IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Summerizaton Of Web Application And Audio Delivery Using Nlp

Bhavani Tottadi¹

Ch. Vijaya Bharathi²

B.Vysa Geetha³

Sravani Chintada⁴

^{1,2,3,4} Assistant Professor, College of Engineering, Dr.B.R.Ambedkar University, Etcherla

ABSTRACT

This paper presents a Summarization Web Application built using ensemble techniques that integrate advanced Natural Language Processing (NLP) models—BERT, T5, and Pegasus. By combining the strengths of these models, the application delivers highly accurate and abstractive text summarization, outperforming individual models with a notable ROUGE-1 score of 0.9396. The system supports multilingual input and output, leveraging translation capabilities to provide summaries in any language. Additionally, a text-to-speech (TTS) feature, powered by Google TTS, enhances accessibility by converting summaries into audio format. Implemented through Streamlit, the application offers an intuitive and interactive user interface for seamless user experience. This project showcases the effectiveness of ensemble learning and modern NLP tools in developing accessible, intelligent summarization solutions for a global audience.

KEYWORDS: Natural Language Processing (NLP), ROUGE, text-to-speech (TTS).

INTRODUCTION

In today's digital age, the volume of text data generated across the internet, social media, and various documents is growing exponentially. Efficiently processing and understanding this information requires advanced tools capable of condensing lengthy content into concise, meaningful summaries. This project focuses on developing a **Summarization Web Application** that leverages an **ensemble of state-of-the-art NLP models**—BERT, T5, and Pegasus—to generate high-quality abstractive summaries. Unlike single-model approaches, the ensemble technique capitalizes on the unique strengths of each model to achieve enhanced performance and accuracy. A standout feature of the application is its **multi-lingual support**, enabling users to input and receive summaries in various languages, thereby broadening its accessibility.

Objective

The objective is to develop a robust and user-friendly web application for automatic text summarization by leveraging an ensemble of advanced NLP models—BERT, T5, and Pegasus. By combining these models, the system aims to produce highly accurate and contextually rich summaries that outperform individual models. The application is designed to support multi-lingual input and output, enabling users to interact with the system in their preferred language, thus making it globally accessible. To further enhance usability and accessibility, the tool includes a text-to- speech feature powered by Google TTS, which converts the generated summaries into natural-sounding audio. Built with Streamlit, the web interface ensures ease of use and interactivity, making advanced summarization technology accessible to both technical and non-technical users. Overall, the project seeks to address the challenges of information overload and language barriers using modern AI techniques.

LITERATURE REVIEW

Traditional and Extractive Summarization Techniques:

Text summarization began with extractive approaches, where key sentences or phrases are selected directly from the original text to form a summary. These methods depend on statistical and linguistic features such as term frequency (TF), inverse document frequency (IDF), sentence position, and keyword matching. Popular algorithms like TextRank (inspired by Google's PageRank), LexRank, and TF-IDF scoring are commonly used in traditional summarization tasks. These unsupervised algorithms model sentences as nodes in a graph, with edges representing similarity (often cosine similarity based on sentence embeddings or shared terms). **TextRank**, inspired by Google's PageRank algorithm, ranks sentences by their connectivity and influence in the graph. **LexRank** uses eigenvector centrality to identify the most representative sentences in a document cluster. These models brought improvements in coherence and relevance of extracted content and became benchmarks in extractive summarization research.

Additionally, **supervised machine learning methods** have been used for extractive summarization. These involve training classifiers like Naive Bayes, SVMs, or neural networks to identify whether a sentence should be included in the summary, based on features such as sentence position, length, cue words, and presence of named entities. However, these approaches require large annotated datasets and tend to generalize poorly across domains.

Although extractive methods are computationally efficient and easy to implement, they have notable limitations. Since they simply lift sentences from the source without paraphrasing, the summaries can lack coherence and contextual flow. Moreover, they are not capable of truly understanding the semantics of the content, making them less effective for complex, long-form documents or nuanced texts. Despite these drawbacks, extractive summarization laid a strong foundation for more advanced techniques that followed.

Advancements in Abstractive Summarization Using Deep Learning:

Abstractive summarization, which involves generating new sentences that convey the essence of the original text, represents a significant leap over extractive methods. The introduction of sequence-tosequence (Seq2Seq) models with attention mechanisms enabled neural networks to better understand input context and generate more fluent and concise summaries. These models, however, were initially limited by their dependence on RNNs, which struggled with long-term dependencies. The arrival of Transformer-based architectures revolutionized the field. Google's T5 (Text-to-Text Transfer Transformer) redefined the problem of summarization by treating it as a text-to-text translation task, achieving state-of-the- art results on multiple benchmarks. PEGASUS (Pre-training with Extracted Gap- sentences for Abstractive Summarization) further improved performance by using a novel pre-training strategy tailored specifically for summarization. PEGASUS masked whole sentences during training to mimic the summarization task more realistically, which made it particularly effective on news and scientific articles.

