IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

"The Impact Of Junk Food Consumption On Female Fertility: A Contemporary Review"

¹ Bindu George, ² Sr Maggie Jose, ³ Litti K I, ⁴Elsy N.P., ⁵ Johnsy Jose

¹ Professor HOD Child Health Nursing; ² Professor, HOD Community Health Nursing; ³ M.Sc. Nursing Tutor, ⁴ Professor HOD Department of OBG Nursing, ⁵ M.Sc. Nursing Tutor

B.C.M. College of Nursing, Sitapur, 261131; Uttar Pradesh, North India

Abstract

An increase in consumption of junk food by the present generation across many countries, especially among the reproductive age group women has turned into a substantial health problem. The consequences of intake of non-nutritious food can affect the metabolic wellbeing and procreation in young women. Junk foods are usually low in vital nutrients like fibre, vitamins and minerals but very rich in saturated fats, trans fats, refined sugar, sodium and chemical substances. One of the most common causes of infertility has been linked to polycystic ovary syndrome (PCOS) and obesity, the first of which has been linked to frequent consumption of junk food that cause disturbances in metabolism, hormonal imbalance, insulin patterns, and increase in weight gain. Furthermore, junk foods may stimulate oxidative stress and systemic inflammation further worsening the reproductive functionality. The paper is a review of the current scientific evidence on the effects of junk food on female fertility, pathophysiological mechanisms, clinical and epidemiological evidence, socioeconomic factors and the importance of dietary interventions as a means of preventing infertility as well as to improve the reproductive health.

Keywords: Junk food, female fertility, PCOS, hormonal imbalance, infertility, dietary habits

1. Introduction

Every year about 48 million couples are infertile with 50 percent of the cases being female related factors^[1]. Today, infertility is perceived differently as a complex condition influenced by largely modifiable exposures in lifestyle and the environment, although in the past it was thought of mainly as a result of underlying biological dysfunctions ^[2]. Dietary patterns have been found to be one of these factors which have proved to be a major determinant of reproductive outcomes^[3]. The modernization, fast urbanization, and globalization of the Western food culture have contributed to massive dietary processes, particularly among the women in their productive years ^[4]. This expending trend of junk food consumption that contains large amounts of calories and insufficient micronutrients is highly dangerous to the state of hormones and metabolism integrity^[5]. A lot of epidemiological reports have demonstrated that the nutritional status modulates ovulation, regulates menstruation, oocyte competence and achievement of implantation^[6]. Besides, the propensity of fast foods to replace healthier sources of

nutrients like vegetables, legumes and whole grains worsens micronutrient deprivation and inflammatory stress ^[7]. Since the problem is an important issue and the women of childbearing age are the most vulnerable ones, it is crucial to consider the evidence regarding the causal relationship between the intake of junk food and female infertility critically. Pathophysiological pathways, clinical, and social aspects of pathophysiology literature are leveraged in this review and used to inform preventive approaches and measures.

2. What Constitutes Junk Food in the Human Nutrients?

Junk food refers to a broad term describing a wide range of energy-rich and nutrition-poor foods, which are usually designed to be most palatable, convenient and less burdensome to prepare as well as being time-saving overall^[8]. Some typical ones are sugar-sweetened drinks, pre-packaged snacks, fast food (e.g., burgers, pizzas, fried chicken), instant noodles, candy, pastries, and processed baked goods ^[9]. These products have a number of features in their nutritional value. Refined carbohydrates cause blood sugar and insulin levels to increase dramatically ^[10]. Too much bad fat, unsaturated and trans-fat encourage inflammation and endothelial dysfunction ^[11]. High sodium in the diet is associated with high blood pressure and oxidation ^[12]. Low fiber foods contribute to low glucose homeostasis by promoting an imbalance in bacterial composition in the stomach and increasing oxidative stress and ischemic risks in people with type 2 diabetes ^[13]. Micronutrient deficiencies, lacks folic acid, iron, zinc, vitamin D, vitamin B12 and antioxidants ^[14]. Continuous intake of junk food is harm to health so it is important to eat healthy food like fruits, vegetables, legumes, whole grains and lean protein sources ^[15]. Constant intake of junk food result in nutritional deficiency and metabolic imbalance which will lead to reproductive dysfunction ^[16].

