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Abstract—Global food security is largely dependent 

on crop health, but plant diseases continue to pose a 
significant problem for farmers everywhere. 
Conventional methods of diagnosing chronic illnesses 
are frequently inaccurate and necessitate a significant 
investment of time, energy, and specialized 
knowledge.This project introduces LeafWatch, an 
intelligent and effective system that detects plant leaf 
diseases using image processing techniques. After 
taking pictures of the leaves, the system applies a 
number of processes, such as preprocessing (cleaning 
the image), segmentation (separating the leaf from 
the background), feature extraction (identifying the 
salient features), and classification algorithms to 
determine the disease.The findings demonstrate that 
LeafWatch is a useful tool for farmers since it can 
precisely identify common plant illnesses. 
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I. INTRODUCTION 

A plant’s phenotype, also known as its phenotypic 

qualities, is a key factor in defining the physical 

attributes and overall health of crops. These 

characteristics are crucial markers of a number of 

important facets of agriculture, such as crop output, 

resilience to biotic and abiotic stressors, produce 

quality, and general plant performance.[1] 

Understanding how plants interact with their 

surroundings through phenotyping is essential for 

creating crop types that are healthier and more 

productive. Plant phenotyping has become a potent 

tool for more precise and scalable plant disease 

research due to the quick advancements in 

agricultural research. The scope, precision, and 

effectiveness of traditional phenotyping techniques, 

which mostly rely on human observation and 

judgment, are frequently constrained. These 

techniques entail professionals visually examining 

crops for disease indicators, which is not only labor-

intensive and time-consuming but prone to human 

error as well. Using only conventional approaches is 

no longer adequate in a society where food security 

is a major concern. The advent of high-throughput 

plant phenotyping technologies has significantly 

changed how plant diseases are detected and 

analyzed. These technologies make it possible to 

monitor plant health on a large scale and in real time. 

By combining sensing systems with data analysis 

tools, researchers can now evaluate multiple plant 

traits simultaneously. This capability is particularly 

useful in disease detection and classification, allowing 

for early intervention and the prevention of largescale 

agricultural losses.Early intervention and the 

avoidance of significant agricultural losses are made 

possible by this skill, which is especially helpful in the 

detection and classification of diseases. Plant 

diseases come in many different forms. For instance, 

during its life cycle, a single crop, like cucumbers, may 

be vulnerable to more than thirty distinct illnesses. 

Similarly, crops such as winter wheat can suffer 
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catastrophic yield losses of up to 50The capacity of 

phenotypic analysis to assist in disease management 

decision-making is one of its main benefits in 

contemporary agriculture. Appropriate 

countermeasures can be put into place right once 

when a disease is correctly detected early on. For 

example, farmers are able to apply precisely the right 

amount of fertilizer or pesticide—neither more nor 

less—reducing waste, expenses, and environmental 

effect. In this sense, phenotypic analysis supports 

sustainable agricultural methods while 

simultaneously safeguarding crop output. Traditional 

phenotyping techniques have drawbacks despite 

their advantages. These include poor processing 

speeds, significant operating expenses, and the 

requirement for specialized knowledge. For example, 

visual examinations can differ from person to person, 

resulting in discrepancies. Timely disease detection 

therefore becomes significantly more difficult in areas 

with limited access to diagnostic facilities or qualified 

workers. This has prompted the scientific community 

to investigate different strategies, especially those 

that make use of computer vision and artificial 

intelligence. Using deep learning, a kind of machine 

learning that is particularly good at extracting 

patterns from complicated data, is one of the most 

recent developments in plant phenomics. In a wide 

range of domains, such as facial recognition, object 

detection, natural language processing, and even 

medical diagnosis, deep learning models—

particularly Convolutional Neural Networks[1] 

(CNNs)—have shown remarkable performance. They 

are the perfect answer to image-based issues in 

agriculture because of their capacity to interpret vast 

amounts of visual data. CNNs can identify healthy 

plants from unhealthy ones based on unprocessed 

leaf photos. Features that might not be immediately 

apparent to the human eye, like color, form, texture, 

and patterns, are extracted by these networks. CNNs 

are useful tools for diagnosing diseases because, once 

taught, they can accurately identify new images. CNN-

based models have demonstrated performance levels 

in computer vision tasks over time that are very 

similar to those of human specialists, offering a 

possible substitute for the detection of plant diseases. 

