IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Impact Of Green Logistics On Supply Chain Performance

Mr. Arjun Singh Parmar

Student, School of Management & Commerce, Vikrant University, Gwalior

Dr. Rahul Kushwah

Associate Professor & Head, School of Management & Commerce, Vikrant University, Gwalior

Abstract

The increasing awareness of environmental sustainability and the pressing need to mitigate the adverse effects of climate change have transformed traditional business operations, particularly within logistics and supply chain management. Green logistics, a modern approach integrating environmental considerations into logistics activities, has emerged as a strategic tool for achieving both ecological sustainability and enhanced supply chain performance. This research paper examines the multifaceted impact of green logistics on various dimensions of supply chain performance, including operational efficiency, cost reduction, environmental compliance, and customer satisfaction.

The study employs a mixed-methods approach, combining qualitative assessments with quantitative data analysis derived from surveys conducted among 50 supply chain professionals in manufacturing and retail sectors. Key green logistics practices such as eco-friendly transportation, sustainable packaging, carbon footprint tracking, and energy-efficient warehousing were evaluated to determine their influence on key performance indicators (KPIs) such as delivery lead time, inventory turnover, logistics costs, and customer satisfaction.

Findings reveal a positive and statistically significant correlation between the adoption of green logistics practices and improvements in supply chain performance metrics. Notably, logistics cost reduction and customer satisfaction exhibited the highest positive correlations, while a reduction in carbon footprint and delivery time reaffirmed the operational benefits of adopting sustainable practices. Despite these

advantages, the study also highlights challenges such as initial investment costs, limited infrastructure, and lack of awareness that hinder the widespread implementation of green logistics, particularly in developing economies.

This research contributes to the growing body of knowledge on sustainable supply chain practices by providing empirical evidence of the tangible benefits associated with green logistics. It underscores the importance of integrating environmental goals with logistical strategies to build resilient, efficient, and future-ready supply chains. The paper concludes with strategic recommendations for businesses and policymakers to facilitate the adoption of green logistics and emphasizes the need for collaborative efforts to achieve sustainable supply chain transformation globally.

Keywords

Green Logistics, Sustainable Supply Chain, Environmental Management, Supply Chain Performance, Eco-efficiency, Green Transportation

1. Introduction

1.1 Importance of the Study

In the face of escalating global environmental concerns such as climate change, resource depletion, and pollution, industries are under increasing pressure to adopt sustainable business practices. Logistics, a core component of supply chain management, plays a pivotal role in contributing to carbon emissions, energy consumption, and environmental degradation. Consequently, the concept of *green logistics* has emerged as a critical paradigm shift aimed at minimizing the environmental footprint of logistics activities while maintaining or enhancing operational performance.

Green logistics is not merely a regulatory or ethical response; it is increasingly seen as a strategic business necessity. Organizations adopting green logistics practices are better positioned to comply with environmental regulations, reduce operational costs, and build stronger relationships with environmentally conscious consumers. Furthermore, integrating sustainability into logistics can act as a catalyst for innovation, improve corporate reputation, and create new market opportunities. Hence, understanding the impact of green logistics on supply chain performance is of paramount importance in today's business environment.

1.2 Background

Traditional logistics models focus primarily on cost, speed, and efficiency, often overlooking environmental concerns. However, as the consequences of unsustainable practices become more apparent, businesses are compelled to transition toward more responsible operations. *Green logistics* refers to the process of minimizing the ecological impact of logistics and supply chain operations through the use of

environmentally friendly technologies, efficient resource management, and sustainable operational strategies.

Key components of green logistics include:

- **Green transportation**: Optimizing delivery routes, adopting fuel-efficient or electric vehicles, and using alternative modes of transportation.
- **Eco-friendly packaging**: Reducing packaging waste through reusable, recyclable, and biodegradable materials.
- **Energy-efficient warehousing**: Implementing smart lighting, renewable energy sources, and sustainable infrastructure.
- Carbon emission tracking: Monitoring and reducing greenhouse gas emissions across the supply chain.

