starting main result we write some basic definetions. 

Definition: 2.1:- A  metric  space  (X, d) is  said  to  be  a  Polish  Space, if  it  satisfying  following 

conditions:-  

i. X,  is  complete, 

ii. X is  separable, 

A  metric  space (X, d)  is  complete  if  whenever  (xn: n ∈  ω)  is  a  sequence  of  member  of  X,  such  

that  for  every  ϵ > 0 there  is an   N,  such  that  m, n ≥   N  implies  

d(xn, xm)  <   ϵ, 

there is  a single  x  in  X  such that  lim
n<ω

xn =   x.  

It is easy to  see  that  2ω, ωω   are  polish  space,  So  in  fact  is  ω  under  the discrete  topology,  whose  

metric  is  given  by  letting  d(x, y)  =  1  when  x ≠  y  and  d(x, y) =  0  when  x =   y.  

Let (X, d)  be  a  Polish  space  that  is  a  separable  complete  metric  space  and  (Ω, q)  be Measurable  

space.  

Let 2x  be  a  family  of  all  subsets of  X  and CB(X)  denote  the  family  of all nonempty  bounded  

closed  subsets  of  X.   

A  mapping   T: Ω → 2X  is called measurable  if  for  any  open  subset  C  of  X,  T−1(C)  = {ω ∈

Ω: f(ω) ∩  C ≠ ϕ}  ∈ q.  

A mapping  ξ: Ω → X   is  said  to be  measurable  selector  of  a  measurable  mapping  T: Ω → 2X , if  ξ   is  

measurable  and  for  any   ω ∈ Ω, ξ(ω) ∈ T(ω).  

A mapping  f: Ω × X → X   is called random operator, if for any  x ∈ X, f(∙, x) is measurable.  

A Mapping  T: Ω × X → CB(X)   is   a   random multivalued operator, if for every x ∈ X, T(∙, x)   is 

measurable.  

A measurable mapping  ξ: Ω → X  is called random fixed   point of a random multivalued operatorT: Ω ×

X → CB(X) (f: Ω × X → X)if for every ω ∈ Ω,  ξ(ω) ∈ T(ω, ξ(ω)) , f(ω), ξ(ω)  =  ξ(ω)).   

 Let T: Ω × X → CB(X)  be  a  random  operator   and  {ξn}   a  sequence  of  measurable  mappings , 

ξn: Ω → X.  Then   sequence  {ξn}  is  said  to   be asymptotically T-regular if d(ξn(ω), T(ω, ξn(w)) → 0. 
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3. Main Results 

Theorem 3.1: Let X be a Random metric space. Let T, S: Ω × X → CB(X) be two continuous random 

multivalued operators. If there exists measurable mappings α, β, γ, δ ∶  Ω → (0,1) such that, 

 H(S(ω, x), T(ω, y)) ≤ α(ω)
max{d2(x,S(ω,x)),d2(y,T(ω,y))}

d(x,y)
 

  + β(ω)
 max{d2(y,S(ω,x)),d2(x,T(ω,y))}

d(x,y)
   3.1(a) 

For each x, y ∈ X , ω ∈ Ω  and α, β, γ, δ ∈ R+ with 0 ≤  α(ω) + 2β(ω) +  γ(ω) + 2δ(ω) < 1,and  1 −

β(ω) ≠ 0 there exists a common random fixed point of S and T.       

Proof : Let ξ0 ∶ Ω → X be an arbitrary measurable mapping and choose a measurable mapping ξ1 ∶ Ω →

X such that ξ1(ω) ∈ S(ω, ξ0(ω)) for each ω ∈ Ω.  then for each ω ∈ Ω. 

