IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Generalized Fixed Point Theorems In Random Metric Space

ANCHAL VERMA* AND ASHFAQUE UR RAHMAN**

*(Research Scholar) Department of Mathematics and IT, Madhyanchal Professional University Bhopal (M.P.) India.

**(Supervisor) Department of Mathematics and IT, Madhyanchal Professional University Bhopal (M.P.) India.

ABSTRACT

We prove some Common Fixed Point theorems for Random Operator in random metric spaces, by using some new type of contractive conditions taking non-self-mappings.

Key Words: - Random metric space, Random Operator, Random Multivalued Operator, Random Fixed, Point, Measurable Mapping, Non-self-mapping

AMS Subject Classification: - 47H10, 54H25.

1. Introduction

Random fixed point theorems represent a stochastic extension of classical fixed point theorems. Itoh [8] expanded upon several well-known fixed point theorems, and subsequently, various stochastic dimensions of Schauder's fixed point theorem have been explored by Sehgal and Singh [14], Papageorgiou [12], Lin [13], and numerous other authors. In a separable metric space, random fixed point theorems for contractive mappings were established by Spacek [15] and Hans [5,6]. Later, Beg and Shahzad [2], along with Badshah and Sayyad, examined the structure of common random fixed points and random coincidence points of a pair of compatible random operators, proving the random fixed point theorems for contraction random operators in random metric spaces.

2. Preliminaries: before starting main result we write some basic definetions.

Definition: 2.1:- A metric space (X, d) is said to be a Polish Space, if it satisfying following conditions:-

- i. X, is complete,
- ii. X is separable,

A metric space (X,d) is complete if whenever $(x_n:n\in\omega)$ is a sequence of member of X, such that for every $\epsilon>0$ there is an N, such that $m,n\geq N$ implies

$$d(x_n, x_m) < \epsilon$$
,

there is a single x in X such that $\lim_{n < \omega} x_n = x$.

It is easy to see that 2^{ω} , ω^{ω} are polish space, So in fact is ω under the discrete topology, whose metric is given by letting d(x,y)=1 when $x\neq y$ and d(x,y)=0 when x=y.

Let (X, d) be a Polish space that is a separable complete metric space and (Ω, q) be Measurable space.

Let 2^x be a family of all subsets of X and CB(X) denote the family of all nonempty bounded closed subsets of X.

A mapping $T: \Omega \to 2^X$ is called measurable if for any open subset C of X, $T^{-1}(C) = \{\omega \in \Omega: f(\omega) \cap C \neq \emptyset\} \in q$.

A mapping $\xi: \Omega \to X$ is said to be measurable selector of a measurable mapping $T: \Omega \to 2^X$, if ξ is measurable and for any $\omega \in \Omega$, $\xi(\omega) \in T(\omega)$.

A mapping $f: \Omega \times X \to X$ is called random operator, if for any $x \in X$, $f(\cdot, x)$ is measurable.

A Mapping $T: \Omega \times X \to CB(X)$ is a random multivalued operator, if for every $x \in X$, $T(\cdot, x)$ is measurable.

A measurable mapping $\xi: \Omega \to X$ is called random fixed point of a random multivalued operator $T: \Omega \times X \to CB(X)$ ($f: \Omega \times X \to X$) if for every $\omega \in \Omega$, $\xi(\omega) \in T(\omega, \xi(\omega))$, $f(\omega), \xi(\omega) = \xi(\omega)$).

Let $T: \Omega \times X \to CB(X)$ be a random operator and $\{\xi_n\}$ a sequence of measurable mappings, $\xi_n: \Omega \to X$. Then sequence $\{\xi_n\}$ is said to be asymptotically T-regular if $d(\xi_n(\omega), T(\omega, \xi_n(w)) \to 0$.