3. Pathophysiological Mechanisms Linking Junk Food to Female Infertility

3.1 Insulin resistance and Metabolic Dysfunction

Regular consumption of junk foods with high glycaemic index and fat content, will lead to insulin resistance, which is one of the first manifestations of metabolic syndrome and Polycystic Ovary Syndrome (PCOS) [17]. Prolonged elevation of insulin level promotes overproduction of androgens by theca cell within the ovaries, which hinder pre-ovulation and inhibit ovulation [18]. Rising of insulin also causes increased production of insulin-like growth factors in the liver and free testosterone is further increased by a decrease in sex hormone-binding globulin (SHBG) because of hyperinsulinemia [19]. In long run, these imbalances cause absence of menstrual periods, menstrual irregularity, and subfertility [20]. It has been reported in a series of studies that women with insulin resistance and PCOS have higher consumption of refined carbohydrates and processed food than healthy controls [21].

3.2 Obesity and adiposity-induced Hormonal Disruption

Obesity and especially visceral adiposity have been shown to be a disorganizer in the hypothalamic-pituitary-ovarian (HPO) axis $^{[22]}$. The adipose tissue which is excess in body is an endocrine organ producing adipokines, including leptin, resistin, and proinflammatory cytokines, that dysregulate gonadotropin secretion $^{[23]}$. Also, aromatization of androgen to estrogen at the periphery increases the amount of estrone circulating which prevents the action of follicle-stimulating hormone (FSH) and reduces follicle maturation $^{[24]}$. Endometrial receptivity is impaired by chronic inflammation, which makes it less probable to implant the embryo, and this leads to the risk of miscarriage $^{[25]}$. Clinical data demonstrate that women with a body mass index (BMI) \geq 30 kg/m² have significantly lower conception rates and higher miscarriage rates compared to women of normal weight $^{[26]}$.

3.3 Polycystic Ovary Syndrome (PCOS) and hyperandrogenism

Globally 6-15 percentage of the women in their reproductive age is affected by PCOS ^[27]. It is characterized by high levels of androgen (hyperandrogenic), continuous absence of menstruation (anovulatory) and it is associated with polycystic ovaries. Overeating, especially with high sugar-sweetened drinks, and processed snacks repeatedly causes a worsening of PCOS symptoms ^[28]. High-glycaemic foods are associated with elevated glucose levels and insulin release, which promote ovarian production of androgens ^[29]. High androgens are clinically presented through hirsutism, acne, menstrual irregularity and infertility ^[30]. Recent interventional studies confirm that the low-glycaemic diets and decrease in processed foods consumption have been deemed to have a significant positive effect on ovulatory functioning and androgen levels in women with PCOS ^[31].

3.4 Mitochondrial dysfunction and oxidative Stress

Overuse of junk food favours oxidative stress leading to disproportional amounts of reactive oxygen species (ROS) to antioxidant defenses [32]. Higher ROS causes the destruction of ovarian follicles, blunts mitochondrial DNA, and ATP synthesis in the oocyte(s) [33]. Such consequences interfere with the quality of the oocytes, decrease their ability to be fertilized and lead to hindrance in the development of the embryos [34]. Experimental study on animals indicate that high-fat, high-sugar diets promote an ovarian lipid peroxidation and reduce antioxidant enzyme activity, which accelerate follicular atresia [35]. The above finding demonstrates why nutritional antioxidants are important in retaining reproductive capacity.

4. Clinical and Epidemiological Studies

Continental studies on epidemiology have continued to show the adverse effects which junk food causes to female fertility. As a case in point, researchers of the Australian cohort study previously presented noticed that there is a doubling of the risk of infertility among women who took fast food four times per week than the low-frequency fast food consumers [22]. Various studies have confirmed this realization in various contexts. Survey-based cross-sectional research on female population with PCOS in India showed the consumption of processed snacks, sugar-sweetened drinks, and refined carbohydrates were much greater than in healthy individuals. This is consistent with the evidence based showing that body weight is the key determinant of insulin sensitivity and metabolic health in women with PCOS [36]. In another study done in Chinese shows, 1.6-fold rise in anovulatory infertility were found in women with regular consumption of high-fat/high-sugar diets [37]. These associations persisted after adjusting for BMI and other confounders, suggesting a direct nutritional contribution to reproductive dysfunction [38]. In U.S. longitudinal research was done on adolescents, according to which frequent fast-food behaviour was a predictor of reduced serum folate concentration and increased prevalence of irregular menstruation in adulthood [39]. Such observations point to the fact that unhealthy diet during adolescence can have long-term effects on reproductive health.