 H (S(ω, ξ0(ω)), T(ω, ξ1(ω))) ≤ α(ω)
max{d2(ξ0(ω),S(ω,ξ0(ω))),d2(ξ1(ω),T(ω,ξ1(ω)))}

d(ξ0,ξ1)
  

  + β(ω)
max{d2(ξ1(ω),S(ω,ξ0(ω))),d2(ξ0(ω),T(ω,ξ1(ω)))}

d(ξ0,ξ1)
 

Further there exists a measurable mapping ξ2 ∶ Ω → X such that for all ω ∈ Ω, ξ2(ω) ∈ T(ω, ξ1(ω)) and  

  d(ξ1(ω), ξ2(ω)) ≤ α(ω)
max{d2(ξ0(ω),ξ1(ω)),d2(ξ1(ω),ξ2(ω))}

d(ξ1,ξ2)
  

  + β(ω)
max{d2(ξ1(ω),ξ1(ω)),d2(ξ0(ω),ξ2(ω))}

d(ξ1,ξ2)
 

  d(ξ1(ω), ξ2(ω)) ≤
α(ω)+ β(ω)

1−β(ω)
d(ξ0(ω), ξ1(ω))  

Let k =  
α(ω)+ β(ω)

1−β(ω)
 

This gives 

  d(ξ1(ω), ξ2(ω)) ≤ k d(ξ0(ω), ξ1(ω))  

By Beg and Shahzad [2, lemma 2.3], we obtain a measurable mapping  ξ3 ∶  Ω → X such that for all ω ∈

Ω,  ξ3(ω) ∈ S(ω, ξ2(ω))  and  

  d(ξ2(ω), ξ3(ω)) ≤ α(ω)
 max{d2(ξ1(ω),ξ2(ω)),d2(ξ2(ω),ξ3(ω))}

d(ξ2,ξ3)
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  + β(ω)
max{d2(ξ2(ω),ξ2(ω)),d2(ξ1(ω),ξ3(ω))}

d(ξ2,ξ3)
 

  d(ξ2(ω), ξ3(ω)) ≤ k d(ξ1(ω), ξ2(ω)) ≤ k2d(ξ0(ω), ξ1(ω))  

Similarly, proceeding the same way, by induction, we get a sequence of measurable mapping ξn: Ω → X 

suct that for n > 0 and for any ω ∈ Ω, 

 ξ2n+1(ω) ∈ S(ω, ξ 2n(ω))  , and   ξ2n+2(ω) ∈ T(ω, ξ 2n+1(ω)) 

This gives, 

  d(ξn(ω), ξn+1(ω)) ≤ kd(ξn−1(ω), ξn(ω)) ≤ ⋯ … … … ≤  knd(ξ0(ω), ξ1(ω))  

For any  m, n ∈ N such that  m > n, also by using triangular inequality we have 

 d(ξn(ω), ξm(ω)) ≤
kn

1−k
d(ξ0(ω), ξ1(ω))  

Which tends to zero as  n → ∞. It follows that {ξn(ω)} is a Cauchy sequence and there exists a 

measurable mapping ξ ∶ Ω → X such that ξn(ω) → ξ(ω)  for each ω ∈ Ω. It implies that ξ2n+1(ω) →

 ξ(ω). Thus we have for any ω ∈ Ω, 

d (ξ(ω), S(ω, ξ(ω))) ≤ d(ξ(ω), ξ2n+2(ω)) +  d (ξ(ω), S(ω, ξ2n+2(ω)))  

d (ξ(ω), S(ω, ξ(ω))) ≤ d(ξ(ω), ξ2n+2(ω)) +  H (T(ω, ξ2n+1(ω)), S(ω, ξ2n+2(ω)))  

Therefore,  

d (ξ(ω), S(ω, ξ(ω))) ≤ d(ξ(ω), ξ2n+2(ω))     

  + α(ω)
max{d2(ξ2n+2(ω),S(ω,ξ2n+2(ω))),d2(ξ2n+1(ω),T(ω,ξ2n+1(ω)))}

d(ξ2n+2,ξ2n+1)
   

 + β(ω)
max{d(ξ2n+1(ω),S(ω,ξ2n+2(ω))),d(ξ2n+2(ω),T(ω,ξ2n+1(ω)))}

d(ξ2n+2,ξ2n+1)
     

Taking as n → ∞, we have 

 d (ξ(ω), S(ω, ξ(ω))) ≤ (α(ω) +  β(ω) ) d (ξ(ω), S(ω, ξ(ω)))  

Which contradiction, hence ξ(ω) = S(ω, ξ(ω) )  for al lω ∈ Ω. Similarly, for any ω ∈ Ω, 

d (ξ(ω), S(ω, ξ(ω))) ≤ d(ξ(ω), ξ2n+1(ω)) +  H (S(ω, ξ2n(ω)), T(ω, ξ2n+1(ω)))   
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Hence ξ(ω) = T(ω, ξ(ω) )  for all ω ∈ Ω. 