3. Main Results

Theorem 3.1: Let X be a Random metric space. Let T, S: $\Omega \times X \to CB(X)$ be two continuous random multivalued operators. If there exists measurable mappings α , β , γ , δ : $\Omega \to (0,1)$ such that,

$$\begin{split} H\big(S(\omega,x),T(\omega,y)\big) &\leq \alpha(\omega) \, \frac{\max\{d^2\big(x,S(\omega,x)\big),d^2\big(y,T(\omega,y)\big)\}}{d(x,y)} \\ &+ \beta(\omega) \, \frac{\max\{d^2\big(y,S(\omega,x)\big),d^2\big(x,T(\omega,y)\big)\}}{d(x,y)} \end{split} \qquad \qquad 3.1(a) \end{split}$$

For each $x, y \in X$, $\omega \in \Omega$ and $\alpha, \beta, \gamma, \delta \in R^+$ with $0 \le \alpha(\omega) + 2\beta(\omega) + \gamma(\omega) + 2\delta(\omega) < 1$, and $1 - \beta(\omega) \ne 0$ there exists a common random fixed point of S and T.

Proof: Let $\xi_0 : \Omega \to X$ be an arbitrary measurable mapping and choose a measurable mapping $\xi_1 : \Omega \to X$ such that $\xi_1(\omega) \in S(\omega, \xi_0(\omega))$ for each $\omega \in \Omega$.

$$\begin{split} H\left(S\left(\omega,\xi_{0}(\omega)\right),T\left(\omega,\xi_{1}(\omega)\right)\right) &\leq \alpha(\omega) \frac{\max\left\{d^{2}\left(\xi_{0}(\omega),S\left(\omega,\xi_{0}(\omega)\right)\right),d^{2}\left(\xi_{1}(\omega),T\left(\omega,\xi_{1}(\omega)\right)\right)\right\}}{d(\xi_{0},\xi_{1})} \\ &+\beta(\omega) \frac{\max\left\{d^{2}\left(\xi_{1}(\omega),S\left(\omega,\xi_{0}(\omega)\right)\right),d^{2}\left(\xi_{0}(\omega),T\left(\omega,\xi_{1}(\omega)\right)\right)\right\}}{d(\xi_{0},\xi_{1})} \end{split}$$

Further there exists a measurable mapping $\xi_2:\Omega\to X$ such that for all $\omega\in\Omega,\xi_2(\omega)\in T\bigl(\omega,\xi_1(\omega)\bigr)$ and

$$\begin{split} d\big(\xi_1(\omega),\xi_2(\omega)\big) &\leq \alpha(\omega) \frac{\max\{d^2\big(\xi_0(\omega),\xi_1(\omega)\big),d^2\big(\xi_1(\omega),\xi_2(\omega)\big)\}}{d(\xi_1,\xi_2)} \\ &+ \beta(\omega) \frac{\max\{d^2\big(\xi_1(\omega),\xi_1(\omega)\big),d^2\big(\xi_0(\omega),\xi_2(\omega)\big)\}}{d(\xi_1,\xi_2)} \\ d\big(\xi_1(\omega),\xi_2(\omega)\big) &\leq \frac{\alpha(\omega)+\beta(\omega)}{1-\beta(\omega)} d\big(\xi_0(\omega),\xi_1(\omega)\big) \end{split}$$

Let
$$k = \frac{\alpha(\omega) + \beta(\omega)}{1 - \beta(\omega)}$$

This gives

$$d(\xi_1(\omega), \xi_2(\omega)) \le k d(\xi_0(\omega), \xi_1(\omega))$$

By Beg and Shahzad [2, lemma 2.3], we obtain a measurable mapping $\xi_3:\Omega\to X$ such that for all $\omega\in\Omega$, $\xi_3(\omega)\in S(\omega,\xi_2(\omega))$ and

$$d(\xi_2(\omega), \xi_3(\omega)) \le \alpha(\omega) \frac{\max\{d^2(\xi_1(\omega), \xi_2(\omega)), d^2(\xi_2(\omega), \xi_3(\omega))\}}{d(\xi_2, \xi_3)}$$

$$+\beta(\omega)\tfrac{\max\{d^2(\xi_2(\omega),\xi_2(\omega)),d^2(\xi_1(\omega),\xi_3(\omega))\}}{d(\xi_2,\xi_3)}$$

$$d(\xi_2(\omega), \xi_3(\omega)) \le k d(\xi_1(\omega), \xi_2(\omega)) \le k^2 d(\xi_0(\omega), \xi_1(\omega))$$