5. Micronutrient Deficiencies, Malnutrition and Fertility Impacts

Junk food-based diets lack essential micronutrients that are important to reproductive health. Of these, folic acid plays an important role in the process of maturation of oocytes, synthesis of DNA and early embryo development ^[40]. Folic acid deficiency has been attributed to ovulatory disorders and higher chances of having neural tube defects during pregnancy ^[41]. Iron is the next essential nutrient required in transporting oxygen as well as ovulation. Anovulation, infertile, and persistent pregnancy loss have been attributed to iron insufficiency ^[42]. Women mainly with processed diets are highly affected by deficiency of Vitamin D and this affects follicular development and implantation mentioned above ^[43]. Moreover, endometrial receptivity and avoidance of implantation failure vitamin B12 required. Devastation of

endometrial receptivity requires vitamin B12 in the prevention of implantation failure. Taken together, all these nutritional deficiencies reduce fertility and aggravate outcomes of Assisted Reproductive Technology (ART). It is very important to focus on nutritional interventions to reduce these deficiencies [44]

6. Prevention and Nutrition Guidelines

To prevent the impact of junk food on female fertility demands extensive approach by individual and community by establishing personal and community level strategies.

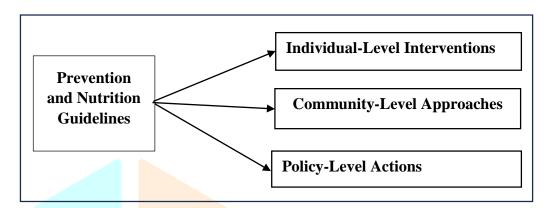


Figure: 1 shows prevention and nutrition guidelines

Individual-Level Interventions

Nutrition Education: Nutrition counselling can aim at substituting processed foods with healthy ones, including leafy vegetable products, legumes, nuts, whole grains, lean proteins, and healthier fats [45].

Cognitive Coping Strategies: Stress management, stress coping mechanism, and mindful eating are effective to curb patterns of emotional eating [46].

Preconception Care: Women who are planning a pregnancy or receiving ART are also suggested to be screened regarding nutrient deficiencies and be supplemented accordingly (e.g. folic acid, vitamin D, iron).

Community-Level Approaches

School and College Programs: Reproductive nutrition Education can be included in school and college-level curriculum, starting these beneficial habits early in life limit the risks a person may face later in life [47].

Workplace Wellness Projects: Employees should be encouraged to eat healthy meals and discourage unhealthy eating habits. Fast food delivery should not be allowed in the workplace.

Policy-Level Actions

Fiscal Measures: Taxes for Sugar-sweetened beverage cab imposed and taxes and subsidies for fruits and vegetables can realign economic incentives [48].

Fiscal Policies: Subsidies of fresh produce and taxing of sugar-sweetened beverages decrease the price difference between unhealthy and healthy foods ^[75].

Regulations on Advertising: Limitations to junk food promotion among young adults and children will decrease the exposure to misleading and influence-driven advertising campaigns [49].

Urban Planning: Several policies facilitating access to fresh food markets and measuring the density of fast-food in the vulnerable populations should be implemented ^[50]. Policies promoting access to fresh food markets and regulating the density of fast-food outlets in vulnerable communities are essential.

12. Policy Recommendations

Policymakers need to play a crucial role in reducing the consumption of junk food due to the interwoven pattern of biological, behavioural, and societal factors to which the consumption of junk food can be attributed.

Fiscal Policies: Subsidies of fresh produce and taxing of sugar-sweetened beverages decrease the price difference between unhealthy and healthy foods ^[75].

Marketing Regulation: It is possible to limit the exposure to persuasive messaging by limiting junk food advertising to children and adolescents, particularly through the digital form ^[76]

Nutritional Labelling: Transparent, front-of- package labels enhance consumer awareness and increase healthy decision making [77].

Urban planning: The infrastructure should be invested in to bring high access to affordable fresh foods in poor communities/underserved locations [78].

School Policies: Healthy food programs and prohibitions to sell ultra-processed foods in schools can be used to ingrain a lifetime habit of healthy food habits strengthened through community mobilization and culture sensitive communication strategies.

Therefore, it has been observed that with dietary counselling together with lifestyle interventions, like weight management, ovulatory functioning in infertile women can be recovered and better pregnancy outcomes can be achieved [51].