It is easy to see that, ξ(ω) is common fixed point for S and T  in X. 

Uniqueness:- Let us assume that, ξ∗(ω) is another fixed point of S and T in X, different from ξ(ω), then 

we have 

 d(ξ(ω), ξ∗(ω)) ≤ d (ξ(ω), S(ω, ξ2n(ω))) + H (S(ω, ξ2n(ω)), T(ω, ξ2n+1(ω)))  

   + d (T(ω, ξ2n+1(ω)), ξ∗(ω))   

By using 3.1(a) and n → ∞ we have,  

d(ξ(ω), ξ∗(ω)) ≤ 0  

Which contradiction, 

So we have, ξ(ω) is unique common fixed point of S and T in X. 

Corollary 3.2:-  Let X be a Random metric space. Let Sp, Tq ∶ Ω × X → CB(X) be two continuous 

random multivalued operators. If there exists measurable mappings α, β, γ, δ ∶  Ω → (0,1) such that, 

H(S(ω, x), T(ω, y)) ≤ α(ω) max{d(x, S(ω, x)), d(y, T(ω, y))}  

  + β(ω)  max{d(y, S(ω, x)), d(x, T(ω, y))} 3.2(a) 

For each x, y ∈ X , ω ∈ Ω  and α, β, γ, δ ∈ R+ with 0 ≤  α(ω) + 2β(ω) < 1,and  1 − β(ω) ≠ 0 , there 

exists a common random fixed point of S and T.     

Proof: From the theorem 3.1, it is immediate to see that, the corollary is true. If not then we choose a  

ξ0 ∶ Ω → X be an arbitrary measurable mapping and choose a measurable mapping  ξ1 ∶ Ω → X such 

that ξ1(ω) ∈ S(ω, ξ0(ω)) for each ω ∈ Ω.  then for each ω ∈ Ω, and by using 3.2(a) the result is follows. 

Now our next result is generalization of our previous theorem 3.1, in fact we prove the following 

theorem. 

Theorem 3.3: Let X be a Random metric space. Let T, S: Ω × X → CB(X) be two continuous random 

multivalued operators. If there exists measurable mappings α, β, γ, δ ∶  Ω → (0,1) such that, 

 H(S(ω, x), T(ω, y)) ≤ α(ω)
min{

max{d2(x,S(ω,x)),d2(y,T(ω,y))},

 max{d2(y,S(ω,x)),d2(x,T(ω,y))}
}

d(x,y)
  3.3(a) 
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For each x, y ∈ X , ω ∈ Ω  and α ∈ R+ with 0 ≤  α(ω) < 1, there exists a common random fixed point of 

S and T.      

Proof :- Let ξ0 ∶ Ω → X be an arbitrary measurable mapping and choose a measurable mapping  ξ1 ∶

Ω → X such that ξ1(ω) ∈ S(ω, ξ0(ω)) for each ω ∈ Ω.  then for each ω ∈ Ω. 

H (S(ω, ξ0(ω)), T(ω, ξ1(ω))) ≤ α(ω)

min{
max{d2(ξ0(ω),S(ω,ξ0(ω))),d2(ξ1(ω),T(ω,ξ1(ω)))},

 max{d2(ξ1(ω),S(ω,ξ0(ω))),d2(ξ0(ω),T(ω,ξ1(ω)))}
}

d(ξ0,ξ1)
  

Further there exists a measurable mapping ξ2 ∶ Ω → X such that for all ω ∈ Ω, ξ2(ω) ∈ T(ω, ξ1(ω)) and  

d(ξ1(ω), ξ2(ω)) ≤   α(ω)
min{

max{d(ξ0(ω),ξ1(ω)),d(ξ1(ω),ξ2(ω))},

 max{d(ξ1(ω),ξ1(ω)),d(ξ0(ω),ξ2(ω))}
}

d(ξ1,ξ2)
                  

d(ξ1(ω), ξ2(ω)) ≤   α(ω) d(ξ0(ω), ξ1(ω))   

By Beg and Shahzad [2, lemma 2.3], we obtain a measurable mapping  ξ3 ∶  Ω → X such that for all ω ∈