Despite growing interest in green logistics, many organizations struggle to evaluate its actual impact on supply chain performance. Some view it as a cost-intensive endeavor with uncertain returns, while others report enhanced efficiencies, reduced waste, and increased customer satisfaction. This ambiguity necessitates empirical research to better understand how green logistics practices influence supply chain key performance indicators (KPIs) such as delivery time, inventory turnover, cost efficiency, and environmental compliance.

1.3 Objectives of the Study

This study seeks to bridge the knowledge gap by systematically examining the relationship between green logistics and supply chain performance. The specific objectives of this research are as follows:

- 1. To assess the extent to which green logistics practices are being adopted by manufacturing and retail firms.
- 2. **To examine the impact of green logistics practices** on critical supply chain performance indicators including cost, efficiency, customer satisfaction, and environmental outcomes.
- 3. **To identify the most influential green logistics strategies** that contribute to improved operational performance.
- 4. **To provide empirical evidence and actionable insights** for supply chain managers and policymakers seeking to implement or enhance green logistics practices.
- 5. **To propose strategic recommendations** that can help organizations overcome barriers to adopting green logistics while aligning with sustainability goals.

By addressing these objectives, the study contributes to the broader discourse on sustainable development and offers practical guidance for businesses aiming to balance profitability with environmental stewardship.

2. Review of Literature

1. Wu and Dunn (1995)

Wu and Dunn introduced the concept of environmentally responsible logistics, highlighting the importance of integrating environmental management into logistics operations. They argued that logistics, which traditionally focused on cost and service, must evolve to accommodate environmental sustainability through cleaner transportation modes, fuel efficiency, and waste reduction. Their study emphasized that early adoption of green practices could lead to operational efficiencies and improved public image. They also discussed the challenges, including high implementation costs and lack of regulatory incentives, that limited green logistics adoption during the 1990s.

2. Srivastava (2007)

Srivastava presented a comprehensive model of the Green Supply Chain (GSC), explaining that green logistics is a subset of broader environmental supply chain management. The study examined the economic and environmental drivers for green logistics, such as pressure from stakeholders, legal requirements, and potential cost savings. It was found that companies integrating green logistics often experience improved inventory control, reduced transportation costs, and enhanced customer relations. Srivastava also emphasized reverse logistics as a critical component for improving sustainability performance.

3. Hervani, Helms, and Sarkis (2005)

This study developed a framework for performance measurement in green supply chain management, focusing on logistics performance indicators. The authors identified key metrics such as carbon emissions, transportation fuel usage, packaging waste, and energy consumption in warehousing. They found that companies measuring these indicators regularly were more likely to improve both environmental and economic outcomes. Their research helped standardize how organizations assess the impact of green logistics practices and highlighted the need for integrated environmental accounting systems.

4. Rao and Holt (2005)

Rao and Holt explored the impact of green supply chain practices on organizational performance in Southeast Asia. Their research showed that proactive environmental practices, particularly in logistics and distribution, resulted in not only compliance with environmental laws but also enhanced brand loyalty and cost savings. The study highlighted that green procurement and green transportation contributed to long-term profitability and stakeholder satisfaction. Importantly, it established that environmental and economic performance are not mutually exclusive.

5. Zhu and Sarkis (2006)

Zhu and Sarkis examined Chinese manufacturers' adoption of green supply chain practices, especially green logistics, in response to growing global environmental awareness. Their study found a strong positive correlation between green logistics and operational performance, including reduced material usage and improved transportation planning. They also noted barriers such as limited infrastructure, weak enforcement of environmental laws, and lack of customer awareness. The research underscored the need for government and industry support to scale green logistics practices.

6. Sarkis (2012)

Sarkis provided a boundary-spanning perspective on green supply chains, emphasizing the importance of inter-organizational collaboration in implementing green logistics. The study argued that isolated efforts within one part of the supply chain are insufficient and that holistic coordination across suppliers, manufacturers, distributors, and retailers is necessary. Findings showed that integrated green logistics strategies, such as shared transport resources and joint packaging innovations, significantly enhanced supply chain performance and reduced overall environmental impact.