7. Emerging Molecular Insights into Diet-Induced Reproductive Dysfunction

The molecular biology has elucidated the ability of dietary patterns to alter expression of genes and cellular processes in the ovary and endometrium in the recent times. In particular, foods containing a lot of trans fats and refined carbohydrates switch on a pro-inflammatory processes like nuclear factor-kappa B (NF- kB) signalling within the ovarian tissue and raise the expression of tumour necrosis factor-alpha (TNF- 52) and interleukin-6 (IL-6) in the ovarian tissue [52]. With persistent inflammation, there is disturbed proliferation of granulosa cells and folliculogenesis as well as diminished estradiol production [53]. In addition, high fat diets change the expression of microRNAs of the ovary, which govern the responses of apoptosis and oxidative stress levels [54]. Ovarian dysfunction in women with metabolic syndrome and PCOS was related to microRNAs including miR-21 and miR-155 or more [55]. These molecular changes are becoming the key mediators between the low quality of diets to reproductive aging, and subfertility. There is further evidence with experimental animal models. High-fat diets that include high levels of sugar cause oocyte mitochondrial dysfunction, impaired spindle assembly in meiosis, and higher misalignment of chromosomes, all of which reduce embryo viability in mice [56]. The emphasis of this literature is that high-quality diet is a key factor in sustaining the competence in oocytes and chromosomal stability.

8. Junk Food, Gut Microbiota and Fertility

The association between female fertility, dysbiosis, junk food and the gut microbiota are one of the most promising study domains. Ultra-processed foods distort the microbial flora and exhaust positive bacterial species including Bifidobacterium and Lactobacillus [57]. Dysbiosis leads to intestinal permeability that has concentrated lipopolysaccharides (LPS) and other endotoxins gain access to the circulation and induce systemic inflammation. These are conditions of the gut that cause an increase in gut permeability which in turn raises the passage of lipopolysaccharides (LPS) and other endotoxins into circulation and its ability to cause systemic inflammation. New data show that an imbalance of microbiota in the gut may contribute to metabolic resistance to endotoxins, insulin resistance and low-grade inflammation that characterizes PCOS and obesity-related infertility [58]. Emerging evidence suggests that gut microbiota imbalances contribute to metabolic endotoxemia, insulin resistance, and low-grade inflammation characteristic of PCOS and obesity-related infertility [59]. Experiments have also revealed that disturbed microbial metabolites like short-chain fatty acids regulate estrogen metabolism as well as influence the hypothalamic-pituitary-ovarian axis [60]. As an illustration, a study carried out in 2020 revealed that women with PCOS had a different signature of gut microbiota characterized by elevated proportions of Firmicutes -to -Bacteroidetes and reduced core butyrate formation [61]. A statistical improvement in metabolic and reproductive rates can be seen with a change in microbial balance by consuming dietary fiber, using probiotics, and minimizing intake of processed foods [62].

9. Other Clinical Evidence

The ill effect of junk food on reproductive health is confirmed through the large-scale cohort studies. As an example, in the Nurses' Health Study II, an increase in the consumption of trans fats and sugar sweetened beverages were linked to a 73% increase in the risk of ovulatory infertility [63]. This is milestone research study that followed 18,000 women over eight years showed strong evidence. In 2019, a prospective study was conducted in Spain concluded that women in the quartile with the highest ultra-processed food intake took long time to conceive, regardless of BMI, physical activity and socioeconomic status [64]. A meta-analysis study involving more than 45,000 women found that following a Western dietary pattern was always linked with decreased fertility and adverse ART outcomes [65]. These results highlight the fact that the quality of diet has an influence on fertility among people of different culture and demography.

10. Gendered Marketing and Socio-cultural Considerations

Certain socio-cultural factors are also responsible for the increased consumption of junk foods by women. In most cultures, many women are working and there is a lack of time for the food preparation so they depend on junk food for their convenience ^[66]. Excessive advertising of high-energy-density snack foods and beverages has been biased among young women to indicate that these foods represent modern, empowering or self-rewarding substances ^[67]. Such advertising stereotypes usually reinforce body image anxieties through targeting low fat or diet versions of processed foods which are also filled with numerous additives and dietary sugars ^[68]. Coupled with digital advertising and influencer marketing on social media websites, these messages gain more traction among adolescents and young adults ^[69]. Furthermore, dietary inequality is worsened by the socioeconomic inequality. Women in low-income urban populations experience decreased accessibility of low-cost fresh foods and have increased risk of having low-cost fast food ^[70]. To overcome such challenges, personal education will not be enough, but systemic policy should be put in action.