Ω,  ξ3(ω) ∈ S(ω, ξ2(ω))  and by using 3.3 (a), we have   

 d(ξ2(ω), ξ3(ω)) ≤ α(ω) d(ξ1(ω), ξ2(ω)) ≤ (α(ω))
2

d(ξ0(ω), ξ1(ω))  

 Similarly, proceeding the same way, by induction, we get a sequence of measurable mapping ξn: Ω → X 

suct that for n > 0 and for any ω ∈ Ω, 

 ξ2n+1(ω) ∈ S(ω, ξ 2n(ω))  , and   ξ2n+2(ω) ∈ T(ω, ξ 2n+1(ω)) 

This gives,  d(ξn(ω), ξn+1(ω)) ≤ α(ω)d(ξn−1(ω), ξn(ω)) ≤ ⋯ … … … ≤

 (α(ω))
n

d(ξ0(ω), ξ1(ω))  

For any  m, n ∈ N such that  m > n, also by using triangular inequality we have 

d(ξn(ω), ξm(ω)) ≤
(α(ω))

n

1−α(ω)
d(ξ0(ω), ξ1(ω))  

Which tends to zero as  n → ∞. It follows that {ξn(ω)} is a Cauchy sequence and there exists a 

measurable mapping ξ ∶ Ω → X such that ξn(ω) → ξ(ω)  for each ω ∈ Ω. It implies that ξ2n+1(ω) →

 ξ(ω). Thus we have for any ω ∈ Ω, 

d (ξ(ω), S(ω, ξ(ω))) ≤ d(ξ(ω), ξ2n+2(ω)) +  d (ξ(ω), S(ω, ξ2n+2(ω)))  
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d (ξ(ω), S(ω, ξ(ω))) ≤ d(ξ(ω), ξ2n+2(ω)) +  H (T(ω, ξ2n+1(ω)), S(ω, ξ2n+2(ω)))  

Therefore, by using 3.3(a)  we have 

 d (ξ(ω), S(ω, ξ(ω))) ≤ α(ω) d (ξ(ω), S(ω, ξ(ω)))  

Which contradiction, hence ξ(ω) = S(ω, ξ(ω) )  for all ω ∈ Ω. Similarly, for any ω ∈ Ω, 

d (ξ(ω), S(ω, ξ(ω))) ≤ d(ξ(ω), ξ2n+1(ω)) +  H (S(ω, ξ2n(ω)), T(ω, ξ2n+1(ω)))   

Hence ξ(ω) = T(ω, ξ(ω) )  for all ω ∈ Ω. 

It is easy to see that, ξ(ω) is common fixed point for S and T  in X. 

Uniqueness :- Let us assume that, ξ∗(ω) is another fixed point of S and T in X, different from ξ(ω), then 

we have 

 d(ξ(ω), ξ∗(ω)) ≤ d (ξ(ω), S(ω, ξ2n(ω))) + H (S(ω, ξ2n(ω)), T(ω, ξ2n+1(ω)))  

   + d (T(ω, ξ2n+1(ω)), ξ∗(ω))   

By using 3.3(a) and n → ∞ we have,  

d(ξ(ω), ξ∗(ω)) ≤ 0   

Which contradiction,  So we have, ξ(ω) is unique common fixed point of S and T in X. 

Corollary 3.4:- Let X be a Random metric space. Let Sp, Tq ∶ Ω × X → CB(X) be two continuous random 

multivalued operators. If there exists measurable mappings α, β, γ, δ ∶  Ω → (0,1) such that, 

  H(S(ω, x), T(ω, y)) ≤ α(ω) min {
max{d2(x, S(ω, x)), d2(y, T(ω, y))} ,

 max{d2(y, S(ω, x)), d2(x, T(ω, y))}
}  3.4(a) 

For each x, y ∈ X , ω ∈ Ω  and α, ∈ R+ with 0 ≤  α(ω) < 1    there exists a common random fixed point 

of S and T.     

Proof:- From the theorem 3.3, it is immediate to see that, the corollary is true. If not then we choose a  

ξ0 ∶ Ω → X be an arbitrary measurable mapping and choose a measurable mapping  ξ1 ∶ Ω → X such 

that ξ1(ω) ∈ S(ω, ξ0(ω)) for each ω ∈ Ω.  then for each ω ∈ Ω, and by using 3.3(a) the result is follows. 
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