IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Spectro Chemical Analysis And Evaluation Of Anticancer Activity Of Ethanolic Leaf Extract Of Solanum Virginianum

(First Author & Corresponding) Nachimuthu Vishnuthari^{1*} S.NoorulAmeen¹

¹Department of Chemistry, Arulmigu Palaniandavar College of Arts and Culture, Palani, Tamilnadu, India.

ABSTRACT

Cancer is an inclusive term for a herd of diseases that can affect any part of the body. SolanumVirginianumhas many herbal formulations, habitually used by an Indian population for the disease management. These herbal habituations demand exact scientific authentication to enhance their effectiveness and popularity. In this study, we endeavour scientific validation to the leaves of SolanumVirginianumthrough preliminary phytochemical investigation, characterization of efficient phytochemicals using UV Spectrophotometer, FTIR analysis and Gas chromatography – Mass spectrometry and Anti-cancer activity of identified phytochemical compounds. The Qualitative phytochemical screening of the ethanolic extract of leaves of SolanumVirginianumidentifying twenty five compounds. The high proportion phytochemical compounds including Diethyl phthalate, Cyclohexasiloxane, dodecamethyland lowest proportions including Furanylhexahydro1,3-Dioxo-4-Phenyl-,Methylester Dimethoxy-2-(2-Oxopropyl)-6Dimethyl-1"3"-Dioxolananthraquinone. Eventually, the high proportion phytochemical compounds exhibited significant in vitro cytotoxicity against K562 tumor cell lines (IC50 54. 9µg). The all-inclusive study showed that the presented herbal formulations are enriched with bio-active phytochemical compounds with favoured pharmaceutical values.

Keywords: Solanum Virginianum, Anti-cancer Activity, Ethanol extraction, IC50

INTRODUCTION

In the worldwide, many plants have been extensively used by rural population and tribal communities as an indispensable source of medicine¹. Solanum. *virginianum* L, a diffuse and spiky shrub belongs to the family Solanaceae which grows commonly in theintercontinental on sandy soils and is distributed throughout India ². The Solanaceae is ahugeplant family with 96 genera and 2,300 species, about one half of which belongsto the genus Solanum. Solanumisoneof the biggest genera of flowering plants³, relatively woody at the base, zigzag stem, compressed spikes exceeding 1.3 cm long, leaves 5-10 cm long, ovate or elliptic, sinuate or sub-pinnatifid, obtuse or subacute, armed on the midrib and nerves with long yellow sharp spikes. Flowers are in extra-axillary few flowered cymes; corolla white, 2 cm long. Berry 1.3-2 cm diameter, yellow or white⁴. *SolanumvirginianumLinn*has various phytochemicals that are medically valuable and are important sources of pharmacology. It has antispermatogenic, hepatoprotective and anticancer properties⁵. Phytochemical profile of S. surattense reported the presence of alkaloids, flavonoids, phenols, and steroids. The clinical studies of S. surattense revealed that it has potential anti-asthmaticactivity and dental anti-inflammation⁶.

Fig: 1 The whole plant of SolanumVirginianum

MATERIALS AND METHODS`

Plant collection

SolanumVirginianumwas identified and mature plants were collected in the Garden of ArulmiguPalaniandavar College of Arts and Culture, Palani in the month of March. The plants were washed thoroughly with tap water to remove dust. Then the plants were shade dried to avoid the loss of bio-active compounds. After complete drying, each part of the plant were subjected to mechanical grinding and collected in an air tight container.

Extract Preparation

100g of each plant part were extracted using different organic and aqueous solvents which have varying polarity (Petroleum ether, EtOH,water). Each 250ml of the solvent used, with the help of the Soxhelt apparatus the extract was prepared and stored in clean beakers.

Gas Chromatography Mass Spectrometry Analysis

The ethanolic extract of *SolanumVirginianum*underwent gas chromatography-mass spectrometry analysis (GC-MS - QP-2020) with the thermal desorption (TD) system.

Experimental conditions of the GC-MS system were as follows:

The Trace -5 Mass spectrometry consists of capillary standard non-polar column whose dimension -30 meters; internal diameter-0.25 mm; and film thickness- 0.25 μm. The flow rate of the mobile phase (carrier gas: helium) is 1.2 ml/min.In the gas chromatography phase, the temperature programme (oven temperature) was 50°C, which was raised to 250°C at 10°C/min, and the injection volume was 1 μl. Samples dissolved in chloroform were run fully at a range of 50-500 mass-to-charge ratio (m/z).

