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1. ABSTRACT 

Academic performance in higher education is shaped by a complex mix of academic and demographic 

factors. This study explores the underlying dimensions influencing student performance among 

undergraduate engineering students in South India through structured statistical techniques. A sample of 

2,000 students was analyzed using Principal Component Analysis (PCA) and Factor Analysis to reduce 

dimensionality and uncover latent variables. 

The Bartlett’s Test of Sphericity and Kaiser-Meyer-Olkin (KMO) measure confirmed the data's suitability 

for these methods. The analysis identified a small number of components—primarily related to academic 

engagement and past performance—that explain a significant proportion of the variance in student 

outcomes. Visual tools such as scree plots, biplots, and parallel analysis were used to aid interpretation and 

to guide the number of factors retained. The results offer valuable insights for academic institutions aiming 

to improve student support services and educational planning through evidence-based interventions. 

 

2. DATA COLLECTION  

The principal aims of this study are: (i) to construct various relationship models between the chosen features 

and students' academic performance, subsequently identifying the most effective model, (ii) to ascertain the 

attributes that most significantly influence performance outcomes, and (iii) to analyze the correlation 

between variables and establish the robust associations of marks with various factors and attributes. The 

study aims to develop and evaluate a prediction model that accurately estimates academic success, allowing 

institutions to proactively identify students in need of academic help and intervention.  

A structured questionnaire was created to collect the necessary data, drawing from both established literature 

and newly proposed aspects pertinent to student success. Twenty-seven essential traits were determined, 

each converted into pertinent questions that were the foundation of the survey. The questionnaire comprised 

two primary sections: one detailing personal and demographic information, and the other assessing 

educational performance across various examination levels. Data were gathered from 2000 undergraduate 

engineering students. The questionnaire collected a combination of numerical, nominal, and ordinal data 

types. Examples encompass numerical inputs such as percentage scores, parental income, and age; nominal 

values including hobbies and parental employment; and ordinal data such as birth order, parental education 

level, and residence category. The questionnaire was designed to be adaptive, featuring semester-specific 

questions pertinent to students at various phases of their academic progression.  

In addition to static feature analysis, the study examines the possible advantages of incorporating time series 

analysis to enhance forecast accuracy. Time series methods facilitate the discovery of evolving performance 

trends by monitoring students' academic records over time, assisting institutions in analyzing, interpreting, 

and predicting academic trajectories. This method can illuminate both enduring patterns of 

underachievement and trends of improvement, facilitating data-informed treatments customized to 

individual learning trajectories. Time series forecasting incorporates a temporal aspect into prediction, 

providing educators with enhanced insights to facilitate academic planning and individualized student 

engagement tactics. 
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3. FEATURE EXTRACTION  

This work utilizes feature extraction approaches to tackle the issue of excessive dimensionality in the dataset 

and to prepare the data for later predictive modeling. Feature extraction is converting raw data into a 

condensed set of features that are more useful and manageable. Two notable techniques employed for this 

objective are Principal Component Analysis (PCA) and Factor Analysis. PCA is a statistical method that 

converts a collection of correlated variables into a reduced set of uncorrelated variables known as principal 

components, therefore maximizing the explained variance. Factor Analysis aims to elucidate the 

relationships among observed variables by finding underlying latent components, thus revealing the shared 

variation among them. PCA and Factor Analysis both simplify data complexity while preserving its 

fundamental information, hence enhancing model creation efficiency and interpretability. 

3.1 Bartlett test of homogeneity of variances 

The Bartlett test of homogeneity of variances was conducted to assess the suitability of the data for factor 

analysis and Principal Component Analysis (PCA).  

 
Figure-1 

This test assesses the null hypothesis that the variance-covariance matrix of the variables is an identity 

matrix, indicating that the variables are uncorrelated. Bartlett's K-squared test statistic is derived from the 

determinant of the correlation matrix. The Bartlett test produced a very significant outcome (Bartlett's K-

squared = 5287.4, degrees of freedom (df) = 25, p-value < 2.2e-16). The exceedingly low p-value offers 

compelling evidence to dismiss the null hypothesis, suggesting that statistically significant correlations exist 

among the predictor variables. This discovery is essential for factor analysis and PCA, as these methods 

depend on inter-variable correlations to efficiently reduce dimensionality and uncover underlying structures. 

