ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

A Commutativity Theorem With Generalized **Derivation On Jordan Ideal In Prime Rings**

¹ Dr. V. K. Yadav, ² Dr. S. K. Sharma ³ Prof. Praveen Rana ¹ Assistant Professor, ² Assistant Professor, ³ Professor ¹ Department of Mathematics, ¹ Dharam Samai College Aligarh Affiliated to R M P S University, Aligarh, INDIA.

Let R be a 2-torsion free prime ring and J be a non zero Jordan ideal of R. Suppose that $F: \mathbb{R} \to \mathbb{R}$ is a generalized derivation associated with non zero derivation d. If F(xy) – $d(x)F(y) - xy \in Z(\mathbb{R})$, for all $x, y \in J$, then \mathbb{R} is a commutative ring.

Index Terms - Prime ring, Generalized derivation, Jordan ideal.

I. Introduction

In this paper, R denotes an associative ring and center Z(R) denotes centre of R. A ring R is said to be prime ring if $aRb = \{0\}$ implies either a = 0 or b = 0. A ring R is said to be 2-torsion free, if 2x = 0 implies x = 0 for all $x \in R$. The Jordan Product is denoted as o, which is defined on R as xoy = xy + yx, for all $x, y \in R$ and Lie product of x, y is denoted as [x, y], which is defined as [x, y] = xy - yx, for all $x, y \in R$. An additive subgroup J of R is called a Jordan ideal of R if $uor \in J$, for all $u \in J$ and $r \in R$. An additive mapping $d : R \to R$ is said to be a derivation, if d(xy) = d(x)y + d(x)y = d(x)y = d(x)y + d(x)y = d(x)y + d(x)y = d(x)y + d(x)y = d(x)y + d(x)y = d(x)y = d(x)y + d(x)y = d(x)y + d(x)y = d(x)xd(y), for all $x, y \in \mathbb{R}$. Motivated by linear operator, Bresar introduced the concept of generalized derivation, which is the generalization of the derivation defined as follows. An additive mapping F: $R \to R$ is said to be a generalized derivation if there exists a derivation $d: R \to R$ such that F (xy) = F(x)y + xd(y), for all $x, y \in \mathbb{R}$.

Firstly, E.C. Posner [11] proved pioneer results with derivation in prime rings and established connection between additive functions and structure of a ring. Many authors have extended Posner's results, further information can be found in [9],[10]. In this line, Ram Awtar [1] proved some theorems on special subset of ring known as Jordan ideal and Lie idea and also proved that, if J is a Jordan ideal of R then, $4j^2r$, $4jrj \in J$, where $j \in J$, $r \in R$. Further Zaidi [12] et al. proved a result which states that if R is a ring and J is a non zero Jordan ideal of R then, $2J[R, R] \subseteq J$ and $2[R, R]J \subseteq J$. In 1991 M. Bresar [3] introduced the concept of generalized derivation in rings which is the generalization of derivation because every derivation is a generalized derivation but not conversely. In this sequence, Ashraf [2] et al. proved that if R is a prime ring which is 2 torsion free and F is a generalized derivation associated with derivation d on R. If F satisfies any one of the following conditions: (i) $F(xy) - xy \in Z(R)$; (ii) $F(xy) - yx \in Z(R)$; (iii) $F(x)F(y) - xy \in Z(R)$; (iv) $F(x)F(y) = xy \in Z(R)$; (iv) $(x)F(y) - yx \in Z(R)$, for all $x, y \in I$, where I is an ideal of R, then R is commutative.

Recently, Oukhtite L. [7] et al. proved that, if RR is a 2-torsion free prime ring, J is a non zero ideal of R and F satisfies any one of the following conditions:

> $(i)F(xy) - xy \in Z(R);$ $(ii)F(xy) - yx \in Z(R);$ (iii) $F(x)F(y) - xy \in Z(R)$; (iv) $F(x)F(y) - yx \in Z(\mathbb{R})$,

for all $x, y \in J$, then R is a commutative ring.

Motivated by the results of Oukhtite L. [7], we prove our main theorem.