In-vitro evaluation of anti-cancer activity by MTT assay

Cell culture

Chronic Myelogenousleukemia cell line (CML) was provided by National Centre for Cell line (NCCS), Pune and was grown in Minimum essential medium (MEM) supplemented with fetal bovine serum (FEM). All cells were maintained at 37 °C, with 5% CO₂,95% air.

MTT assay

After 24hours of incubation of each well, $10 \,\mu l$ of MTT (1mg/ml) in Phosphate- buffered saline (PBS) (p^H 7.2) was added and incubated at $37\,^{0}$ C for 3-4 h. The medium with MTT was snapped and the formazen crystals were formed which was solubilized in 100% of DMSO. Using micro-plate reader the absorbance was measured at 570 nm. The images were done using Inverted Phase Contrast Microscope.

UV – Ultraviolet Visible spectroscopy

The UV – Visible spectrum of the samples was recorded by using spectrophotometer(model UV-1800)in the range of 664 cm⁻¹ and 607 cm⁻¹. The peak at 665 cm⁻¹ is due to absorption in blue green (N=O), 607 cm⁻¹ is due to the absorption of Green blue (N=O), 200 cm⁻¹ – 400 cm⁻¹ is due to the Poly- unsaturated and aromatic carbonyl compounds (C=O, H-CH=O).

Table: 1 Description of UV – Visible Spectrum

S.No	Wave number	Description
1	200 nm to 400 nm	Poly- unsaturated and aromatic (C=O, H-CH=O)
2	665 nm	Blue- green (N=O)
3	607nm	Green – blue (N=O)

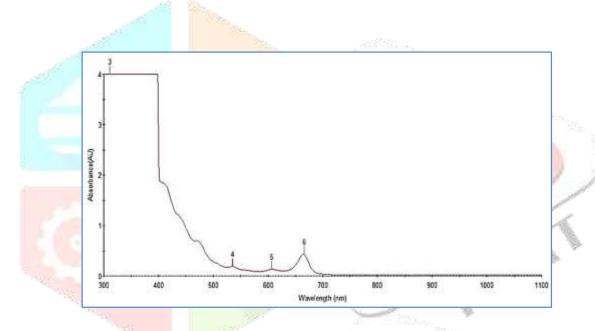


Figure: 2 UV – Visible spectrum of Solanum Virginianum

FTIR- Fourier Transform Infrared Spectroscopy

FTIR spectral measurements were performed to find out the potential functional group in SolanumVirginianumleaf extract showed stretching vibrations of the bond.

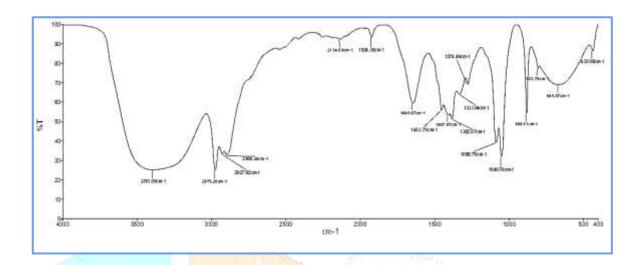


Table: 2Functional group present in leaf extract

S.	No	Wave number (cm ⁻¹)	Functional group
1	1	2975.20	C-Hstretchingofalkanes
2	2	3391.05	O-H stretching of carboxylic acids
3	3	2134.09	C≡C stretching
4	4	2927.92	C-H stretching of alkanes
4	5	2134.09	C≡C stretching

Gas chromatography- Mass spectrometry analysis

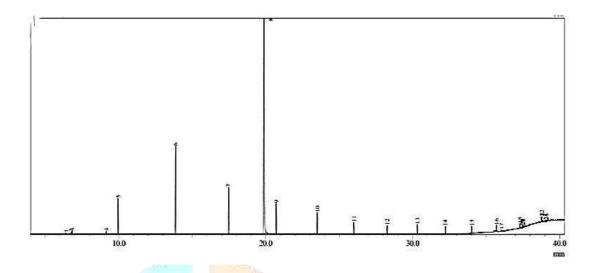


Figure: 4Chromotogram of ethanolic extract of Solanum Virginianum

The bioactive compounds present in the ethanolic extract of *SolanumVirginianum* coupled with massspectroscopy (GC-MS) reports are given in fig 5.

