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Abstract — This review paper explores recent advancements in infant cry analysis using artificial intelligence (Al)
methodologies, particularly machine learning (ML) and deep learning (DL). The discussion consolidates findings from ten
notable studies focusing on techniques such as convolutional neural networks (CNNSs), recurrent neural networks (RNNSs),
and support vector machines (SVMs), with key acoustic features including Mel-Frequency Cepstral Coefficients
(MFCCs). Results indicate that enhanced DL methods significantly improve detection accuracy in challenging
environments like neonatal intensive care units (NICUs). Challenges remain, such as dataset limitations, non-uniform
labelling standards, and the need for real-time applications. This paper provides a synthesized perspective on current
methodologies and outlines future directions for creating intelligent cry interpretation systems to support early

healthcare interventions [1]-[10].

Index Terms — Infant cry analysis, machine learning, deep learning, convolutional neural networks (CNN), recurrent neural
networks (RNN), Mel-Frequency Cepstral Coefficients (MFCC), cry classification, audio signal processing, neonatal care,

real-time monitoring.

. Introduction

Crying is the primary mode of communication ||, Related works

for infants during early developmental phases, enabling
expression of needs such as hunger, pain, or discomfort.
Effective and prompt interpretation of infant cries is vital
for delivering proper care. However, interpretations based
on caregiver experience can be inconsistent and delayed.
The rise of Al, and particularly the growth of ML and DL
technologies, has enabled promising developments in
automating cry interpretation [2], [6], [11]. ML/DL
algorithms have demonstrated success in recognizing and
classifying vocal patterns across various domains. In cry
analysis, techniques ranging from classical SVMs and k-
Nearest neighbors (k-NN) to advanced CNNs and RNNs
have been applied [5], [9], [18].Features like MFCCs,
spectrograms, and energy-based descriptors enhance
model performance [13], [14]. Studies have examined
deployment under real-world conditions, particularly
NICUs, where background noise is significant [16], [21].
Persistent issues include a lack of standardized datasets,
labelling inconsistencies, and challenges in deploying
models in resource-constrained environments [17], [24].
Research emphasizes the necessity of benchmarking
frameworks, larger annotated datasets, and lightweight
architectures suitable for real-time use [11], [24].

Methods such as data augmentation, transfer
learning, and hybrid feature modelling are suggested to
address these limitations [7], [10], [23]. This review
surveys ten pivotal studies, focusing on methodologies,
outcomes, and technological development to guide
future efforts [1], [4], [19].

Infant cry analysis has evolved significantly with
the application of deep learning methods, particularly for
emotional classification tasks. Early systems focused on
handcrafted acoustic features like MFCCs, pitch, and
formants combined with classifiers such as SVMs or
decision trees. While effective at basic detection, they
often struggled to model temporal-and emotional nuances
in cries [5], [9], [12].

Recent -advances introduced  end-to-end
architectures combining - CNNs for spatial pattern
recognition and LSTMs or BLSTMs for temporal
modelling. A significant contribution is the multiscale
CNN-BLSTM network, which was trained on a self-
constructed dataset featuring four emotional categories—
hunger, discomfort, awake, and diaper change [1], [19].
Multiscale convolution layers extracted varied spectral
components, while BLSTM layers captured sequential
dependencies.
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Class

| Fo(H2) | F, (H2) | Fp (H2)

Pain 437 | 948 | 2541
Discomfort . 512 ' 1537 ‘ 2603
Hunger | 505 | 789 | 2786 |
Discomfort | 447 | 1538 | 2880 |
Hunger | 451 | 589 | 2720 |
~ Runser 533 | 414 | 2880
Pain 447 | 509 | 2786
Discomfort | 532 | 1537 | 2786 |
Pain 447 | 509 | 2786
Discomfort 532 | 1537 | 2786
Pain 447 509 | 2863
Discomfort 505 | 1200 | 1014 |

Table 1. Datasets

This hybrid design achieved an 83.7% accuracy,

outperforming traditional CNNs. Evaluation using
weighted and unweighted accuracy, macro/micro F1
scores, and confusion matrices confirmed the

effectiveness of combining multiscale spectral analysis
with sequential modelling [1], [4].

Dataset

. Data Acquisition and Annotation

Cry data is recorded in diverse settings-homes,
clinics, and NICUs. Publicly available datasets like Baby
Chillanto offer examples labelled for hunger, pain, and
other states [3], [13]. Clinical datasets are often
annotated by healthcare professionals based on
observation [17]. Custom datasets using caregiver logs
or event records are also common. Lack of
standardization in annotation remains a major hurdle
across studies [17].

. Preprocessing and Augmentation

Preprocessing steps involve noise filtering, episode
segmentation, and normalization. Techniques like band-
pass filtering and silence removal are widely used [21].
MFCCs, chroma features, and spectrograms are frequently
extracted for robust pattern representation [13], [15]. Data
augmentation methods, including pitch shifting, time
stretching, and noise injection, are applied to increase
variability and generalization capacity [7], [23].

