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Abstract: A novel moringa gum based adsorbent (MOG-P) has been prepared and used for the adsorptive 

removal of U(VI) ions from aqueous solutions. Maximum adsorption occurred at pH 5.0 and the removal 

capacity increased with increase in adsorbent dose. Equilibrium was attained within 120 min. The U(VI) 

adsorption decreases with increase in ionic strength of the solution and the uranium adsorption occurs 

through outer-sphere surface complexation. The isotherm data follows Langmuir-Freundlich equation.  The 

adsorption mechanism occurred by the complexation of uranium with oxygen atoms in P– OH/P=O 

group in MOG-P.  
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Introduction 

Uranium is commonly utilized nuclear fuel that is widely distributed in nature. Typically, it can be 

found in the environment in hexavalent form [1]. Additionally, the release of uranium from nuclear industry 

results in contamination of surface and groundwater and have raised severe health issues. It is well known 

that uranium has cancer-causing properties, and consuming uranium can lead to serious health issues such 

kidney and liver damage, which can lead to death.  According to human health organization, the maximum 

amount of uranium in drinking water should be 14.4 µg/L. As a result, uranium extraction and purification 

of uranium in wastewater most effective and adoptable method for conserving and repurposing uranium [2, 

3]. However, due to the low concentration of uranium in sea water, developing efficient and selective 

adsorbents for uranium extraction is a major issue.  

With the rapid growth and application of resources, the variety and quantity of waste created is 

growing, posing severe environmental pollution. To control uranium pollution to human health, effective 

treatment technologies were necessary. Using nanomaterials and metal organic framework we could be 

efficiently remove uranium. Sorbent materials on the other hand have a variety of flaws, including limited 

adsorption capacity, sluggish kinetics, low binding affinity, and poor water/chemical stability. As a result, 

novel adsorbent materials are still needed for effective extraction of uranium. Metal organic frame work 

(MOFs) [4], porous aromatic frameworks (PAFs) [5], and covalent organic frameworks (COFs) [6] are few 

examples of porous materials used for the extraction of uranium. COFs [7] have been investigated for the 

extraction of uranium. Another common method used for the wastewater treatment is adsorption. The study 

of dissolved substance adsorption laws on solid adsorbents provides essential information about the 

adsorption mechanism, allowing us to optimize the adsorption process and conditions for the synthesis of 

adsorbents with desired properties. This is especially true of titanium dioxide–based adsorbents, which are 

rapidly being exploited in the extraction of harmful and useful components. The urgent issue now is to 

create efficient and economically affordable uranium extraction adsorbents. While adsorbents like inorganic 

and carbon materials usually show a low adsorption capacity, in recent years polymer-based adsorbents are 

introduced and are more effective for uranium adsorption. Such polymer-based adsorbents have large 
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surface area, permanent porosity. Also, fibrous polymer materials exhibit good mechanical strength 

comparing with other adsorbents. Functionality is necessary to improve adsorption capacity. For uranium 

adsorption generally amidoxime group is the most effective. Significant progress has been achieved in this 

field of uranium adsorption. 

Moringa oleifera is a plant commonly seen in India It is a plant used in ethnomedicine that thrives in 

the tropics and subtropics. The drumstick tree, miracle tree, ben oil tree, or horseradish tree are all common 

names for the shrub Moringa oleifera. Moringa oleifera plant produces a gum known as moringa olifera 

gum (MOG). These gums are an unwanted by-product of wounded plants. It is a defense mechanism that the 

plant has displayed. The gum initially has a white colour, but when exposed to sunlight, it turns brown or 

brownish black. It just slightly dissolves in water and produces a viscous liquid when it comes in touch with 

water. With water, it produces a highly tacky solution. For use in pharmaceutical applications, this gum is 

available as a binder, release retardant, and disintegrant [8]. Leaves are used for tumors, high cough, 

anthelmintic, cure hallucinations, aphrodisiac, and asthma [9]. In the present work a new novel, efficient, 

and inexpensive functional adsorbent from MOG utilizing simple epoxidation and phosphorylation using 

epichlorohydrine and sodium phosphate dibasic have been prepared. The study investigates the effect of the 

pH, ionic strength, mass of MOG-P and chelating agent for the adsorption of U(VI) onto MOG-P. The 

various operational parameters affecting the adsorption process were studied by using different isotherm 

models. 