In the ethanolic sample of SolanmVirginianum 25 compounds were identified and the highest percentage compound content a peak area 41.18 (Diethyl phthalate with RT 19.876), peak area of 15.24 (Cyclohexasiloxane, dodecamethyl with 13,868 RT) and lowest percentage of content area of 0.15 Furanyl-hexahydro1,3-dioxo-4-phenyl-methylester with RT 37.455 and peak area of 0.14(1,5-Dimethoxy-2-(2-oxopropyl)-6-dimethyl-1"3"-dioxolan-anthraquinone with RT 36.04). Phytochemical with their retention time (RT), molecular formula and molecular weight(MW) in the ethanolic extract present in table 5.

Table: 3 Phytochemical constituents in ethanolic extract of Solanum Virginianum

S.No	RT	Name of the compound	Molecular formula	MW	Area%
1	6.392	Octahydro-4A,7,7-Trimethyl-5-(1,1- Dimethylene)	C19H34O3Si	338	0.25
2	6.745	2-(2-Oxo-2-Phenyl-Ethyl)-1,3- Dioxolane	C ₁₀ H ₉ ClO ₄	228	0.31
3	6.825	3-Ethyl-4-Methyltetrahydrofuran-3-0L C ₇ H ₁₄ O ₂		130	0.55
4	9.139	Pentadecane	$C_{15}H_{32}$	212	0.43

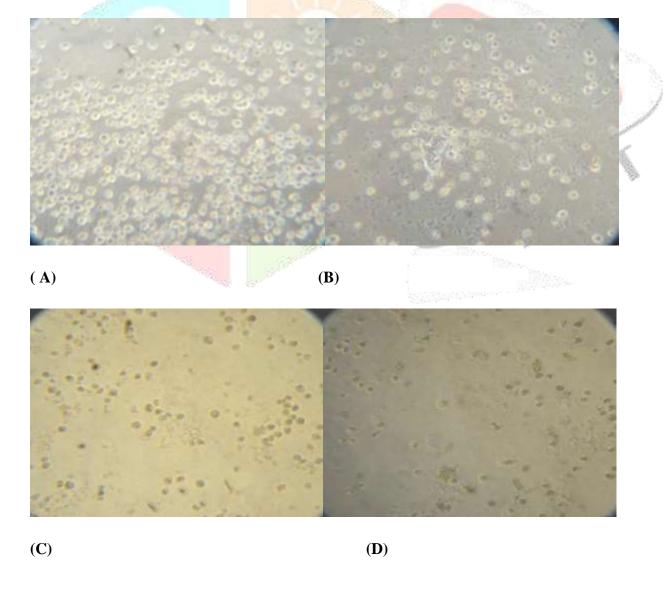
5	9.946	Cyclopentasiloxane, Decamethyl	$C_{10}H_{30}O_{5}Si_{5}$	370	5.73
6	13.868	Cyclohexasiloxane,dodecamethyl	C ₁₂ H ₃₆ O ₆ Si ₆	444	15.24
7	17.478	Cycloheptasiloxane,tetradecamethyl	C ₁₄ H ₄₂ O ₇ Si ₇	518	8.05
8	19.876	DiethylPhthalate	$C_{12}H_{14}O_4$	212	47.49
9	20.74	Cyclooctasiloxane,hexadecamethyl	$C_{16}H_{48}O_8Si_8$	592	5.21
10	23.509	Cyclononasiloxane,octadecamethyl	$C_{18}H_{54}O_9Si_9$	666	3.6
11	25.994	1cosmethylcyclodecasiloxane#	$C_{20}H_{60}O_{10}Si_{10}$	740	1.91
12	34.498	Benzoic Acid, 2,4- Bis(Trimethylsiloxy},TrimethylsilylEste	$C_{16}H_{30}O_4Si_3$	370	1.56
13	34.575	Cyclononasiloxane,octadecamethyl	C ₁₈ H ₅₄ O ₉ Si ₉	666	1.56
14	36.314	Cyclononas <mark>iloxan</mark> e,octadecamethyl	C ₁₈ H ₅₄ O ₉ Si ₉	666	1.36
15	38.12	3,4- Dihydroxymandelicacid,4TMSderivativ	C ₂₀ H ₄₀ O ₅ Si ₄	472	1.24
		e e			
16	35.715	Cyclononasiloxane,octadecamethyl	C ₁₈ H ₅₄ O ₉ Si ₉	666	1.27
17	36.04	1,5-Dimethoxy-2-(2-Oxopropyl)- 6Dimethyl-1"3"-Dioxolan- anthraquinone	C ₂₄ H ₂₄ O ₇	424	0.14
18	37.297	Cyclononasiloxane,octadecamethyl	C ₁₈ H ₅₄ O ₉ Si ₉	666	1.08
19	37.455	1H-Furo[3,4-C]Purrole- 4CarboxylicAcid, Furanylhexahydro1,3-Dioxo-4-Phenyl- ,MethylEster.	C ₁₈ H ₁₅ NO ₆	341	0.15
20	37.48	Pentanenitrile,4,4-Dimethyl	C ₇ H ₁₃ N	111	0.59
21	37.531	1H-Indole,1-Acetyl-3-Tetrahydro-1- Methyl-4-Pyridinyl)Carbonyl	C ₁₇ H ₁₈ N ₂ O ₂	282	0.29
22	38.789	Cyclononasiloxane,octadecamethyl	C ₁₈ H ₅₄ O ₉ Si ₉	666	1.17