PRELIMINARY RESULTS

The following Lemma will be used in the proof of main results;

Lemma 2.1. [[8], Lemma 2.6] If J is a non zero Jordan ideal such that aJb = 0, then either a = 0 or b = 0.

Lemma 2.2. [[7], Fact 3] If R is a noncommutative ring such that, a[r, xy]b = 0 for all $x, y \in J$, $r \in R$, then either a = 0 or b = 0.

Lemma 2.3. [[7], Fact 6] Let i be a positive integer and set $J_0 = J$, then $J_i = \{x \in J_{i-1} \mid d(x) \in J_i\}$ is a nonzero Jordan ideal, moreover if $J \cap Z(R) \not\models 0$, then $J_i \cap Z(R) \not\models 0$.

Lemma 2.4. [[10], Lemma 2.2] If d is a derivation of R such that $d(x^2) = 0$ for all $x \in J$, then d = 0.

Lemma 2.5. [[6], Remarks 2.1] Let R be a prime ring and J be a non zero Jordan ideal of R. If d is a derivation on R such that $d^2(J) = 0$, then d = 0.

We leave the proofs of the following easy Lemma to the readers.

Lemma 2.6. Let R be a prime ring and J be a Jordan ideal of R. If $y^2 = 0$ for all $y \in J$, then $J = \{0\}$.

Lemma 2.7. Let J be a nonzero Jordan ideal of R. Suppose that d, is a derivation on R such that, d(x) = x for all $x \in J$, then d = 0.

MAIN RESULT

Theorem 3.1. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. Suppose that $F: R \to R$ is a generalized derivation, associated with nonzero derivations d, such that $F(xy) - d(x)F(y) - xy \in Z(R)$, for all $x, y \in J$, then R is commutative.

Proof. First of all, we show that $J \cap Z(R) \neq 0$. On contrary if $J \cap Z(R) = 0$. We have,

$$F(xy) - d(x)F(y) - xy \in Z(R)$$
 (1) for all $x, y \in J$.

Replacing y by 4[r, uv]y in (1), where $u, v \in J, r \in R$, we get

$$4(F(x[r, uv]) - d(x)F([r, uv]) - x[r, uv])y + 4x[r, uv]d(y) - 4d(x)[r, uv]d(y) \in Z(R)$$
(2)

for all $u, v, x, y \in J$. As $4x[r, uv]d(y), 4d(x)[r, uv]d(y) \in J \ \forall \ x, y, u, v \in J_1$. Therefore 4(F(x[r, uv]) - d(x)F([r, uv] - x[r, uv])y + 4x[r, uv]d(y) $-4d(x)[r, uv]d(y) \in J, \ \forall \ x, y, u, v \in J_1$. But $J \cap Z(R) = 0$, hence we get,

(F(x[r, uv]) - d(x)F([r, uv] - x[r, uv])y + x[r, uv]d(y) - d(x)[r, uv]d(y) = 0 (3) for all x, y, u, v

 $\in J_1$, $r \in R$. Replacing y by $4yz^2$ in (3), where $z \in J_1$. we get

$$(x - d(x))[r, uv]yd(z^2)$$
(4)

for all x, y, u, $v \in J_1$, $r \in R$. Using lemma 2.2 we obtain either x - d(x) = 0 or $yd(z^2) = 0$. If $yd(z^2) = 0$, this implies $d(z^2) = 0 \forall z \in J_1$. Then by Lemma 2.4 d = 0, a contradiction. If x - d(x) = 0

 $d(x) = 0 \ \forall \ x \in J_1$, then in application of Lemma 2.7, again we get d = 0, a contradiction. Therefore $J \cap Z(R) \neq 0$.