The Bartlett test for homogeneity of variances was performed to evaluate the appropriateness of the data for 

factor analysis and Principal Component Analysis (PCA). This test assesses the null hypothesis that the 

variance-covariance matrix of the variables is an identity matrix, indicating that the variables are 

uncorrelated. The test statistic, Bartlett's K-squared, is derived from the determinant of the correlation 

matrix. The Bartlett test produced a very significant outcome (Bartlett's K-squared = 5287.4, degrees of 

freedom (df) = 25, p-value < 2.2e-16). The exceedingly low p-value offers compelling evidence to reject 

the null hypothesis, suggesting that statistically significant correlations exist among the predictor variables. 

This discovery is essential for factor analysis and PCA, as these methods depend on inter-variable 

correlations to efficiently reduce dimensionality and reveal underlying structures. 

3.2 Kaiser-Meyer-Olkin (KMO) test 

The Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy is a widely used diagnostic tool in 

multivariate statistics, particularly in factor analysis and principal component analysis (PCA), to evaluate 

the suitability of the data for structure detection. It specifically assesses whether the partial correlations 

among variables are small, which is a desirable property for factor extraction. Conceptually, the KMO 

statistic compares the magnitude of observed correlation coefficients to the magnitude of partial correlation 

coefficients. 

The KMO value ranges from 0 to 1. A value closer to 1 indicates that a large proportion of variance in the 

variables can be attributed to common underlying factors, suggesting that factor analysis is appropriate and 

is likely to yield distinct and reliable factors. On the other hand, a KMO value closer to 0 implies that most 

of the variance is unique (specific to individual variables) or random (error variance), making factor analysis 

less effective or even inappropriate (Kaiser, 1974). 

According to commonly accepted thresholds: 

 KMO ≥ 0.90 is considered superb, 

 0.80–0.89 is great, 

 0.70–0.79 is good, 

 0.60–0.69 is mediocre, 

 0.50–0.59 is poor, and 

 below 0.50 is unacceptable for factor analysis. 
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In practice, both the overall KMO for the entire model and the individual KMO values for each variable are 

examined. If the individual KMO values are low, even if the overall KMO is acceptable, it may be advisable 

to remove or revise those variables to improve model adequacy. 

The test is typically reported alongside Bartlett's Test of Sphericity, which assesses whether the correlation 

matrix significantly differs from an identity matrix (i.e., where variables are uncorrelated). Together, these 

tests help determine whether factor analysis is statistically justified and methodologically sound. 

In summary, a high KMO value supports the feasibility of factor analysis by confirming the presence of 

underlying latent structures in the data. It ensures that the variables are sufficiently interrelated, thereby 

facilitating meaningful factor extraction and dimensionality reduction. 

 
Figure-2 

The Kaiser-Meyer-Olkin (KMO) test was carried out to evaluate the adequacy of the sample for conducting 

factor analysis and Principal Component Analysis (PCA). The overall KMO value obtained was 0.80, which 

falls into the "meritorious" category as per Kaiser's classification (Kaiser, 1974). This indicates that the 

dataset possesses a sufficient amount of shared variance among variables, making it appropriate for 

dimensionality reduction techniques. 

A closer look at the individual Measures of Sampling Adequacy (MSA) revealed variability across the 

variables. Variables such as C4, D1, D2, D3, and E2 demonstrated high MSA values, suggesting they are 

well predicted by other variables in the dataset and are thus well-suited for inclusion in factor extraction. 

However, Gender, Age, Education, Income, and A5 recorded relatively lower MSA values, indicating that 

these variables contribute less to the shared variance and may not align as strongly with the underlying 

factor structure. 

Although these lower-scoring variables should be interpreted with caution in the context of factor analysis, 

the overall KMO value supports the continuation of PCA or factor analysis for this dataset. These findings 

align with established guidelines for factor analysis, which recommend KMO values of 0.6 or above as 

acceptable, and 0.8 or above as ideal for robust analysis (Field, 2013; Hair et al., 2010). 

3.3 Principal Component Analysis 

To uncover latent structures within the data and reduce multicollinearity among predictors, Principal 

Component Analysis (PCA) was performed on the dataset. The PCA yielded 26 principal components, each 

representing a linear combination of the original variables. The standard deviation associated with each 

component reflects the amount of variance explained. Notably, the first principal component (PC1) had the 

highest standard deviation (2.411), suggesting it captures the largest proportion of variance across the 

dataset. The standard deviations of subsequent components decreased progressively, indicating a 

diminishing contribution to overall variance—consistent with the common behavior observed in 

dimensionality reduction (Jolliffe & Cadima, 2016). 

This pattern validates the assumption that a smaller subset of principal components can retain most of the 

informative structure of the data. The number of components to retain for further analysis can be guided by 

the Kaiser criterion (eigenvalues > 1), cumulative variance threshold (typically 70–80%), and visual 

inspection of the scree plot for the 'elbow' point where the explained variance levels off (Abdi & Williams, 

2010). 