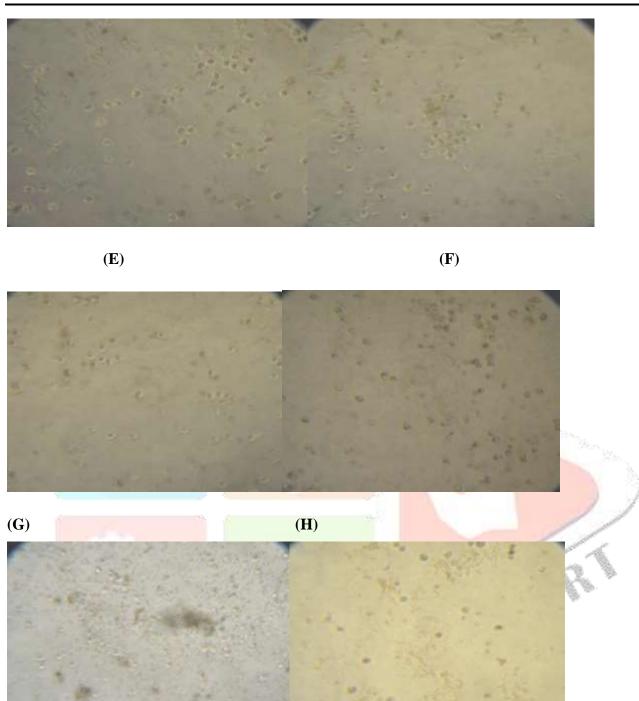
h101

23	38.835	Silane,[[4{1,2Bis[(Trimethylsilyljoxyjet hyl]-1,2- Phenylenejbis(Oxy)JBis[Trimethyl	C ₂₀ H ₄₂ O ₄ Si ₄	458	0.15
24	39.076	1-Aza-4,5-(2,3B-5- [4Methoxyphenyl]Furyl))Bicyclo[4.3.0] Nonan-9-One	C ₁₇ H ₁₇ NO ₃	283	0.42
25	39.125	3-Hydroxy-2-Adamantylisoindolin-1- One	C ₁₈ H ₂₁ NO ₂	283	0.22

Table: 4 Highest percentage of compound in the ethanolic leaf extract of S. Virginianum

S.No	RT	Name of the compound	Molecular formula	MW	Area %
1	19.876	DiethylPhthalate	C ₁₂ H ₁₄ O ₄	212	47.49
2	13.868	Cyclohexasiloxane,dodecamethyl	C ₁₂ H ₃₆ O ₆ Si ₆	444	15.24
3	17.478	Cycloheptasiloxane,tetradecamethyl	C ₁₄ H ₄₂ O ₇ Si ₇	518	8.05