Materials and Methods 

Materials 

Moringa gum (MOG) was collected from Thiruvananthapuram and Kottayam from the injured portion 

of the stem. Exudates are white but after exposure to sunlight, they turn brownish-black. Collected MOG 

was washed with distilled water to remove impurities and dried at 80 ℃ in an oven. The dried MOG (Fig. 1) 

was powdered and were used for the chemical modification. All solvents used were of the best grade, 

commercially available and were used without further purification. Epichlorohydrine and sodium phosphate 

dibasic, were purchased from SRL. NaOH were purchased from Nice.  

 

Fig.1 Moringa gum 

MOG-E synthesis 

Scheme.1 illustrates how MOG-E was prepared [10, 11]. About 10 g of powdered moringa gum was 

added to 100 mL, 5 % NaOH solution with 30 mL epichlorohydrin and 30 mL ethanol. Then mixture was 

stirred for 1 h and kept for 12 h for proper mixing of the solutions. After mixing, the mixture was refluxed at 

50 ℃ for 5 h. The precipitate was then washed with distilled water until the pH of the mixture was neutral. 

 

 

 

 

Scheme.1 

MOG-P synthesis 

MOG-P was prepared based on scheme 2. 100 ml DMF and 10 g urea were added to 10 g MOG-E 

[12]. Then the mixture was stirred well and kept at room temperature for 24 h. After that, 50 ml of 

phosphoric acid was added to the mixture and heated at 130°C for 4 h. After cooling to room temperature, 

the product obtained (MOG-P) was washed with 1:1 mixture of distilled water and 1-propanol. Washing 

was repeated until the pH of rinsing water became neutral. The product was dried in a hot air oven. 
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Scheme.2 

Preparation of U(VI) solution 

1.570 g of uranyl acetate were dissolved in 1000 mL of distilled water to create the stock solution. 

Further adsorption studies are conducted after diluting the stock solution. Different concentrations are 

prepared, particularly 2, 4, 8, 10, and 25 mg/L. pH of the solution was maintained by adding 0.1 M HCl and 

0.1 M NaOH solutions. 

Batch adsorption method 

A 100.0 mL Erlenmeyer flask containing 100.0 mg of MOG-P and 50.0 mL of uranium solutions with 

initial concentrations ranging from 2 to 25 mg/L was shaken at 200 rpm in a water bath shaker at a constant 

temperature for the batch adsorption studies. The effect of pH on the adsorption of U(VI) onto MOG-P, 

effect of adsorbent doses, ionic strength, foreign cations, contact time were studied. The amount of U(VI) 

adsorbed, qe (mg/g) was calculated using equation (1), 

   
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where Co and Ce are the initial and equilibrium U(VI) concentrations (mg/L) respectively, V is the volume 

of the solution and m is the mass of MOG-P (g).  

Non- linear regression analysis 

By minimising the hybrid error function, the non-linear regression method using the Solver add-in 

with an Excel spread sheet was used to demonstrate the kinetic and equilibrium model parameters and the 
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where p the number of parameters within the equation and n is the number of data points and qexp and qcal 

correspond to the experimental and model data respectively. The mean values of each adsorption 

experiment that was performed in duplicate were then reported. 

 Results and Discussion 

Characterization of the adsorbent 

Figure 2 shows the FTIR spectrum of MOG, MOG-E and MOG-P. The spectrum of MOG, MOG-E 

and MOG-P shows several functional group bands in the region of 4000-500 cm-1. A broad peak at 3304 

cm-1 is visible in the MOG's FTIR spectra, which denotes -OH stretching [14]. Strong adsorption band of -

OH became less apparent and somewhat moved to a longer wavelength with increased cross linking. This 

was evident from the band values of MOG-E has 3321 cm-1, and MOG-P has value about 3324 cm-1. The 

characteristic adsorption band at 1030 cm-1 of MOG, 1034 cm-1 of MOG- E, and 1034 cm-1 of MOG-P 

indicates -C-O- stretching. -CH2 bending vibrations are at 1418 cm-1 in MOG-E, 1420 cm-1 in MOG and 

1419 cm-1 in MOG-P. In MOG-P, the peak at 868.8 cm-1 is indicated by P–O–C bending vibrations [15] and 

a band at 1251.6 cm-1 indicate -P=O stretching [16] confirmed the successful introduction of phosphate 

groups during phosphorylation. 
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Fig.2. FTIR Spectrum of MOG, MOG-E, MOG-S and MOG-P 

The surface area of MOG and MOG--P were calculated by Brunauer, Emmett and Teller (BET) 

equation. The BET surface areas of MOG and MOG-P are 7.65 m2/g and 10.12 m2/g, respectively. It 

became clear by comparing the surface area values of MOG and MOG-P that the surface area for gas 

adsorption raises when MOG is modified. 