Similarly, proceeding the same way, by induction, we get a sequence of measurable mapping $\xi_n \colon \Omega \to X$ suct that for n > 0 and for any $\omega \in \Omega$,

$$\xi_{2n+1}(\omega) \in S(\omega, \xi_{2n}(\omega))$$
, and $\xi_{2n+2}(\omega) \in T(\omega, \xi_{2n+1}(\omega))$

This gives,

$$d\big(\xi_n(\omega),\xi_{n+1}(\omega)\big) \leq kd\big(\xi_{n-1}(\omega),\xi_n(\omega)\big) \leq \cdots \ldots \ldots \leq k^nd\big(\xi_0(\omega),\xi_1(\omega)\big)$$

For any $m, n \in \mathbb{N}$ such that m > n, also by using triangular inequality we have

$$d(\xi_n(\omega), \xi_m(\omega)) \le \frac{k^n}{1-k} d(\xi_0(\omega), \xi_1(\omega))$$

Which tends to zero as $n \to \infty$. It follows that $\{\xi_n(\omega)\}$ is a Cauchy sequence and there exists a measurable mapping $\xi: \Omega \to X$ such that $\xi_n(\omega) \to \xi(\omega)$ for each $\omega \in \Omega$. It implies that $\xi_{2n+1}(\omega) \to \xi(\omega)$. Thus we have for any $\omega \in \Omega$,

$$\begin{split} &d\left(\xi(\omega),S\left(\omega,\xi(\omega)\right)\right) \leq d\left(\xi(\omega),\xi_{2n+2}(\omega)\right) + \ d\left(\xi(\omega),S\left(\omega,\xi_{2n+2}(\omega)\right)\right) \\ &d\left(\xi(\omega),S\left(\omega,\xi(\omega)\right)\right) \leq d\left(\xi(\omega),\xi_{2n+2}(\omega)\right) + \ H\left(T\left(\omega,\xi_{2n+1}(\omega)\right),S\left(\omega,\xi_{2n+2}(\omega)\right)\right) \end{split}$$

Therefore,

$$\begin{split} d\left(\xi(\omega), S(\omega, \xi(\omega))\right) &\leq d\left(\xi(\omega), \xi_{2n+2}(\omega)\right) \\ &+ \alpha(\omega) \frac{\max \left\{d^{2}\left(\xi_{2n+2}(\omega), S\left(\omega, \xi_{2n+2}(\omega)\right)\right), d^{2}\left(\xi_{2n+1}(\omega), T\left(\omega, \xi_{2n+1}(\omega)\right)\right)\right\}}{d(\xi_{2n+2}, \xi_{2n+1})} \\ &+ \beta(\omega) \frac{\max \left\{d\left(\xi_{2n+1}(\omega), S\left(\omega, \xi_{2n+2}(\omega)\right)\right), d\left(\xi_{2n+2}(\omega), T\left(\omega, \xi_{2n+1}(\omega)\right)\right)\right\}}{d(\xi_{2n+2}, \xi_{2n+2}(\omega))} \end{split}$$

Taking as $n \to \infty$, we have

$$d\left(\xi(\omega), S(\omega, \xi(\omega))\right) \le (\alpha(\omega) + \beta(\omega)) d\left(\xi(\omega), S(\omega, \xi(\omega))\right)$$

Which contradiction, hence $\xi(\omega) = S(\omega, \xi(\omega))$ for all $\omega \in \Omega$. Similarly, for any $\omega \in \Omega$,

$$d\left(\xi(\omega),S\left(\omega,\xi(\omega)\right)\right)\leq d\left(\xi(\omega),\xi_{2n+1}(\omega)\right)+ \ H\left(S\left(\omega,\xi_{2n}(\omega)\right),T\left(\omega,\xi_{2n+1}(\omega)\right)\right)$$

Hence $\xi(\omega) = T(\omega, \xi(\omega))$ for all $\omega \in \Omega$.

It is easy to see that, $\xi(\omega)$ is common fixed point for S and T in X.