However, the need for vast quantities of high-quality 

training data is one of the main obstacles in deep 

learning. 

To achieve good generalization and prevent 

overfitting, a situation in which the model performs 

well on training data but badly on fresh, unknown 

data, the majority of CNNs need thousands of labeled 

images. Due to variations in plant species, growth 

conditions, image quality, and the existence of several 

overlapping symptoms, it can be challenging to obtain 

such large datasets in agriculture. These limitations 

frequently result in issues with limited sample sizes, 

which reduces the efficacy of many deep learning 

models. Recent studies have looked at a number of 

strategies to deal with this problem. Some methods 

try to improve the initialization of CNN filters and 

weights in order to improve the training process. 

Others simplify the model so that it can better fit 

smaller datasets. For instance, techniques like 

transfer learning leverage CNNs that have already 

been trained on large image datasets, such 

InceptionV3 or ResNet. These networks may be 

optimized on smaller, domain-specific datasets to 

produce high performance even with sparse data, and 

they preserve learnt information. Our suggested 

approach, Identification of Plant Disease From Leaf 

Images Based on Image Processing, utilizes both 

transfer learning and deep learning in this regard. 

Despite the limitations of short datasets, the model 

achieves outstanding accuracy by adapting a pre-

trained InceptionV3 model for plant disease 

classification. We concentrate on photos of different 

plants’ leaves, using phenotypic information to 

accurately identify disease symptoms. Image 

acquisition, preprocessing, segmentation, feature 

extraction, and classification are the main processes 

in our method; these are all crucial components of a 

strong image processing pipeline. The model showed 

exceptional accuracy in our tests, producing 

outcomes that were on par with or superior to those 

of state-of-the-art techniques. In particular, 

Identification of Plant Disease From Leaf Images 

Based on Image Processing shown efficacy in disease 

detection tasks with a prediction accuracy of more 

than 99The agriculture community can learn a lot 

from this study. First, it demonstrates that with the 

correct combination of deep learning algorithms, 

accurate disease identification may be achieved even 

with insufficient data. Second, it adds a new tool to 

the field of plant phenomics, which can help farmers 

and researchers alike detect illnesses early and take 

appropriate action. Third, it emphasizes how crucial 

http://www.ijcrt.org/


www.ijcrt.org                                                             © 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882 

IJCRT2506642 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f522 
 

technical innovation is to attaining sustainable 

agriculture, especially in light of the world’s growing 

need for food production due to climate change. 