Replacing y by $4yu^2$ in (1), where $u \in J$, we get

$$4(F(xy) - d(x)F(y) - xy)u^{2} + 4xyd(u^{2}) - 4d(x)yd(u^{2}) \in Z(R)$$
(5)

for all x, y, $u \in J$. Since $F(xy) - d(x)F(y) - xy \in Z(R)$, we get

$$[xyd(u^2), u^2] - [d(x)yd(u^2), u^2] = 0$$
(6)

Replacing y by $4u^2y$ in (6), and subtracting from (6), we obtain

$$[xd(u^2)yd(u^2), u^2] = 0 (7)$$

Replacing x by $4xu^2$ in (7), we get

$$[xu^2yd(u^2), u^2] - [d(x)u^2]$$
 (8)

 $x, y, u \in J$. As $4d(u^2)yd(u^2)x = 4(d(u)ou)yd(u^2)x = 2(d(u)ou)o(yd(u^2)x) + 2[(d(u)ou), yd(u^2)x] \in J$ for all $x, y, u, \in J_1$, then replacing x by $4d(u^2)yd(u^2)x$ in (8) we obtain

$$[d(u^2)yd(u^2), u^2]xd(u^2)yd(u^2) = 0 (9)$$

all x, y, $u \in J_1$. Replacing x by $4xu^2$ in (9), we get

$$[d(u^2)yd(u^2), u^2]xu^2d(u^2)yd(u^2) = 0$$
(10)

ng, (9) by u^2 from right side, and subtracting from (10), we obtain $[d(u^2)yd(u^2), u^2]J[d(u^2)yd(u^2),$

$$u^2] = 0 \tag{11}$$

for all $x, y, u \in J_1$. In light of Lemma 2.1, we get $[d(u^2)yd(u^2), u^2] = 0$, for all $x, y, u \in J_1$. Therefore $d(u^2)yd(u^2)u^2 - u^2d(u^2)yd(u^2) = 0$. As $4yd(u^2)z = 2yd(u^2)oz + 2[yd(u^2), z] \in J$ then replacing y by $2yd(u^2)z$ we get,

$$d(u^{2})y[d(u^{2}), u^{2}]zd(u^{2}) = 0$$
(12)

for all x, y, z, $u \in J_1$. Again by application of Lemma 2.1, we get either $d(u^2) = 0$ or $[d(u^2), u^2] = 0$. If $d(u^2) = 0$ for all $u \in J_1$, by Lemma 2.4, d = 0 a contradiction, therefore we get

$$[d(u^2), u^2] = 0 (13)$$

for all $u \in J_1$. Let $0 \neq t \in J_1 \cap Z(R)$ and replacing u by 2rt, where $r \in R$, we obtain $[d(r^2), r^2] = 0$ (14)

for all $r \in R$. Therefore in application of the Theorem 3 of [4], we find that [R, R]d(R) = 0, hence R is commutative.

REFERENCES

- [1] R. Awtar, Lie and Jordan structure in prime rings with derivations, *Proc. Amer. Math. Soc.* 41 (1973) 67-74.
- [2] M. Asraf. et al., Some commutativity theorems for rings with generalized derivations, *South. Asian. Bull. Math.* 31 (2007), 415-421.
- [3] M.Bresar, On the distance of the composition of two derivations to the generalized derivations, *Glasgow Math.J.* 33 (1991) 89-93.
- [4] T. K. Lee, Semiprime rings with hypercentral derivation, *Canada. Bull. Math.* 38 (1995) 445-449.
- [5] J. Mayne, Centralizing automorphisms of Lie ideals in prime rings,, *Canada. Bull. Math.* 35 (1992) 510-514.
- [6] A. Mamouni, L. Oukhtite, M. Samman, Commutativity theorems for *- prime rings with differential identites on jordan ideal, *ISRN Algebra* (2012) doi:10.5402/2012/729356.
- [7] L. Oukhtite, A. mamouni, Commutativity theorems for prime rings with generalized derivations on Jordan ideals, *Jour. of Taibah Univ.* 9 (2015) 314-319.
- [8] L. Oukhtite, A. mamouni, Derivations satisfying certain algebraic identities on Jordan ideals, *Arab J. Math.* 1 (2012) 341-346.
- [9] L. Oukhtite, A. mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, *Turk. J. Math.*, 38 (2014), 233-239.
- [10] L. Oukhtite, A. mamouni, Charef Beddani, Derivations on Jordan ideals in prime rings, J. Taibah Uni. (2014).
- [11] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957),1093-1100.
- [12] S. Zaidi, On Jordan ideals and left (θ, θ) derivations in prime rings, *Int. J. Math. Math. Sci.* 37 (2004), 1957-1964.