Uniqueness:- Let us assume that, $\xi^*(\omega)$ is another fixed point of S and T in X, different from $\xi(\omega)$, then we have

$$\begin{split} d\big(\xi(\omega),\xi^*(\omega)\big) &\leq d\left(\xi(\omega),S\big(\omega,\xi_{2n}(\omega)\big)\right) + H\left(S\big(\omega,\xi_{2n}(\omega)\big),T\big(\omega,\xi_{2n+1}(\omega)\big)\right) \\ &+ d\left(T\big(\omega,\xi_{2n+1}(\omega)\big),\xi^*(\omega)\right) \end{split}$$

By using 3.1(a) and $n \rightarrow \infty$ we have,

$$d(\xi(\omega), \xi^*(\omega)) \le 0$$

Which contradiction,

So we have, $\xi(\omega)$ is unique common fixed point of S and T in X.

Corollary 3.2:- Let X be a Random metric space. Let S^p , $T^q : \Omega \times X \to CB(X)$ be two continuous random multivalued operators. If there exists measurable mappings $\alpha, \beta, \gamma, \delta : \Omega \to (0,1)$ such that,

$$\begin{split} H\big(S(\omega,x),T(\omega,y)\big) &\leq \alpha(\omega) \max \big\{d\big(x,S(\omega,x)\big),d\big(y,T(\omega,y)\big)\big\} \\ &+ \beta(\omega) \, \max \big\{d\big(y,S(\omega,x)\big),d\big(x,T(\omega,y)\big)\big\} \,\, 3.2(a) \end{split}$$

For each $x, y \in X$, $\omega \in \Omega$ and $\alpha, \beta, \gamma, \delta \in R^+$ with $0 \le \alpha(\omega) + 2\beta(\omega) < 1$, and $1 - \beta(\omega) \ne 0$, there exists a common random fixed point of S and T.

Proof: From the theorem 3.1, it is immediate to see that, the corollary is true. If not then we choose a $\xi_0: \Omega \to X$ be an arbitrary measurable mapping and choose a measurable mapping $\xi_1: \Omega \to X$ such that $\xi_1(\omega) \in S(\omega, \xi_0(\omega))$ for each $\omega \in \Omega$. then for each $\omega \in \Omega$, and by using 3.2(a) the result is follows.

Now our next result is generalization of our previous theorem 3.1, in fact we prove the following theorem.

Theorem 3.3: Let X be a Random metric space. Let T, S: $\Omega \times X \to CB(X)$ be two continuous random multivalued operators. If there exists measurable mappings α , β , γ , δ : $\Omega \to (0,1)$ such that,

$$H(S(\omega, x), T(\omega, y)) \le \alpha(\omega) \frac{\min \left\{ \max\{d^{2}(x, S(\omega, x)), d^{2}(y, T(\omega, y))\}, \max\{d^{2}(y, S(\omega, x)), d^{2}(x, T(\omega, y))\} \right\}}{d(x, y)}$$
3.3(a)

For each $x,y\in X$, $\omega\in\Omega$ and $\alpha\in R^+$ with $0\leq\alpha(\omega)<1$, there exists a common random fixed point of S and T.

Proof:- Let $\xi_0: \Omega \to X$ be an arbitrary measurable mapping and choose a measurable mapping $\xi_1: \Omega \to X$ such that $\xi_1(\omega) \in S(\omega, \xi_0(\omega))$ for each $\omega \in \Omega$. then for each $\omega \in \Omega$.

$$H\left(S(\omega,\xi_0(\omega)),T(\omega,\xi_1(\omega))\right) \leq \alpha(\omega) \frac{\min\left\{\max\left\{d^2\left(\xi_0(\omega),S(\omega,\xi_0(\omega))\right),d^2\left(\xi_1(\omega),T(\omega,\xi_1(\omega))\right)\right\},\right\}}{d(\xi_0,\xi_1)}$$

Further there exists a measurable mapping $\xi_2:\Omega\to X$ such that for all $\omega\in\Omega,\xi_2(\omega)\in T\bigl(\omega,\xi_1(\omega)\bigr)$ and

$$d(\xi_{1}(\omega), \xi_{2}(\omega)) \leq \alpha(\omega) \frac{\min \left\{ \max\{d(\xi_{0}(\omega), \xi_{1}(\omega)), d(\xi_{1}(\omega), \xi_{2}(\omega))\}, \max\{d(\xi_{1}(\omega), \xi_{1}(\omega)), d(\xi_{0}(\omega), \xi_{2}(\omega))\}\right\}}{d(\xi_{1}, \xi_{2})}$$
$$d(\xi_{1}(\omega), \xi_{2}(\omega)) \leq \alpha(\omega) d(\xi_{0}(\omega), \xi_{1}(\omega))$$