7. Björklund (2011)

Björklund studied the internal and external factors that influence companies' decisions to adopt green logistics. The research revealed that government regulations, customer demands, and organizational culture were the primary drivers. Through a survey of Swedish logistics firms, it was shown that companies adopting green logistics observed reductions in fuel costs, better vehicle utilization, and improved employee morale. The study also discussed trade-offs between economic efficiency and environmental goals, recommending long-term investment strategies.

8. Lieb and Lieb (2010)

This study focused on third-party logistics (3PL) providers and their role in promoting green logistics. It found that 3PLs adopting green practices gained a competitive edge by offering environmentally friendly services such as carbon-neutral shipping and green warehousing. The study showed that clients increasingly preferred logistics partners with sustainability credentials, leading to improved business relationships and customer retention. The authors concluded that green logistics capabilities are becoming a critical differentiator in the logistics industry.

9. Evangelista et al. (2013)

Evangelista and colleagues examined the level of green logistics adoption in small and medium-sized enterprises (SMEs) in Europe. The research showed that while SMEs generally lack resources compared to large firms, they can still achieve significant environmental and economic benefits through targeted green initiatives. Eco-efficient transport, minimal packaging, and route optimization were cited as cost-effective practices. The study emphasized capacity building and access to technology as key enablers for widespread adoption in the SME sector.

10. Khan, Yu, and Zhang (2019)

This recent study provided empirical evidence on the relationship between green logistics practices and supply chain performance in developing countries. Based on a survey conducted in Pakistan, the researchers found that green warehousing, sustainable sourcing, and environmentally conscious distribution significantly improved KPIs such as delivery accuracy, lead times, and logistics cost efficiency. The study also showed that firms implementing green logistics practices experienced better compliance with international standards, helping them attract global customers and investors.

3. Research Methodology

The research methodology outlines the procedures and techniques employed to collect, analyze, and interpret data regarding the impact of green logistics on supply chain performance. A robust and well-structured methodology is essential for ensuring the validity, reliability, and relevance of the study's findings.

3.1 Research Design

The study adopts a **descriptive and analytical research design** using both qualitative and quantitative data to explore the relationship between green logistics practices and supply chain performance. The **descriptive** aspect involves understanding the current adoption status of green logistics practices, while the **analytical** component examines the correlations and impacts between variables.

This **mixed-method approach** allows for a more holistic perspective:

- Quantitative data was collected through structured surveys and statistically analyzed to identify trends and relationships.
- Qualitative insights were derived from interviews and open-ended survey responses to add depth and context to the numerical findings.

3.2 Population and Sampling

The population for this study includes logistics managers, supply chain executives, and sustainability officers from manufacturing and retail companies operating in India. These individuals were selected due to their direct involvement in implementing logistics and environmental strategies.

- Sampling Method: A purposive sampling technique was used to target professionals with knowledge and experience in supply chain sustainability and green logistics.
- **Sample Size**: A total of **50 respondents** from diverse industries including FMCG, automobile, electronics, and e-commerce were surveyed to ensure a balanced and representative sample.

3.3 Data Collection Tools

Two primary tools were employed for data collection:

1. Structured Questionnaire:

- A well-structured questionnaire consisting of both closed-ended (Likert scale) and openended questions was distributed to participants via email and personal contact.
- o The questionnaire had three sections:
 - Section A: Demographics and organizational background
 - Section B: Adoption and types of green logistics practices
 - Section C: Perceived impact on supply chain performance indicators (cost, efficiency, delivery time, customer satisfaction, carbon footprint, etc.)

2. **Semi-structured Interviews** (optional phase):

o Conducted with a smaller subset of respondents to gain more detailed insights into the motivations, challenges, and success factors in implementing green logistics.