11. Eating behaviour Psychological and Emotional Eating Habits

Emotional eating habits and seeking reward are also other causes of consumption of junk food. Women with stress, anxiety or depressive states can use foods with high energy, pleasant food to regulate the mood and experience emotional pain [71]. This behaviour is supported by neurobiological mechanisms through dopamine and opioid brain receptors at the brain reward centers [72]. Persistent stress stimulates the hypothalamic-pituitary-adrenal (HPA) axis by increasing the level of cortisol which leads to visceral adiposity, insulin resistance, and reproductive impairment [73]. Therefore, there is a need to combine psychological and dietary measures in order to eliminate this cycle and enhance fertility. Without evidence of increased effectiveness, cognitive-behavioural therapy and mindfulness-based interventions may be proposed to reduce emotional eating and adjust metabolic and reproductive measures in PCOS and obese women [74]

13. Future Directions of the Project

Although a lot of improvement has been achieved, there are a number of gaps. Studies needs to be conducted on consequences of exposure to junk food during the early life on reproductive aging. The randomized controlled trials of dietary interdependence of ART results. Mechanistic investigations into the functions of the gut microbiome, epigenetic alterations and oxidative stress pathways. Assessments of policy effects with a purpose to identify the efficacy of various policy outcomes in decreasing the presence of junk food and bettering fertility. The collaboration between nutrition science, reproductive endocrinology, behavioural psychology, and public health will be crucial to produce sound evidence and formulate a full-fledged approach.

Conclusion

The global rise of junk food consumption is reshaping dietary patterns and undermining female reproductive health. Nutrient-poor ultra-processed diets disturb metabolic homeostasis, produce a high level of oxidative stress, and trigger the development of hormonal imbalances that undermine fertility. The effects have gone as far as natural conception to success of ART procedures. With evidence it is made apparent that nutritional quality is a significant, changeable factor of reproductive outcomes. Interventions are required immediately that will enhance nutritional education and behavioural counselling along with pro-fertility policies to safeguard and recover fertility in women between the ages of menarche and menopause. In the end, it will be necessary to have a common task to accept and maintain food conditions as well as give women the knowledge and resources to help them enhance their reproductive potential to provide a better and healthier generation in the future. The potential of the increasing use of junk food globally is not only a dietary issue but a looming health menace that has far reaching repercussions on reproductive prowess. Chronic consumption of refined, energy-rich, and nutrient-poor food sources predisposes the negative systemic conditions of insulin resistance, systemic inflammation, oxidative stress, and hormonal imbalances, which all have a negative impact on female fertility. This review has identified epidemiological and site-specific evidence and links evidence of junk food to PCOS, obesity, ovulatory dysfunction, and poor ART outcomes. Notably, the consequences also start early - most food habits that are built during adolescence are followed into adulthood, further aggravating the risk to reproductive health. There is an urgent need of comprehensive preventive measures. Nutrition education, behavioural and supportive policy to food environments may decrease the need of processed food and enhance fertility. Further studies must focus on more extended experiments measuring the effects of dietary modifications on reproductive health and on the use of the molecular pathways by which nutrition influences oocyte and endometrial functions. The creation of nutrient-rich dietary patterns is a strong changeable lever that can safeguard the reproductive potential and uphold the health of the next generations.