Effect of pH 

pH affects the speciation distribution of uranium in solution and the surface charges of the adsorbent's 

binding sites. Therefore, pH has a significant impact on uranium adsorption.  

 

Fig. 3. Effect of pH for the adsorption of U(VI) ions. 

The effect of pH on uranium adsorption is shown in Fig.3. From the results, it is clear that; pH has great 

influence on uranium adsorption. The optimal pH value was 5 for uranium adsorption on MOG-P. The 

surface charge of MOG-P will influence the interaction of MOG-P and uranium [17]. The effect of pH on 

U(VI) adsorption capacity is due to the presence of H3O
+ in the water and the ion hydrolysis of U(VI) [18]. At 

low pH, adsorption sites are occupied by H3O
+ and there exist a competition between H3O

+ and UO2. At pH 

2-6, hydrolysed form such as UO2
2, (UO2)2(OH)2

2 and, (UO2)3(OH)5 exist. At lower pH positively charged 

uranium ions exist and there will be an electrostatic interaction between the ion and adsorbent MOG-P. On 

increasing pH, adsorption sites increases from pH 2 to 5. While in the pH range 8-10, the dominant ions are 

UO2(CO3)2
2- and UO2(CO3)3

4- .These species will reduce   the adsorption of uranium onto MOG-P [19]. 

These species will reduce the adsorption of uranium onto MOG-P. At higher pH, negatively charged ions will 

exist, which will increase electrostatic repulsion between adsorbent and the uranium ions and thus reduces the 

adsorption capacity. As the solution pH changes from 2 to 8, the interaction between uranium ion and 

adsorbent changes from electrostatic attraction to electrostatic repulsion. the U(VI) speciation distribution in 

the presence of air as a function of pH. At pH 4, U(VI) exist as UO2
2+, and at pH 4.0–7.0 the dominant 

species of U(VI) were UO2, UO2OH, UO2CO3 and UO2(OH)2. At higher pH, the dominant species are 

UO2(CO3)2
2- and UO2(CO3)3

4-  ions.  At pH 5.0, the predominant species UO2
2+ gets adsorbed over MOG-P 

through electrostatic forces. 

Effect of adsorbent dose 

The effect of different amounts of adsorbent on adsorption capacity is shown in the Fig. 4. Adsorbent 

dose is an important factor that strongly depends on adsorption capacity. The effect of adsorbent dose was 

studied in the range of 0.25 to 4.5 g/L of MOG-P. From the Fig.4, it is evident that, adsorption capacity 

increase with increase in adsorption dose and for the complete removal of U(VI) ions, an adsorbent dose of 

4.5 g/L was required. The reason for increase in adsorption is due to increase in adsorption sites or increase in 

surface area of MOG-P there by more uranium can combine with the active sites of MOG-P [3]. However, 

after further addition of adsorbent dosage, adsorption capacity will not increase. This may be due to the 

agglomeration of the adsorbent [20]. 
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Fig.4. Effect of adsorbent dose for the removal of U(VI) ions 

Effect of ionic strength 

The effect of ionic strength on uranium adsorption by MOG-P was studied at pH 5.0, with an initial 

concentration of 2 mg/L and varying ionic strength from 0.01 to 0.5 M NaCl. Fig. 5 shows the influence of 

ionic strength on uranium adsorption. Generally, inner-sphere surface complexation is strong pH dependent 

and ionic strength independent sorption, whereas in outer- sphere surface complexation, strong ionic strength 

dependent and pH independent sorption dominates [21].  

 

Fig.5. Effect of ionic strength for the removal of U(VI) ions 

From the Fig. 5, it is observed that the adsorption of U(VI) on MOG-P is sensitive to the change of ionic 

strength. This phenomenon seems to be associated with competitive adsorption between the Na+ and uranium 

ions. This may due to two reasons: (1) The presence of NaCl in the solution screens the electrostatic 

interaction between the charges on MOG-P surface and the U(VI) ions in solution and also competed with the 

uranium ions for surface adsorption sites (2) Ionic strength of solution influence the activity coefficient of 

U(VI), which limit their transfer to adsorbent’s surface. In the present study, uranium adsorption occurs 

through outer- sphere surface complexation process because during this complexation mechanism, adsorption 

decreases with increase in ionic strength. 