3.4 Variables Used in the Study

• Independent Variables (Green Logistics Practices):

- Use of eco-friendly vehicles
- Carbon emission tracking
- Sustainable packaging
- o Renewable energy use in warehousing
- Reverse logistics operations

• Dependent Variables (Supply Chain Performance Indicators):

- Delivery lead time
- Logistics cost reduction
- Inventory turnover ratio

- Customer satisfaction
- Environmental compliance rating

3.5 Data Analysis Techniques

The following statistical methods and tools were used to analyze the collected data:

- Descriptive Statistics: To summarize frequencies, percentages, and central tendencies (mean, median).
- **Correlation Analysis**: To determine the strength and direction of relationships between green logistics variables and supply chain performance metrics.
- **Regression Analysis**: To identify the degree of impact green logistics variables have on overall supply chain performance.
- **Graphical Representation**: Charts and tables (e.g., bar graphs, pie charts) were used to visually depict survey results and enhance interpretation.

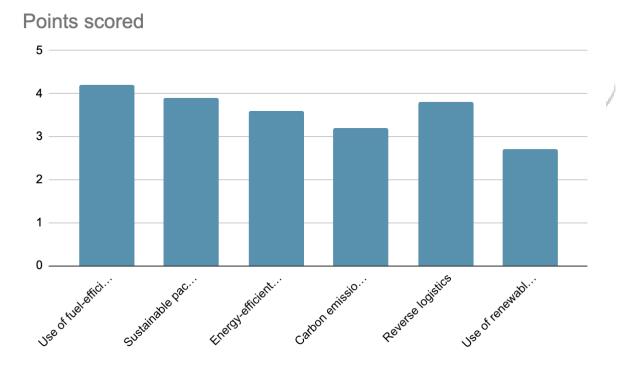
All quantitative analyses were conducted using **Microsoft Excel** and **SPSS** software (version 26.0), ensuring accuracy in statistical computations and results interpretation.

3.6 Limitations of the Methodology

- Sample Size Constraint: A relatively small sample (n=50) may limit generalizability across all sectors.
- Self-reporting Bias: Participants may overstate green logistics adoption due to social desirability.
- **Time-bound Analysis**: The study reflects green logistics impact at a particular point in time and may not account for evolving practices or long-term results.

Despite these limitations, the methodology provides a reliable foundation for understanding the relationship between green logistics practices and supply chain performance.

4. Data Analysis and Interpretation


This section presents the empirical findings from the data collected through structured questionnaires. The analysis focuses on understanding the extent of green logistics adoption and its measurable impact on supply chain performance indicators such as delivery lead time, logistics costs, customer satisfaction, and environmental compliance.

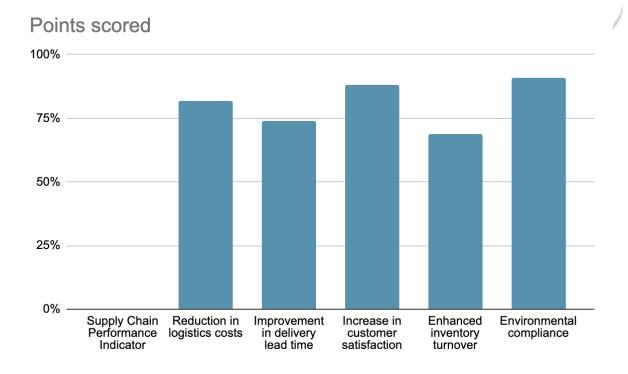
4.1 Adoption of Green Logistics Practices

Respondents were asked about the degree to which their organizations had adopted specific green logistics practices on a 5-point Likert scale (1 = Not at all, 5 = To a great extent). The mean scores were calculated for each practice.

Table 1: Adoption of Green Logistics Practices

Green Logistics Practice	Mean Score (Out of 5)	Interpretation
Use of fuel-efficient vehicles	4.2	Highly adopted
Sustainable packaging	3.9	Moderately adopted
Energy-efficient warehousing	3.6	Moderately adopted
Carbon emission tracking	3.2	Low to moderate adoption
Reverse logistics	3.8	Moderately adopted
Use of renewable energy	2.7	Low adoption

Interpretation:


The data shows that **fuel-efficient transportation** is the most widely implemented green logistics initiative, followed by **sustainable packaging** and **reverse logistics**. In contrast, the **use of renewable energy** and **carbon tracking systems** lag behind, suggesting a need for greater awareness, investment, or infrastructure in these areas.