By Beg and Shahzad [2, lemma 2.3], we obtain a measurable mapping $\xi_3: \Omega \to X$ such that for all $\omega \in \Omega$, $\xi_3(\omega) \in S(\omega, \xi_2(\omega))$ and by using 3.3 (a), we have

$$d(\xi_2(\omega), \xi_3(\omega)) \le \alpha(\omega) d(\xi_1(\omega), \xi_2(\omega)) \le (\alpha(\omega))^2 d(\xi_0(\omega), \xi_1(\omega))$$

Similarly, proceeding the same way, by induction, we get a sequence of measurable mapping $\xi_n \colon \Omega \to X$ suct that for n > 0 and for any $\omega \in \Omega$,

$$\xi_{2n+1}(\omega) \in S(\omega, \xi_{2n}(\omega))$$
, and $\xi_{2n+2}(\omega) \in T(\omega, \xi_{2n+1}(\omega))$

This gives,
$$d(\xi_n(\omega), \xi_{n+1}(\omega)) \le \alpha(\omega)d(\xi_{n-1}(\omega), \xi_n(\omega)) \le \cdots \dots \dots \le (\alpha(\omega))^n d(\xi_0(\omega), \xi_1(\omega))$$

For any $m, n \in N$ such that m > n, also by using triangular inequality we have

$$d\big(\xi_n(\omega),\xi_m(\omega)\big) \leq \frac{\big(\alpha(\omega)\big)^n}{1-\alpha(\omega)}d\big(\xi_0(\omega),\xi_1(\omega)\big)$$

Which tends to zero as $n \to \infty$. It follows that $\{\xi_n(\omega)\}$ is a Cauchy sequence and there exists a measurable mapping $\xi: \Omega \to X$ such that $\xi_n(\omega) \to \xi(\omega)$ for each $\omega \in \Omega$. It implies that $\xi_{2n+1}(\omega) \to \xi(\omega)$. Thus we have for any $\omega \in \Omega$,

$$d\left(\xi(\omega), S(\omega, \xi(\omega))\right) \le d\left(\xi(\omega), \xi_{2n+2}(\omega)\right) + d\left(\xi(\omega), S(\omega, \xi_{2n+2}(\omega))\right)$$

$$d\left(\xi(\omega),S\big(\omega,\xi(\omega)\big)\right)\leq d\big(\xi(\omega),\xi_{2n+2}(\omega)\big)+\ H\left(T\big(\omega,\xi_{2n+1}(\omega)\big),S\big(\omega,\xi_{2n+2}(\omega)\big)\right)$$

Therefore, by using 3.3(a) we have

$$d\left(\xi(\omega),S\big(\omega,\xi(\omega)\big)\right)\leq\alpha(\omega)\;d\left(\xi(\omega),S\big(\omega,\xi(\omega)\big)\right)$$

Which contradiction, hence $\xi(\omega) = S(\omega, \xi(\omega))$ for all $\omega \in \Omega$. Similarly, for any $\omega \in \Omega$,

$$d\left(\xi(\omega),S\big(\omega,\xi(\omega)\big)\right)\leq d\big(\xi(\omega),\xi_{2n+1}(\omega)\big)+ \ H\left(S\big(\omega,\xi_{2n}(\omega)\big),T\big(\omega,\xi_{2n+1}(\omega)\big)\right)$$

Hence $\xi(\omega) = T(\omega, \xi(\omega))$ for all $\omega \in \Omega$.

It is easy to see that, $\xi(\omega)$ is common fixed point for S and T in X.