Integrating our system with the Internet of Things 

(IoT) infrastructure is another exciting avenue. Smart 

cameras and drones are examples of Internet of 

Things equipment that can continuously monitor 

crops in real-time, sending images to the classification 

system for immediate analysis. This establishes a 

feedback loop in which farmers are promptly 

informed of possible disease outbreaks, enabling 

them to take appropriate action and minimize 

damage. Precision agriculture, a contemporary 

farming method that leverages data to optimize each 

stage of the agricultural process, is characterized by 

this degree of automation and reactivity. The 

suggested method might be expanded to include 

severity estimation, which measures the degree of 

infection on a leaf or plant, in addition to disease 

classification. Making more complex decisions, such 

whether to treat a particular area of a field or 

whether to completely eradicate sick plants, would be 

made possible by this. To further increase the 

system’s capabilities, further elements including 

organ detection, weed identification, and leaf 

counting might be included. Overall, Using Leaf 

Images to Identify Plant Disease An advancement in 

the real-world use of artificial intelligence in 

agriculture is represented by Image Processing. It 

offers strong performance with limited datasets, 

tackles major shortcomings in current approaches, 

and offers a framework for developing automated, 

intelligent plant disease monitoring systems. It 

promotes the objectives of increased production, 

better resource management, and enhanced crop 

quality by lowering reliance on manual inspection, 

lowering labor costs, and facilitating precise 

interventions. Combining the fields of botany, 

computer science, engineering, and data science will 

be crucial for the detection of plant diseases in the 

future. We can develop even more potent 

instruments for guaranteeing food security, 

preserving ecosystems, and improving the lives of 

farmers worldwide by bringing together specialists in 

various domains. Therefore, technologies such as 

Identification of Plant Disease From Leaf Images 

Based on Image Processing are not merely technical 

marvels; they are essential for agriculture’s future. 

II. LITERATURE REVIEW 

In recent years, there has been a notable 

advancement in the use of deep learning and image 

processing techniques for the identification and 

classification of plant diseases. Manual examination 

was the basis of traditional systems, which were 

subjective, time-consuming, and necessitated 

professional expertise. Convolutional Neural 

Networks (CNNs), a subset of deep learning, have 

transformed automated plant disease detection. 

Mohanty et al. [1] trained deep CNNs on the 

PlantVillage dataset and obtained over 99Model 

optimization and mobile deployment have been 

studied in recent research. MobilePlantViT, a mobile-

efficient hybrid transformer model that maintained 

excellent accuracy while reducing computational 

complexity, was proposed by Tonmoy et al. [3] and is 

appropriate for use in the field. In order to improve 

classification in complex disease scenarios, Zeng and 

Li [4] combined residual CNN blocks with self-

attention processes to boost feature extraction. 

Additionally, a hybrid LSTM-CNN model was used by 

Kanakala and Ningappa [5] to examine temporal 

fluctuations in plant health data in addition to 

classifying illnesses. Their approach reflects the 

increasing popularity of multi-modal architectures 

that combine temporal and spatial learning. There is 

also the option to improve explainability. Automated 

concept identification in CNN outputs was introduced 

by Amara et al. [6], enabling stakeholders to decipher 

model predictions and fostering confidence in AI 

systems utilized in agriculture. 

Together, these investigations demonstrate the 

efficiency, versatility, and present difficulties of CNN-

based plant disease detection systems, opening the 

door for further advancements in precision farming. 

III. METHODOLOGY 

In order to create a CNN-based image classification 

model for identifying plant diseases from leaf photos, 

this project follows a set of procedures. Importing 

required libraries, loading and preparing the dataset, 

performing data augmentation, creating the CNN 

model, training the model, assessing its performance, 

and testing it on fresh images are all steps in the 

entire workflow. 
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1. Bringing Libraries in 

•Importing all of the Python libraries needed for the 

project was the first step. 

• Pandas and NumPy were utilized for 

computations anddata processing. 

• To plot graphs, Matplotlib and Seaborn were 

utilized. 

• The CNN model was constructed and trained 

with the aidof TensorFlow/Keras. 

• To read and process images, OpenCV was 

utilized. 

• Scikit-learn was employed to assess the 

performance ofthe model. 

2. Dataset loading Three 

sections made up the data set: 

• Training Set: a tool for education. 

The validation set is utilized to adjust the model. 

• Test Set: utilized for the last assessment. 

There were folders for every disease class in each 

section (e.g., healthy and sick leaves). The Keras 

Image Data Generator was used to load the images, 

resizing them (for example, to 224x224) and loading 

them in batches. 

3. Preprocessing and Augmenting Data. 

Data augmentation was utilized to produce more 

images and avoid overfitting because the data set was 

small. The following adjustments were made: Pixel 

values are rescaled to fall between 0 and 1. 

• Images rotate according to arbitrary angles. 

• In and out zooming. 

Images can be shifted both vertically and 

horizontally. Images can be flipped both vertically and 

horizontally. 