In-vitro Anticancer Activity


Table: 5 Percentage of Cytotoxicity of ethanolic leaf extract of *SolanumVirginianum* on K562 cell lines by MTT assay

Concentration	Cytotoxicity (%)	Cell Viability(%)	Cytotoxic Reactivity	With IC50 value
10	32	68	Mild	
20	38	62	Mild	

30	41	59	Mild	
40	45	55	Mild	
50	50	50	Mild	
60	54	46	Moderate	54. 9µg
70	58	42	Moderate	
80	64	36	Moderate	
90	67	33	Moderate	
100	72	28	Severe	

The results for cytotoxicity by the extract against K562 lines for various concentration shown in table . As the concentration increases with the increases of cytotoxicity increases. The ethanolic extract of SolanumVirginianumshowed Mild to Severe cytotoxicity to K562 cells after 24 hrs. The obtained IC₅₀ values 54.9 μ . Control showed none cytotoxicity.

(I)

(J)

Fig. : 4 Anticancer Activity of *S. Virgianum* extract against K562 Cell lines from leaf extract of *Solanum Virginianum* with various concentrations.

(A) Control , (B) 10 μg , (C) 20 μg , (D) 30 μg , (E) 40 μg , (F) 50 μg , (G) 60 μg , (H) 70 μg , (I) 80 μg , (J) 90 μg , (K) 100 μg .

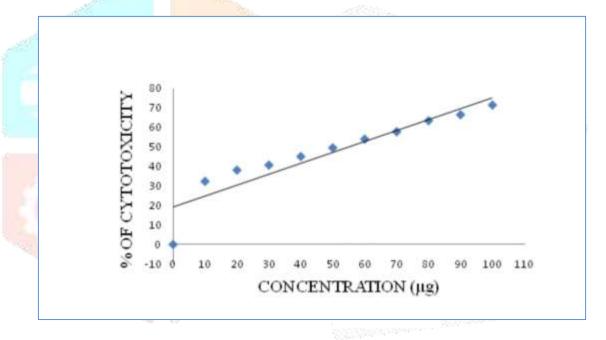


Fig. : 5 ConcentrationVs % of cytotoxicity

An indigenous medicine comprises medical knowledge systems that developed over generations with in various societies before the era of modern medicine. Traditional medicines are prepared from the single plant or combination of more than one plant. Indian contribution of herbal market and emphasis on novel research is continuously increasing. Phytochemical constituents are responsible for medicinal activity of plant species. Hence the present study phytochemical compounds in ethanolic extract of *SolanumVirginianum*highest percentage compound content a peak area 41.26 acid, diethyl Phthalate with RT 13.876), followed by the peak area of 13.868(Cyclohexasiloxane,dodecamethyl with 15.24 RT) and and peak area of 8. 05 (Cycloheptasiloxane,tetradecamethyl with RT 17.467.) and the lowest percentage of content area of 0.14(1,5-

Dimethoxy-2-(2-Oxopropyl)-6Dimethyl-1"3"-Dioxolan-anthraquinone RT 36.04). The ethanolic extract of *S. Virginianum*showed Mild to Severe cytotoxicity to K562 cells after 24 hrs. The obtained IC₅₀ values 54.9 μg. Control showed none cytotoxicity.

CONCLUSION

The ethanolic leaf extract of *SolanumVirginianum* having numerous pharmaceutical properties. Diethyl Phthalate, Cyclohexasiloxane, dodecamethylcomponent are present in leaf extract. Hence the leaf extract of *S. Virginianum* emphatically used in the various ailments for the Herbal Medicine Industry.

The in-vitro studies against K562 lines revealed that the ethanolic leaf extract of *SolanumVirginianum*has a moderate anticancer activity. However, there was increase in the cytotoxicity when concentration of sample is increased, the IC50value is 54. 9µg. Hence the level of cytotoxicity increases with the increase of volume. In future, these components can be isolated and test the pharmacological activity in various metabolites.