 Effect of foreign cations 

Effect of other cations on the adsorption capacity of uranium was studied with an initial uranium 

solution concentration of 2 mg/L containing potassium, calcium and aluminum ions having an ionic strength 

of 0.001M. The influence of these ions on the uptake capacity was depicted in Fig. 6. From the results, it 

was found that potassium, calcium, and aluminium exhibited a substantial influence in uranium adsorption 

capacity [22]. This occurs because; these ions exhibit slightly higher competition than other ions towards the 

active sites of MOG-P. Adsorption percentage of uranium is the highest in NaCl and lowest in aluminium 

nitrate solution under the same conditions at pH 5. The adsorption of U(VI) on MOG-P decreases in the 

order Na+  K+  Ca2+  Al3+. From this study, it was evident that, presence of foreign ion will interfere 

the uranium adsorption and the trivalent ions exhibit a substantial influence on U(VI) adsorption. 
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Fig.6. Effect foreign cations for the removal of U(VI) ions 

Effect of contact time 

Adsorption of U(VI) on MOG-P as a function of contact time is shown in Fig. 7. It is observed that, in 

the first 30 min, U(VI) adsorption increases sharply and after 30 minutes, adsorption gradually increased with 

the increasing of time and equilibrium was established at 120 min [23]. On increasing time, uranyl ions 

occupy the adsorption sites. From the result, it is evident that adsorption reaches equilibrium at 120 min. 

 

Fig.7. Effect contact time for the removal of U(VI) ions 

Isotherm modelling 

The isotherm models describe the nature of adsorption and provide data on adsorbent surface and 

capacity. The experimental sorption data were described by a number of isotherm models, and the 

model parameters and basic thermodynamic assumptions underlying these models provided some 

information on the sorption mechanism, surface characteristics, and sorbent affinity. Langmuir, 

Freundlich and Langmuir-Freundlich isotherm models were used in the present study to calculate the 

isotherm parameters: 

Langmuir equation :   

                                                                                                                            (3) 

where KL is the Langmuir isotherm constant (L/mg), qm is monolayer adsorption capacity (mg/g), qe is 

the amount of adsorbate adsorbed per unit mass of the adsorbent at equilibrium (mg/g), Ce is the 

adsorbate concentration in the solution at equilibrium (mg/L) [24].    

Freundlich equation:  

                                                                                                                                        (4) 

where KF (mg/g) is Freundlich adsorption constant. 1/n is the intensity of the adsorption or surface 

heterogeneity, which indicate the heterogeneity of adsorbent sites. Adsorption is favorable when the 

value of 1/n is greater than zero (0 < 1/n < 1), unfavorable if its value is greater than 1, and it is 

irreversible when 1/n = 1 [25].  

Langmuir- Freundlich equation:  

                                                                                                               (5)  

where, q is the amount of U(VI) adsorbed on MOG-P at equilibrium (mg U(VI) / g MOG-P) Qm is the 

adsorption capacity of the system (mg of sorbate/ g sorbant), which is a measure of total number of 

binding sites available per gram of sorbent, Ceq is the aqueous phase concentration at equilibrium (mg/ 

L), n is the index of heterogeneity and Ka is the affinity constant for adsorption (L/mg). The isotherm 

model parameters were calculated by non linear regression method and the results are presented in 
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Table 1. A comparison between the experimental and calculated values are presented in Fig.8. From 

the data, it was observed that the U(VI) adsorption onto MOG-P surface obeys Langmuir- Freundlich 

isotherm model. 

   

 

Fig.8 Comparison between experimental and model isotherm curves for the adsorption of U(VI) ions 

Mechanism of uranium adsorption 

The mechanism of uranium interaction with MOG-P can be shown as Fig.8. The adsorption 

mechanism occurred by the complexation of uranium with oxygen atoms in P– OH/P=O group [10] 

and is schematically represented in Fig.9. 

 

 
 

Fig.9. Sheme for the interaction between MOG-P and U(VI) ions 

Conclusions 

The current study looked into the adsorption of U(VI) ions onto MOG-P to remove them from aqueous 

solutions. According to the results of the current study, MOG-P were effective and low-cost adsorbent for 

removing U(VI) ions from dilute aqueous solutions. For U(VI) adsorption by MOG-P, maximum adsorption 

occurred at pH 5.0. UO2
2+ is the predominant species undergoing adsorption over MOG-P. The U(VI) 

removal capacity of MOG-P increases with increase in adsorption dose and for the complete removal of 

U(VI) ions at an initial concentration of 2 mg/L, an adsorbent dose of 4.5 g/L was required. The U(VI) 

adsorption decreases with increase in ionic strength of the solution and the uranium adsorption occurs 

through outer-sphere surface complexation. Also the low value of HYBRID error function for Langmuir-

Freundlich isotherm implies that Langmuir-Freundlich model describes the experimental data well compared 

to remaining isotherm equations for U(VI) adsorption onto MOG-P. The adsorption of U(VI) on MOG-P 

decreases in the order Na+  K+  Ca2+  Al3+. 
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