• Shearing to subtly warp the image. These 

changes im-proved the model’s learning 

capabilities and flexibility. 

4. CNN Model Structure 

To extract features from photos, a custom CNN 

model was constructed using the following layers: 

• Convolutional layers with ReLU activation. 

• MaxPooling layers to preserve key 

characteristics whilereducing image size. To avoid 

overfitting, dropout layers are used. 

• A flatten layer for 1D data conversion from 2D. 

• Fully connected, dense layers for 

classification. 

• Softmax activation in the output layer for class 

prediction. 

The model was put together using the following: 

Categorical cross-entropy is the loss function. Adam is 

the optimizer. 

• Metric: Precision. provides an explanation of 

the model. 

5. Model Training 

The fit() function was used to train the model. 

During training: 

• Augmented training images were used to 

teach the model.• Performance was checked using 

validation data following each period. 

• Records of accuracy and loss were kept. 

6. Assessing the Model 

The model was evaluated on the test set following 

training using: 

• A confusion matrix showing the accuracy of 

each class’spredictions. 

• An F1-score, precision, and recall classification 

report. 

• Graphs that display validation and training 

results overtime. 

7. Formulating Forecasts 

New leaf pictures were predicted using the learned 

model after the image was normalized and shrunk. 

• The model was given it. 

• The anticipated class was provided by the 

model.8. Keeping the Model and Applying It 

Model.save() was used to save the trained model 

for later use, such as in a web or mobile application 

for identifying plant diseases. 

9. Workflow Overview 

The complete procedure can be summed up as 

follows: CNN Model → Training → Assessment → 

Prediction Image Input → Preprocessing 
Augmentation 

IV. RESULTS AND EXPERIMENTS 

A. Configuration of the System 

Google Colaboratory (Colab), a cloud-based Python 

development environment that allows free GPU 

access, was used for the experiments and 

calculations. 

1) Hardware Configuration: Google Colab uses the 

following system configuration: 

• Processor: Intel Xeon. 

• GPU: Google Colab’s NVIDIA Tesla T4 GPU. 

• RAM: 12–25 GB, depending on the type of 

instance.2) Configuration of the Software: 
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• Operating System: Linux-based Ubuntu 18.04 

LTS. 

• Python 3.7.11 is the version. 

• Python libraries include matplotlib 3.4.3, 

NetworkX 2.6.2,PyTorch 1.9.0, and torch geometric 

2.0.1. 

• Additional Libraries: Pandas, SciPy, sklearn, 

and NumPy.3) Colab Notebook Environment: Using 

a web browser interface, all tests were conducted 

in Jupyter notebooks hosted on Google Colab. 

Colab’s notebook environment made it possible to 

execute code interactively and integrate Google 

Drive for data storage and retrieval. 

4) References: Visit the official documentation at 

https://colab.research.google.com/notebooks/intro.i

pynb for additional details on Google Colab and its 

features. B. Model Specifications We utilized the 

Adam optimizer with a learning rate of 0.01 and a 

weight decay of 5e-4 for the CNN models. Cross 

Entropy is used to calculate loss. Based on 

observations, we have fixed the number of training 

epochs at 5. Three layers make up CNN models: an 

input layer, an output layer, and four hidden layers. 

The hidden layer has four levels and is 256 in size. 

Every model has an input layer that is the same size 

as an image and an output layer that is the same size 

as the number of classes. C. Starting Point 

Performance Training the GNN models on the original 

adjacency matrices of the datasets over CPU created 

the baseline performance. Five epochs were used to 

train the models. At an 8:2 ratio, we divided the 

dataset into train and test sets. We acquired the 

accuracy and inference latency across the testing set. 

Test accuracy, inference delay, and training duration 

were all noted. 