REFERENCES

- 1) Prashithkekuda. Antibacterial activity of Solanum Virginianum 2020.
- 2)A. Priyanka and R. Anuradha assessment of Phytochemical screening and Pharmacological activity of *SolanumVirgininum* fruit extract journal of applied science and computations volume 7, 2020
- 3) S. Gnanavel, S. KavithaM. Dineshkumar, K.Kannan, In Vitro Antioxidant and Anticancer activity of seed extract of Solanum Virginianum.
- 4) Dahake P.R., Kohar P.Y evaluation of in vitro Antimicrobial potential of medicinal plant *SolanumVirginianum I*. international journal of research and development in pharmacy and life sciences volume 4, 2015.
- 5) S.B Gargare S. L. Chaven Antibacterial potential and Phytochemical ScreeningofPhyshalisAngulta and SolanumVirginianum. International Journal of Researches in Biosciences, Agriculture and biosciences. 2021
- 6) Siva Kumar Tekuri1, Sivarama Krishna Pasupuleti2, Kranthi Kumar Konidala1, Shobha Rani Amuru1, Purusotham Bassaiahgari1, Neeraja Pabbaraju1* 1 Department of Zoology, Sri ,Phytochemical and pharmacological activities of SolanumsurattenseBurm. f.—A review,Journal of Applied Pharmaceutical Science Vol. 9(03), 2019.
- 7) MadhuKushwaha and Dr. SalendraNarayan ,Analysis of anti-inflammatory activity of methanolic extract of leaves of *solanumvirginianum* using-carrageenan induce paul edema model, Journal of Pharmacognosy and Phytochemistry, volume 7, 2018.
- 8) Anukthi C. Poojari and Satish A. Bhalerao phytochemical and pharmacological profile of *SolanumXanthocarpum*schrad and wendel: a review, World Journal of Pharmaceutical Research, volume 7, 2018.

- 9) PravinMorankar and Alok Pal Jain , estimation of bioactive compound using rp-hplc and antioxidant, antidiabetic activity of aerial parts of *clematis heynei* and *SolanumVirginianum*, journal of pharmacognosy and phytochemistry, volume 8, 2018.
- 10)Rajaselvam J.1 , Sobiya M.2 and ElayaPerumal U.3 , Promising Effects of *SolanumVirginianum* L Seed Extracts against the Oral Pathogens , An International Journal , 2023 .
- 11) Atul Kumar Gangwar 1, AshokeK.Ghosh, VikasSaxena Phytochemical Screening and Analgesic activity of "Kantkari", International Journal of Herbal Medicine, volume 1, 2013.
- 12) MadhuKushwaha and Sailesh Narayan, an analysis of antioxidant activity of leaves of *SolanumVirginianum*, World Journal of Pharmaceutical Research, volume 7, 2018.
- 13) NehaTyagi, Ashwani Kumar, SantoshVerma, pharmacognostical& phytochemical standardization of *SolanumXanthocarpum* (whole plant), Journal of Cardiovascular Disease Research, volume 12, 2021.
- 14) ElangbamChanbi Devi, Jharna Devi, ParthaPratimKalita, NayanTalukdar, MinakshiBhattacharjee and ManashPratimSarma, Phytochemical Analysis of *SolanumVirginianum* and its Effect on Human Pathogenic Microbes with Special Emphasis on Salmonella typhi, Journal of Forensic Toxicology & Pharmacology, 2015.
- 15) PradeepKumar, A review on the pharmaceutical activity of Solanumsurattense, 2021.
- 16) Roshy JC. Ilanchezhian R. PatgiriBJ . Therapeutic potentials of kantankatiri
- (S. V irginianum) AyurphamIntAyurAlli Sci. 2012.
- 17) PatalVB ,Rathod IS , Patelajm, BrahmbhataMr . Anti urolithiatic and activity of Steriodalconstitituents of SolanumXanthocarpum .Der PharmaChemia .2010.
- 18) Singh OM, Singh TP, Phytochemistry of SolanumXanthocarpum; an Amazing Traditional healer. J. SciInd Res. 2010.
- 19) Kumar S, Panday AK, Medicinal attributes of SolanumXanthocarpum fruit consumed by several tribal communites as food; an in vitro antioxidant, anticancer and HIV perspective. BMC CompleentAltern Med 2014.
- 20) Pharmer S, Gangwal A, Sheth N, SolanumXanthocarpum (yellow berried nightshade) a review Pharm lett .2011.