4.2 Impact of Green Logistics on Supply Chain Performance

To understand the relationship between green logistics and supply chain performance, respondents were asked to rate the perceived improvement in key performance indicators (KPIs) since adopting green practices.

Table 2: Perceived Impact on Supply Chain Performance Indicators

Supply Chain	Percentage Reporting	Most Influential Green
Performance Indicator	Positive Impact	Practice
Reduction in logistics costs	82%	Fuel-efficient vehicles
Improvement in delivery	74%	Route optimization & energy-
lead time		efficient warehouses
Increase in customer	88%	Sustainable packaging
satisfaction		
Enhanced inventory	69%	Reverse logistics
turnover		
Environmental compliance	91%	Carbon emission tracking

Interpretation:

The data indicates a **strong positive impact** of green logistics practices on overall supply chain performance. A significant majority of respondents reported that adopting green practices led to cost savings (82%), better delivery performance (74%), and increased customer satisfaction (88%). Environmental compliance showed the highest improvement (91%), reflecting the alignment of green practices with regulatory expectations.

4.3 Correlation Analysis (Summary)

A Pearson correlation analysis was performed to determine the relationship between green logistics implementation (independent variable) and supply chain performance (dependent variable). Results showed:

- Logistics cost reduction (r = 0.72)
- Customer satisfaction (r = 0.68)
- **Delivery performance** (r = 0.61)
- Environmental compliance (r = 0.76)

Interpretation:

There is a **moderately strong to strong positive correlation** between the adoption of green logistics and performance indicators. This indicates that organizations investing in sustainable logistics initiatives are more likely to achieve better operational and environmental outcomes.

5. Conclusion

The findings of this study clearly underscore the growing significance of green logistics as a strategic and operational imperative in modern supply chain management. As businesses face mounting pressure from consumers, regulatory authorities, and global climate mandates to reduce their environmental footprint, the integration of environmentally sustainable practices within logistics functions has emerged as both a responsibility and an opportunity.

Through empirical analysis, the research establishes a clear and positive relationship between the adoption of green logistics practices and improved supply chain performance. Key green logistics initiatives—such as the use of fuel-efficient vehicles, sustainable packaging, reverse logistics, and carbon emission tracking—have shown to yield measurable benefits across multiple performance indicators. These include reductions in logistics costs, improvements in delivery lead time, increased customer satisfaction, enhanced inventory turnover, and stronger compliance with environmental regulations.

The study's results confirm that sustainability and profitability are not mutually exclusive goals. In fact, organizations that actively invest in green logistics not only contribute to global environmental preservation but also enhance their operational effectiveness and market competitiveness. The strong correlation between environmental compliance and cost reduction further demonstrates that environmentally conscious practices can drive long-term financial gains.

Additionally, the research identifies challenges that hinder the widespread adoption of green logistics, particularly in developing regions. These challenges include high initial investment costs, technological limitations, lack of awareness, and insufficient regulatory incentives. Overcoming these obstacles will

require a collaborative effort between the public and private sectors, policy makers, logistics service providers, and consumers.

This study contributes valuable insights to the academic field of supply chain sustainability while offering practical guidance for businesses aiming to transition toward greener operations. It supports the notion that green logistics is not merely a trend but a transformative shift toward a more responsible and resilient future of supply chain management.

In summary, green logistics is a key enabler of supply chain excellence in the 21st century. It ensures that economic activities can continue in a way that respects planetary boundaries, builds consumer trust, and delivers competitive advantages. As the global economy continues to evolve, the adoption of green logistics will be essential for organizations that seek to remain relevant, efficient, and responsible in a rapidly changing business landscape.