References

- 1. Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. *Clin Biochem*. 2018;62:2–10.
- 2. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: An increasingly common developmental disorder with environmental aspects. *Hum Reprod*. 2001;16(5):972–8.
- 3. Popkin BM. Relationship between shifts in food system dynamics and acceleration of the global nutrition transition. *Nutr Rev.* 2017;75(2):73–82.
- 4. Gaskins AJ, Chavarro JE. Diet and fertility: A review. Am J Obstet Gynecol. 2018;218(4):379–89.
- 5. Satija A, Hu FB. Cardiovascular benefits of dietary fiber. *Curr Atheroscler Rep.* 2012;14(6):505–14.
- 6. Monteiro CA, Cannon G, Levy RB, Moubarac JC, Louzada MLC, Rauber F, et al. Ultra-processed foods: What they are and how to identify them. *Public Health Nutr*. 2019;22(5):936–41.
- 7. Fardet A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. *Food Funct*. 2016;7(5):2338–46.
- 8. Mozaffarian D, Rosenberg I, Uauy R. History of modern nutrition science—implications for current research, dietary guidelines, and food policy. *BMJ*. 2018;361:k2392.
- 9. Barber TM, Hanson P, Weickert MO, Franks S. Obesity and polycystic ovary syndrome: Implications for pathogenesis and novel management strategies. *Clin Med Insights Reprod Health*. 2019;13:1–15.
- 10. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. *Endocr Rev.* 2012;33(6):981–1030.
- 11. Nestler JE. Insulin regulation of human ovarian and rogens. *Hum Reprod.* 1997;12 Suppl 1:53–62.
- 12. Pasquali R, Gambineri A. Insulin regulation of ovarian function in polycystic ovary syndrome. *Ann N Y Acad Sci.* 2006;1092:200–10.
- 13. Douglas CC, Gower BA, Darnell BE, Ovalle F, Oster RA, Azziz R. Role of diet in the treatment of polycystic ovary syndrome. *Fertil Steril*. 2006;85(3):679–88.
- 14. Brewer CJ, Balen AH. The adverse effects of obesity on conception and implantation. *Reproduction*. 2010;140(3):347–64.
- 15. Michalakis KG, Segars JH. The role of adiponectin in reproduction: From polycystic ovary syndrome to assisted reproduction. *Fertil Steril*. 2010;94(6):1949–57.
- 16. Pasquali R, Patton L, Gambineri A. Obesity and infertility. *Curr Opin Endocrinol Diabetes Obes*. 2007;14(6):482–7.
- 17. Ramlau-Hansen CH, Thulstrup AM, Nohr EA, Bonde JP, Sørensen TI, Olsen J. Subfecundity in overweight and obese couples. *Hum Reprod*. 2007;22(6):1634–7.
- 18. Rich-Edwards JW, Spiegelman D, Garland M, Hertzmark E, Hunter DJ, Colditz GA, et al. Physical activity, body mass index, and ovulatory disorder infertility. *Epidemiology*. 2002;13(2):184–90.
- 19. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. *J Clin Endocrinol Metab*. 2006;91(11):4237–45.
- 20. Vitek W, Hoeger KM. Diet and lifestyle in polycystic ovary syndrome. *Semin Reprod Med*. 2014;32(3):193–200.
- 21. Salama RM, El-Sheikh N, El-Kashlan AM. Role of oxidative stress in the pathophysiology of polycystic ovarian syndrome. *Indian J Clin Biochem*. 2018;33(3):245–52.
- 22. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-sponsored 3rd PCOS Consensus Workshop Group. *Fertil Steril*. 2012;97(1):28–38.e25.
- 23. Marsh K, Brand-Miller J. The optimal diet for women with polycystic ovary syndrome? *Br J Nutr*. 2005;94(2):154–65.
- 24. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. *Reprod Biol Endocrinol*. 2005;3:28.
- 25. Ruder EH, Hartman TJ, Blumberg J, Goldman MB. Oxidative stress and antioxidants: Exposure and impact on female fertility. *Hum Reprod Update*. 2008;14(4):345–57.