Uniqueness :- Let us assume that, $\xi^*(\omega)$ is another fixed point of S and T in X, different from $\xi(\omega)$, then we have

$$\begin{split} d\Big(\xi(\omega),\xi^*(\omega)\Big) &\leq d\Big(\xi(\omega),S\Big(\omega,\xi_{2n}(\omega)\Big)\Big) + H\Big(S\Big(\omega,\xi_{2n}(\omega)\Big),T\Big(\omega,\xi_{2n+1}(\omega)\Big)\Big) \\ &+ d\Big(T\Big(\omega,\xi_{2n+1}(\omega)\Big),\xi^*(\omega)\Big) \end{split}$$

By using 3.3(a) and $n \rightarrow \infty$ we have,

$$d(\xi(\omega), \xi^*(\omega)) \leq 0$$

Which contradiction, So we have, $\xi(\omega)$ is unique common fixed point of S and T in X.

Corollary 3.4:- Let X be a Random metric space. Let $S^p, T^q : \Omega \times X \to CB(X)$ be two continuous random multivalued operators. If there exists measurable mappings $\alpha, \beta, \gamma, \delta : \Omega \to (0,1)$ such that,

$$H\big(S(\omega,x),T(\omega,y)\big) \leq \alpha(\omega) \min \left\{ \begin{aligned} &\max \big\{ d^2\big(x,S(\omega,x)\big), d^2\big(y,T(\omega,y)\big) \big\}, \\ &\max \big\{ d^2\big(y,S(\omega,x)\big), d^2\big(x,T(\omega,y)\big) \big\} \end{aligned} \right\} 3.4(a)$$

For each $x,y\in X$, $\omega\in\Omega$ and $\alpha,\in R^+$ with $0\leq\alpha(\omega)<1$ there exists a common random fixed point of S and T.

Proof:- From the theorem 3.3, it is immediate to see that, the corollary is true. If not then we choose a $\xi_0: \Omega \to X$ be an arbitrary measurable mapping and choose a measurable mapping $\xi_1: \Omega \to X$ such that $\xi_1(\omega) \in S(\omega, \xi_0(\omega))$ for each $\omega \in \Omega$. then for each $\omega \in \Omega$, and by using 3.3(a) the result is follows.

References

- 1. Beg I. and Azam A.," Fixed points of asymptotically regular multivalued mappings" J. Austral. Math. Soc. Ser. A. 53 (1992) 313-326.
- 2. Beg I. and Shahzad N. Random fixed points of multivalued mappings, Nonlinear Anal. 20 (1993) 835-347.
- 3. Beg I. and Shahzad N., Random fixed points of non-self maps, J. Appl. Math. And Stoch. Analysis 6 (1993) 95-106.
- 4. Bharucha Reid A.T., "Random Integral Equations," Academic Press, New York, 1972.
- 5. Hans O., Reduzierede, Czech Math, J. 7 (1957) 154-158.
- 6. Hans O., Random Operator Equations, Proc. 4th Berkeley Symp. Math. Statist. Probability (1960), Voll. II, (1961) 180- 202.
- 7. Heardy G. E. and Rogers T.D., Canad. Math. Bull., 16 (1973) 201-206.
- 8. Itoh. S., Pacific J. Math. 68 (1977) 85-90.
- 9. Kanan R., Bull. Callcutta Math. Soc. 60(1968) 71-76.
- 10. Kuratowski K. and Ryll-Nardzewski C., Bull. Acad. Polo. Sci. Ser. Sci. Math Astronom. Phys. 13 (1965) 397-403.
- 11. Lin. T.C. Proc. Amer. Math. Soc. 103(1988)1129-1135.
- 12. Papageorgiou N.S., Proc. Amer. Math. Soc. 97(1986)507-514.
- 13. Rohades B.E., Sessa S. Khan M.S. and Swaleh M., J. Austral. Math. Soc. (Ser.A) 43(1987)328-346.
- 14. Seghal V.M., and Singh S.P., Proc. Amer. Math. Soc. 95(1985)91-94.
- 15. Spacek A., Zufallige Gleichungen, Czechoslovak Math. J. 5(1955) 462-466.
- 16. Wong C.S., Paci. J. Math. 48(1973)299-312.
- 17. Tan. K.K., Xu, H.K., On Fixed Point Theorems of non-expansive mappings in product spaces, Proc. Amer. Math. Soc. 113(1991), 983-989.