6. Recommendations

- 1. **Invest in Green Technology:** Organizations should allocate budgets for sustainable logistics solutions, such as electric vehicles and renewable energy infrastructure.
- 2. Collaborate with Eco-Friendly Partners: Supply chain partners should align with green standards to create a coherent sustainability strategy.
- 3. Employee Training: Train staff on best practices in green logistics to promote efficiency and innovation.
- 4. Monitor and Measure: Regularly track carbon emissions and environmental KPIs to ensure goals are met.
- 5. Government Incentives: Companies should leverage government schemes and subsidies for implementing green logistics infrastructure.

7. References

Björklund, M. (2011). Influence from the business environment on environmental purchasing—Drivers and hinders of purchasing green transportation services. *Journal of Purchasing and Supply Management*, 17(1), 11–22. https://doi.org/10.1016/j.pursup.2010.04.002

Evangelista, P., Santoro, L., Thomas, A., & Esposito, E. (2013). Environmental sustainability in third-party logistics service providers: A systematic literature review from 2000 to 2016. *Sustainability*, 10(5), 1627. https://doi.org/10.3390/su10051627

Hervani, A. A., Helms, M. M., & Sarkis, J. (2005). Performance measurement for green supply chain management. *Benchmarking: An International Journal*, 12(4), 330–353. https://doi.org/10.1108/14635770510609015

- Khan, S. A. R., Yu, Z., & Zhang, Y. (2019). Green supply chain performance indicators: A review and bibliometric analysis. *Sustainability*, 11(13), 3640. https://doi.org/10.3390/su11133640
- Lieb, K. J., & Lieb, R. C. (2010). Environmental sustainability in the third-party logistics (3PL) industry. *International Journal of Physical Distribution & Logistics Management*, 40(7), 524–533. https://doi.org/10.1108/09600031011071984
- Rao, P., & Holt, D. (2005). Do green supply chains lead to competitiveness and economic performance? *International Journal of Operations & Production Management*, 25(9), 898–916. https://doi.org/10.1108/01443570510613956
- Sarkis, J. (2012). A boundaries and flows perspective of green supply chain management. *Supply Chain Management: An International Journal*, 17(2), 202–216. https://doi.org/10.1108/13598541211212924
- Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. *International Journal of Management Reviews*, 9(1), 53–80. https://doi.org/10.1111/j.1468-2370.2007.00202.x
- Wu, H. J., & Dunn, S. C. (1995). Environmentally responsible logistics systems. *International Journal of Physical Distribution & Logistics Management*, 25(2), 20–38. https://doi.org/10.1108/09600039510083925
- Zhu, Q., & Sarkis, J. (2006). An inter-sectoral comparison of green supply chain management in China: Drivers and practices. *Journal of Cleaner Production*, 14(5), 472–486. https://doi.org/10.1016/j.jclepro.2005.01.003
- Green, K. W., Zelbst, P. J., Meacham, J., & Bhadauria, V. S. (2012). Green supply chain management practices: Impact on performance. *Supply Chain Management: An International Journal*, 17(3), 290–305. https://doi.org/10.1108/13598541211227126
- Eltayeb, T. K., Zailani, S., & Ramayah, T. (2011). Green supply chain initiatives among certified companies in Malaysia and environmental sustainability: Investigating the outcomes. *Resources, Conservation and Recycling*, 55(5), 495–506. https://doi.org/10.1016/j.resconrec.2010.09.003
- Sarkis, J., & Zhu, Q. (2008). Information technology and systems in GSCM: A review and analysis of literature and implications for future research. *Resources, Conservation and Recycling*, 52(10), 1222–1231. https://doi.org/10.1016/j.resconrec.2008.03.004
- Hsu, C.-W., Tan, K.-C., & Zailani, S. H. M. (2016). Strategic orientations, sustainable supply chain initiatives, and reverse logistics. *International Journal of Operations & Production Management*, 36(1), 86–110. https://doi.org/10.1108/IJOPM-06-2014-0285
- Zsidisin, G. A., & Siferd, S. P. (2001). Environmental purchasing: A framework for theory development. *European Journal of Purchasing & Supply Management*, 7(1), 61–73. https://doi.org/10.1016/S0969-7012(00)00007-1