- 26. Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44(3):280–7.
- 27. Shao R, Li X, Feng Y, Lin JF. High-fat diet-induced obesity affects reproductive functions and expression of insulin resistance-related genes in the ovaries of female mice. Mol Reprod Dev. 2014;81(9):836-49.
- 28. Gaskins AJ, Rich-Edwards JW, Hauser R, Williams PL, Gillman MW, Ginsburg ES, et al. Prepregnancy dietary folate and the risk of spontaneous abortion. Obstet Gynecol. 2014;124(1):23-31.
- 29. de Wals P, Tairou F, Van Allen MI, Uh S-H, Lowry RB, Sibbald B, et al. Reduction in neuraltube defects after folic acid fortification in Canada. N Engl J Med. 2007;357(2):135–42.
- 30. Chavarro JE, Toth TL, Wright DL, Meeker JD, Hauser R. Body mass index in relation to infertility caused by ovulatory disorder. Fertil Steril. 2010;93(1):122–31.
- 31. Lerchbaum E, Rabe T. Vitamin D and female fertility. Curr Opin Obstet Gynecol. 2014;26(3):145-50.
- 32. Czeizel AE, Dudas I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med. 1992;327(26):1832–5.
- 33. Stuckler D, McKee M, Ebrahim S, Basu S. Manufacturing epidemics: The role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. *PLoS Med.* 2012;9(6):e1001235.
- 34. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. The global pandemic: Shaped by global drivers and local environments. 2011;378(9793):804–1<mark>4.</mark>
- 35. Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab. 2010;21(3):159-65.
- 36. Harris JL, Graff SK. Protecting young people from junk food advertising: Implications of psychological research for First Amendment law. Am J Public Health. 2012;102(2):214–22.
- 37. Moodie R, Stuckler D, Monteiro C, Sheron N, Neal B, Thamarangsi T, et al. Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet. 2013;381(9867):670-9.
- 38. Gaskins AJ, Chiu YH, Williams PL, Gillman MW, Mumford SL, Wesselink AK, et al. Maternal whole grain intake and outcomes of in vitro fertilization. Fertil Steril. 2016;105(5):1503–10.e2.
- 39. Gaskins AJ, Mumford SL, Chavarro JE. Diet and fertility: A review. Am J Obstet Gynecol. 2018;218(4):379-89.
- 40. Vujkovic M, de Vries JH, Dohle GR, Bonsel GJ, Lindemans J, Macklon NS, et al. Associations between dietary patterns and semen quality in men undergoing IVF/ICSI treatment. Hum Reprod. 2009;24(6):1304-12.
- 41. Chiu YH, Karmon AE, Gaskins AJ, Williams PL, Souter I, Hauser R, et al. Dietary fat intake and outcomes of assisted reproduction in women undergoing in vitro fertilization. Hum Reprod. 2018;33(4):724-35.
- 42. Vujkovic M, de Vries JH, Lindemans J, Macklon NS, van der Spek PJ, Steegers EA, et al. The preconception Mediterranean dietary pattern in couples undergoing fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil Steril. 2010;94(6):2096-101.
- 43. Bentov Y, Casper RF. The aging oocyte—can mitochondrial function be improved? Fertil Steril. 2013;99(1):18-22.
- 44. Gaskins AJ, Chavarro JE. Diet and fertility: A review. Am J Obstet Gynecol. 2018;218(4):379–89.
- 45. Nasri F, Ramezani Tehrani F, Zarei S, Minooee S, Azizi F. The impact of a healthy dietary pattern on ovulatory function in women with polycystic ovary syndrome: A randomized controlled trial. Eur J Nutr. 2021;60(7):3679-88.
- 46. O'Reilly GA, Cook L, Spruijt-Metz D, Black DS. Mindfulness-based interventions for obesityrelated eating behaviours: A literature review. Obes Rev. 2014;15(6):453–61.
- 47. Story M, Nanney MS, Schwartz MB. Schools and obesity prevention: Creating school environments and policies to promote healthy eating and physical activity. Milbank O. 2009;87(1):71-100.