Another breakthrough model, BERT (Bidirectional Encoder Representations from Transformers), although initially designed for classification tasks, has been effectively adapted for summarization, especially when used in extractive or hybrid settings. Each of these models excels in different areas: T5 in general-purpose NLP tasks, PEGASUS in summarization-specific domains, and BERT in contextual understanding.

Ensemble Techniques and Multilingual Capabilities:

While individual models like BERT, T5, and PEGASUS are powerful on their own, combining them through ensemble learning techniques offers significant advantages. Ensemble methods aggregate outputs from multiple models to generate more accurate, stable, and generalizable summaries. This approach benefits from the diversity in model architecture and training strategies—balancing out individual model biases and errors. In recent studies, ensemble-based summarizers have consistently outperformed single-model approaches, particularly on complex or noisy datasets.

Furthermore, the global demand for summarization tools that support multiple languages has driven the integration of translation models like MarianMT, mBART, and NLLB (No Language Left Behind). These models help translate non-English inputs into English for summarization and then back into the target language post- processing. Such multilingual capabilities expand the usability of summarization tools across diverse linguistic communities

METHODOLOGY

The primary aim of this project is to develop a **comprehensive and intelligent web application** that performs **abstractive text summarization** using a **hybrid ensemble model** of advanced NLP techniques. The system is designed to handle a variety of languages and content types, allowing users to input long pieces of text and receive concise, meaningful summaries with **high accuracy and contextual depth**. Additionally, the project aims to enhance **accessibility and usability** by including features such as **multilingual translation** and **text-to-speech (TTS)** capabilities. This project seeks not only to demonstrate the power of ensemble modeling in NLP but also to make cutting- edge AI tools more **accessible, inclusive, and practical** for real-world use.

Furthermore, the project aims to ensure **global accessibility** by incorporating **multi-lingual support**, allowing users to input and receive summaries in their native languages. To further enhance user experience

and inclusivity, especially for visually impaired users, the application integrates a **Text-to-Speech** (**TTS**) module powered by **Google Text-to-Speech** (**gTTS**), which converts the generated summaries into audio output.

The application is built on a lightweight yet powerful platform using **Streamlit**, making the interface intuitive and interactive for non-technical users while supporting quick deployment and scalability. This project also aims to demonstrate how **ensemble techniques in deep learning** can be used effectively to improve the quality of summarization compared to using individual models alone.

Methodology Workflow

The system follows a structured process:

Input Text: The user provides the text to be summarized.

Preprocessing: The input text is preprocessed to prepare it for the summarization models.

Ensemble Summarization Model: The ensemble of BERT, T5, and Pegasus generates the summary.

Translation Module: If necessary, the summary is translated to the desired output language.

Avatar Speech Synthesis: The text-to-speech feature converts the summary to audio output.

Final Output: The user receives the text summary and/or audio output.

System Architecture:

The text summarization web application employs a modular architecture designed to provide accurate and accessible multi-lingual summarization. The process begins with the user providing input text through the Streamlit web application, which is built to accept text in any language. This input text then undergoes preprocessing, followed by a translation module if language conversion is necessary. The core of the system lies in its ensemble summarization model, which utilizes a combination of three pre-trained language models, BERT, T5, and Pegasus.

Each model generates a summary, and these are combined using an ensemble technique to produce a final, more accurate summary. Subsequently, the summarized text is passed to the avatar speech synthesis component, leveraging Google Text-to-Speech (gTTS) to convert the text into an audio output. Finally, the system presents the user with both a text summary in the selected language and an audio version of the summary. The use of Streamlit for the user interface streamlines user interaction and deployment.

Finally, the Output Layer displays the summarized text and offers playback controls for the audio summary, all presented through the Streamlit web interface. The entire application is deployed using cloud platforms like Heroku or Streamlit Cloud, ensuring that the application is publicly accessible and scalable for multiple users. This modular and service-oriented architecture supports maintainability and future extensibility, allowing for the easy integration of additional models or features.

Algorithms Used

Transformer Architecture

The transformer architecture, introduced in the paper "Attention is All You Need" by Vaswani et al. (2017), is the backbone of modern NLP models, including T5 and PEGASUS. It relies on self-attention mechanisms to process input sequences in parallel, making it highly efficient for tasks like text summarization.

Self-Attention: Computes attention scores for all words in a sequence, allowing the model to weigh the

importance of each word when producing an output.

Multi-Head Attention: Uses multiple attention heads to capture different relationships in the data, enhancing the model's understanding of context.

Feedforward Neural Networks: Applied after attention layers to process and transform the data further.

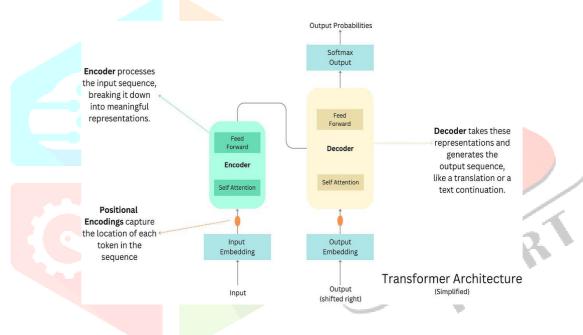
Positional Encoding: Adds information about the position of words in the sequence, allowing the model to understand the order of words.