An examination of the component loading matrix provided additional insights. High and moderate loadings 

on PC1 were observed for variables such as A3 (equal opportunities), B5 (support from teachers/peers), C3 

(goal-setting), and D2 (age appropriateness), indicating that PC1 may represent a broad construct related to 

student engagement, support, and readiness. Conversely, PC2 exhibited strong loadings from Gender and 

Age, highlighting its relevance to demographic structure within the data. The remaining components, while 

contributing less to the total variance, captured more specific and isolated relationships among subsets of 

variables. 

Overall, the PCA not only simplified the data structure but also offered interpretable dimensions for 

downstream modeling. This approach aligns with the principle of parsimony, balancing dimensionality 
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reduction with information preservation. The derived components can be used to enhance the robustness 

and interpretability of machine learning or regression-based prediction models. 

 
Figure-3:Scree Plot 

3.4 Scree Plot interpretation  

To determine the optimal number of principal components to retain, a scree plot was examined 

(Figure 3). The scree plot visualizes the variance (eigenvalue) associated with each principal component, 

plotted in descending order. As illustrated in Figure 3, a sharp decline in variance is observed from the first 

to the second component, indicating that the first principal component explains a substantial portion of the 

total variance. Beyond the second or third component, the slope of the curve flattens, forming a distinct 

'elbow.' This elbow suggests a point of diminishing returns, where subsequent components contribute 

relatively little to the overall variance explained. Based on the scree plot, retaining the first two or three 

principal components appears to be a reasonable strategy, effectively balancing dimensionality reduction 

with the preservation of a significant amount of information from the original variables. This decision aligns 

with the principle of parsimony, aiming to achieve a simplified representation of the data while minimizing 

information loss. 

 
Figure-4: Biplot 

3.5 Biplot interpretation 

Principal Component Analysis (PCA) was applied in this study to explore the relationships between 

academic variables (such as attendance, 10th and 12th grade marks, and graduation performance) and 

demographic factors (including age, gender, income, and education level). The PCA biplot reveals that 

graduation performance (E4) is positively aligned with academic factors like 12th grade marks (E3), 10th 

grade marks (E2), and attendance (E1), suggesting that these variables significantly influence graduation 

outcomes. In contrast, demographic variables such as education level, income, and age are oriented in the 

opposite direction, indicating a potential inverse relationship with academic achievement. The length and 

direction of vectors in the biplot further highlight that academic variables contribute more strongly to the 

first two principal components, implying that they account for a larger proportion of variance in graduation 

performance compared to demographic variables. This analysis supports the conclusion that students’ prior 

academic records and class engagement are more predictive of graduation success than socio-demographic 

characteristics in the observed sample. 
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Figure-5: Parallel Analysis 

3.6 Parallel Plot Analysis 

A parallel analysis was conducted to determine the optimal number of components to retain in the 

principal component and factor analysis models. Parallel analysis suggests that the number of factors =  11  

and the number of components =  6. The scree plot clearly indicates that the first three components/factors 

have eigenvalues exceeding those derived from simulated and resampled data, confirming their significance. 

Beyond the third component, the eigenvalues fall below the random data threshold, indicating that additional 

components do not explain meaningful variance. Therefore, a three-factor structure is appropriate for 

interpreting the underlying dimensions in the dataset. This conclusion supports the findings from the initial 

PCA and strengthens the dimensionality reduction strategy adopted in the study. 

 

4. CONCLUSION 

This research employed Principal Component Analysis (PCA) and Factor Analysis to analyze factors 

influencing the academic performance of engineering students. Statistical tests including Bartlett’s Test of 

Sphericity and the Kaiser-Meyer-Olkin (KMO) measure indicated strong inter-variable correlations and 

adequate sampling, supporting the use of these dimensionality reduction techniques. 

The PCA revealed that a few principal components, particularly those associated with academic variables 

like attendance and prior academic scores, explain a large portion of the overall variance in graduation 

performance. Visualizations like scree plots, biplots, and parallel analysis confirmed that retaining two to 

three components provided a meaningful and simplified structure of the data. 

This study contributes to educational research by emphasizing the importance of reducing data complexity 

while preserving interpretability. The insights gained can help institutions better understand which academic 

and personal variables most significantly affect student performance. Importantly, no predictive machine 

learning models were used; the focus remained on statistical understanding and data simplification through 

PCA and Factor Analysis, offering a foundational tool for further educational research and policy 

development. 
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