- 48. Colchero MA, Popkin BM, Rivera JA, Ng SW. Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: Observational study. *BMJ*. 2016;352:h6704.
- 49. Cairns G, Angus K, Hastings G, Caraher M. Systematic reviews of the evidence on the nature, extent and effects of food marketing to children: A retrospective summary. *Appetite*. 2013;62:209–15.
- 50. Larson NI, Story MT, Nelson MC. Neighborhood environments: Disparities in access to healthy foods in the US. *Am J Prev Med*. 2009;36(1):74–81.e10.
- 51. Moran LJ, Pasquali R, Teede HJ, Hoeger KM, Norman RJ. Treatment of obesity in polycystic ovary syndrome: A position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. *Fertil Steril*. 2009;92(6):1966–82.
- 52. Asemi Z, Samimi M, Tabassi Z, Sabihi SS, Esmaillzadeh A. A randomized controlled clinical trial investigating the effect of DASH diet on insulin resistance, inflammation, and oxidative stress in overweight and obese women with polycystic ovary syndrome. *Clin Endocrinol (Oxf)*. 2014;81(4):614–9.
- 53. Shao R, Li X, Feng Y, Lin JF. High-fat diet—induced obesity affects reproductive functions and expression of insulin resistance—related genes in the ovaries of female mice. *Mol Reprod Dev*. 2014;81(9):836–49.
- 54. Navarro-Pando JM, Alcocer-Gómez E, Castejón-Vega B, Cordero MD. High-fat diet promotes inflammation and oxidative stress through the disruption of ovarian microRNA expression profiles. *Mol Cell Endocrinol*. 2018;461:12–20.
- 55. Zhang X, Wang N, Zhao H, Zhang Y, Hu R, Yang Q, et al. MicroRNA profile in PCOS ovary identified by microarray analysis and quantitative real-time PCR. *Reprod Sci.* 2014;21(2):146–54.
- 56. Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, et al. High fat diet induced developmental defects in the mouse: Oocyte meiotic aneuploidy and fetal growth retardation. *Biol Reprod.* 2012;87(4):73.
- 57. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. *Nature*. 2014;505(7484):559–63.
- 58. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. *Diabetes*. 2007;56(7):1761–72.
- 59. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with PCOS: A pilot study. *PLoS One*. 2017;12(1):e0168390.
- 60. Torres PJ, Ho BS, Arroyo P, Sau L, Chen YH, Kelley ST, et al. Exposure to a high-fat diet alters the ovarian microbiome and metabolome, impacting female fertility in mice. *Sci Rep.* 2018;8(1):1–12.
- 61. Zeng B, Lai Z, Sun L, Zhang Z, Yang J, Li Z, et al. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance. *Reprod Biol Endocrinol*. 2019;17(1):1–13.
- 62. Lindheim L, Bashir M, Munzker J, Trummer C, Zachhuber V, Pieber TR, et al. The impact of obesity on female reproductive health: Focus on the gut microbiome. *Reprod Biol Endocrinol*. 2017;15(1):1–9.
- 63. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Dietary fatty acid intakes and the risk of ovulatory infertility. *Am J Clin Nutr*. 2007;85(1):231–7.
- 64. Santiago S, Zazpe I, Bes-Rastrollo M, Sánchez-Tainta A, Gea A, Ruiz-Canela M, et al. Relationship between adherence to dietary patterns and fertility outcomes in couples undergoing assisted reproduction treatment: A prospective cohort study. *Fertil Steril*. 2019;111(5):987–97.
- 65. Gaskins AJ, Chiu YH, Williams PL, Toth TL, Wright DL, Tanrikut C, et al. Association between dietary patterns and semen quality in men attending fertility clinics. *Fertil Steril*. 2012;97(4):902–7.e1.
- 66. Jabs J, Devine CM. Time scarcity and food choices: An overview. *Appetite*. 2006;47(2):196–204.
- 67. Harris JL, Graff SK. Protecting young people from junk food advertising: Implications of psychological research for First Amendment law. *Am J Public Health*. 2012;102(2):214–22.
- 68. Sacks G, Swinburn B, Lawrence M. Obesity policy action framework and analysis grids for a comprehensive policy approach to reducing obesity. *Obes Rev.* 2009;10(1):76–86.
- 69. Montgomery KC, Chester J. Interactive food and beverage marketing: Targeting adolescents in the digital age. *J Adolesc Health*. 2009;45(3 Suppl):S18–29.

- 70. Walker RE, Keane CR, Burke JG. Disparities and access to healthy food in the United States: A review of food deserts literature. *Health Place*. 2010;16(5):876–84.
- 71. van Strien T, Herman CP, Verheijden MW. Eating style, overeating, and overweight in a representative Dutch sample: Does external eating play a role? *Appetite*. 2009;52(2):380–7.
- 72. Berthoud HR. The neurobiology of food intake in an obesogenic environment. *Proc Nutr Soc.* 2012;71(4):478–87.
- 73. Adam TC, Epel ES. Stress, eating and the reward system. *Physiol Behav*. 2007;91(4):449–58.
- 74. O'Reilly GA, Cook L, Spruijt-Metz D, Black DS. Mindfulness-based interventions for obesity-related eating behaviours: A literature review. *Obes Rev.* 2014;15(6):453–61.
- 75. Colchero MA, Popkin BM, Rivera JA, Ng SW. Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: Observational study. *BMJ*. 2016;352:h6704.
- 76. Cairns G, Angus K, Hastings G, Caraher M. Systematic reviews of the evidence on the nature, extent and effects of food marketing to children: A retrospective summary. *Appetite*. 2013;62:209–15.
- 77. Campos S, Doxey J, Hammond D. Nutrition labels on pre-packaged foods: A systematic review. *Public Health Nutr.* 2011;14(8):1496–506.
- 78. Larson NI, Story MT, Nelson MC. Neighborhood environments: Disparities in access to healthy foods in the US. *Am J Prev Med*. 2009;36(1):74–81.e10.
- 79. Jaime PC, Lock K. Do school based food and nutrition policies improve diet and reduce obesity? *Prev Med.* 2009;48(1):45–53.