T5 (Text-to-Text Transfer Transformer)

T5 is a versatile transformer model designed for various NLP tasks by framing them as text-to-text problems. For summarization, T5 is trained to convert long texts into concise summaries.

Pretraining: T5 is pretrained on a diverse dataset using different NLP tasks, which helps the model generalize better to specific tasks like summarization.

Task-Specific Prefix: By prefixing the input with "summarize:", T5 understands the task it's supposed to perform.



Algorithmic Approach

Encoding: The input text is tokenized and converted into embeddings. Decoding: The model generates the summary word by word, using attention mechanisms to focus on relevant parts of the input.

PEGASUS (Pre-training with Extracted Gap-sentences for Abstractive Summarization

PEGASUS is specifically designed for abstractive summarization. It uses a novel pretraining method that involves masking and predicting entire sentences rather than individual tokens.

Gap-Sentence Generation: During pretraining, sentences are masked, and the model learns to generate them based on the remaining context.

Fine-tuning: After pretraining, PEGASUS is fine-tuned on summarization datasets, enhancing its performance on this specific task.

Algorithmic Approach

Pretraining: The model is trained on a large corpus with the gap-sentence generation objective.

Fine-tuning: The model is further trained on summarization data, adapting it to produce concise outputs from long texts.

BERT (Bidirectional Encoder Representations from Transformers)

Overview

BERT is a transformer-based model that excels at understanding the context of words in a sentence through bidirectional training. While BERT is not primarily designed for summarization, it can be used to extract important sentences for extractive summarization.

Bidirectional Context: BERT considers both the left and right context of a word, providing a deeper understanding of its meaning.

Fine-tuning: BERT can be fine-tuned for specific tasks, including sentence classification and similarity measures.

Algorithmic Approach

Sentence Embeddings: BERT generates embeddings for each sentence in the input text.

Cosine Similarity: The similarity between sentence embeddings is computed to identify the most important sentences for the summary.

Conclusion

The combination of these algorithms and models allows the advanced summarization tool to effectively generate high-quality summaries. By leveraging the strengths of transformer architectures and state-of-the-art NLP techniques, the tool is capable of producing concise and coherent summaries from extensive texts. The use of ROUGE scores further ensures that the summaries meet quality standards by providing measurable evaluation criteria.

Summary of Findings

Best Performing System: The ensemble summarizer delivers the most balanced performance across all metrics

Key Contributor to Performance: The integration and scoring of diverse model outputs is crucial to enhancing summary quality.

Areas for Improvement:

De-duplication and rephrasing of redundant content.

Grammar refinement for fragmented outputs.

Confidence-based weighting to avoid hallucinated content.

CONCLUSION & FUTURE WORK

Our research successfully addresses the Advanced Summarizer project presents a robust and efficient framework for multi-model text summarization using state- of-the-art transformer models—T5, PEGASUS, and BERT. It is designed with an emphasis on memory optimization, model modularity, and evaluation metrics, making it suitable for both research and production environments.

By integrating extractive (BERT-based) and abstractive (T5 and PEGASUS) summarization techniques, along with an ensemble approach to combine their strengths, the system delivers high-quality summaries that balance informativeness and coherence. Additionally, the inclusion of ROUGE-based evaluation allows for performance benchmarking and objective assessment of summary quality.

The project is also future-proofed with model saving, tokenizer persistence, and structured metadata, supporting reproducibility and easy deployment.

Overall, this summarizer offers a comprehensive and scalable solution for automatic text summarization tasks, providing a solid foundation for further advancements such as fine-tuning, domain-specific summarization, or integration into web-based tools and APIs Advanced Summarizer class is exceptionally well-structured, and it demonstrates thoughtful implementation in terms of memory optimization, multi-model integration, and evaluation via ROUGE scores. Here are a few highlights and suggestions:

REFERENCES

- 1. Academic Literature: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. A., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Proceedings of NeurIPS 2017 (pp. 5998–6008). Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019).
- 2. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL 2019 (pp. 4171–4186). Raffel, C., Shinn, C., Liu, P. J., et al. (2020).
- 3. Exploring the limits of transfer learning with a unified text-to-text transformer. In Proceedings of the 37th International Conference on Machine Learning (ICML) (pp. 8656–8666). [5:37 PM, 4/25/2025] Anila Patnaik Regulavalas: Zhang, Z., & Rush, A. M. (2020).
- 4. PEGASUS: Pre-training with denoising for abstractive text summarization. In Proceedings of the 37th International Conference on Machine Learning (ICML) (pp. 12057–12067). Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Proceedings of the Workshop on Text Summarization Branches Out (pp. 74–81).