5. Results: Five training epochs were used to assess 

the Convolutional Neural Network (CNN) model’s 

effectiveness in detecting plant diseases. Both 

training and test losses steadily declined throughout 

the course of the training procedure, demonstrating 

the model’s strong generalization capabilities and 

efficient learning. To extract robust and hierarchical 

features from the input images, the CNN architecture 

employed numerous convolutional blocks with ReLU 

activations, Batch Normalization, and MaxPooling 

layers. The filter depths were planned to go from 32 

to 256. The training and validation (test) loss 

summary for each epoch is shown below: Epoch 

Training Loss Validation Loss Duration 1 2.265 1.374 

4.38 min 2 1.248 1.083 4.41 min 3 1.034 0.995 4.41 

min 4 0.851 0.814 4.39 min 5 0.680 0.735 4.40 min 

The model gradually increased its accuracy with each 

epoch, as seen in the table, while the difference 

between training and validation loss stayed minimal, 

suggesting less overfitting. The model’s ability to 

learn discriminative features for plant disease 

classification is demonstrated by the final training loss 

of 0.680 and the equivalent validation loss of 0.735. 

The trained model was also saved as plant disease 

model 1.pt for later use, such as finetuning, inference 

on unknown data, or additional evaluation. All things 

considered, the outcomes show that the model can 

extract significant patterns from photos of plant 

leaves, which qualifies it for practical application in 
agricultural diagnostics. 

V. CONCLUSION FUTURE WORK 

This research introduces Convolutional Neural 

Networks (CNN), a deep learning-based method for 

detecting plant diseases. Using an image classification 

approach, the primary objective was to categorize 

leaf images into distinct groups, such as healthy and 

unhealthy. A dataset of leaf photos classified by 

disease type was used to build and train a custom 

CNN model. Data gathering, preprocessing, 

augmentation, CNN architecture design, training, and 

evaluation were all steps in the methodical model 

creation process. The model’s capacity to generalize 

effectively on unseen images was enhanced by data 

augmentation techniques like rotation, flipping, 

zooming, and shifting, particularly when dealing with 

a small dataset. Both during the training and testing 

stages, the CNN model showed excellent 

performance and high accuracy. The model’s 

dependability was validated by a number of 

assessment criteria, including the classification report 

and confusion matrix. Its practical usefulness was 

further demonstrated by the successful prediction on 

new photos. All things considered, this effort 

demonstrates how deep learning—more especially, 

CNNs—can be applied successfully in the agriculture 

sector to support precise and timely plant disease 

identification. Farmers and other agricultural experts 

can benefit greatly from this type of system since it 

allows for prompt diagnosis, which aids in prompt 

treatment and improves crop health and yields. 

Future Work: Even while the existing system produces 
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encouraging outcomes, there are still a number of 

areas that could want refinement and enhancement: 

1. Dataset Expansion: Training the model on a bigger 

and more varied dataset can increase its accuracy and 

resilience. Adding photos with varying backdrops, 

lighting, and angles will improve the model’s 

performance in practical settings. 2. Web and Mobile 

Deployment: The trained model can be used in an 

intuitive web platform or mobile application that 

allows users to contribute leaf photos and receive 

real-time illness predictions. As a result, farmers and 

agricultural officials in isolated locations will also be 

able to use the system. 3. Utilization of Pre-trained 

Models: Through transfer learning, pre-trained 

architectures such as ResNet, VGG, MobileNet, or 

EfficientNet may be employed in the future. These 

models can further improve performance while 

cutting down on training time because they have 

previously been trained on huge image datasets. 4. 

Multilabel Classification: A leaf may exhibit symptoms 

of multiple diseases. Multiple diseases in a single leaf 

can be identified by extending the algorithm to 

include multi-label categorization. 5. Explainability: To 

visually illustrate which area of the image the model 

concentrated on during prediction, methods such as 

Grad-CAM or heatmaps can be employed. This 

increases users’ confidence in the model and clarifies 

its judgments. 6. IoT and Smart Agriculture 

Integration: To provide continuous and automated 

disease monitoring without the need for human 

image uploading, the model can be combined with 

drones, sensors, or IoT-enabled cameras in 

agricultural areas. . 
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