V. Methods

This work presents a lightweight CNN model optimized for
real-time neonatal care deployment. The focus is on computational
efficiency without sacrificing performance [11].

1.Audio Cleaning and Preparation

Training was conducted on CryCeleb2023, comprising
26,000 cry samples from 786 newborns [3]. Denoising utilized RMSE,
ZCR, and energy-based filtering. Audio segmentation used 32ms
Hamming windows with 50% overlap [11].

2.Feature Extraction for CNN Input

Handcrafted features included 80-dimensional
MFCCs with delta and delta-delta coefficients, pitch,
loudness, and spectral descriptors [5], [14].Deep
representations like Log-Mel filter banks and scalograms
were formatted into 2D matrices for CNN input [13], [19].

3.Data Augmentation Strategies

To simulate real-world scenarios and improve
generalization:
Spectral Masking: Frequency/time masking [23] Speed
Perturbation: £10% time stretch [7] Background
Simulation: Synthetic NICU noise overlays [21].

4.Custom CNN Design

The architecture comprises six stages:
convolutional blocks, Batch norm, max pooling, dropout,
and a fully connected layer feeding into SoftMax outputs
[11].
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Fig 1. Flowchart
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5.Benchmarking with ECAPA-TDNN Discussion: The CNN+LSTM hybrid model captures both
Performance was compared with ECAPA- spatial and temporal cry signal characteristics effectively
TDNN, an architecture utilizing TDNN blocks, Res2Net [4], [19].
modules, and attentive pooling for superior feature

modelling [3], [20]. C. Infant Identification via Cry
With ECAPA-TDNN, the system achieved a
6. Dataset Balancing 28.1% Equal Error Rate, demonstrating potential for cry-

SMOTE was employed to address class based infant identification under controlled settings [3],
imbalance by synthesizing new minority class examples [20].
[12].

D. Overall Discussion
7. Training Strategy Robustness: Consistent high performance

Training employed Adam optimizer with across recording environments [16]. Effectiveness of
adaptive learning rate decay. AAM-SoftMax was used to Augmentation: Augmentation greatly improved model
enhance class separation. Five-fold cross- validation generalization [7], [23].

ensured no infant overlap between training and testing sets Multi-Task Capability: Integrated detection,
[11]. classification, and identification functionality [25].
Clinical Impact: Supports proactive and precise caregiving
8.Performance Metrics [9]. [24].

Metrics included accuracy, recall, precision, F1-
score, and EER, visualized using ROC curves avid Taxonomy of Techniques for Infant Cry Analysis
confusion matrices [1], [16].
Infant cry emotion recognition methods can be

V. Results and Discussion classified based on three main aspects: feature extraction
A. Cry Detection Performance methods, model architectures, and deployment
Environment | Accuracy | Precision | Recall | F1- environments.
(%) (%) (%) Score
(%) Feature Extraction Approaches:
Home 53 54 52 %3 Handcrafted Features: Traditional methods rely
on manually designed features like MFCCs and pitch,
NICU 90 91 29 90 which are often used to capture acoustic properties in
frequency domain [5], [14].
Table 2. Cry Detection Performance Learned Features: Automatically derived

. . . . through deep learning models using spectrograms or time-
Discussion: High robustness  across  different . .
) . . . frequency representations, enabling more complex pattern
environments, with slight drops under NICU noise [16].

discovery [1], [19].
B. Cry Classification (Reason/Mood Identification)

Cry Accuracy | Precision | Recall | F1- Modelling Approaches:
Reason (%) (%) (%) | Score Classical Machine Learning (ML): SVM, k-
©6) NN use handcrafted features; less complex but efficient for
smaller datasets [5], [9].
Hunger 5 o 21 L Deep Learning (DL): CNNs and hybrid CNN-
Pain 96 97 95 9% LSTM models learn spatial and temporal features directly
from raw signals [1], [4], [19].
Sleepiness | 93 94 92 93
Discomfort | 95 95 95 95 Application Contexts:
Hospital NICU Systems: Prioritize accuracy and
Table 3. Cry Classification robustness for clinical diagnosis under noisy conditions

(6], [16], [21].
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V. Comparison of Methods in Infant Cry Emotion Recognition

Method Features Architecture | Dataset Accuracy | Advantages | Drawbacks

Traditional | Handcrafted | Shallow Custom 70-80% | Efficient, Poor temporal

ML (SVM, | (MFCCs, classifiers datasets simple modelling

k-NN) pitch)

Basic CNN | Spectrogram | CNN Custom 75-80% | Strong Limited
features datasets spatial sequential

features data

RNN/LSTM | MFCC+ RNN/LSTM | Baby ~82% Excellent Requires
Temporal Chillanto temporal large datasets
features modelling

Multiscale | MFCC+ Multiscale Self- 83.7% Robust, High

CNN- Multiscale | CNN+ constructed strong computational

BLSTM features BLSTM learning burden

Our MFCC+ CNN+ CryCeleb2023 | 90-96% | Real-time, | Slight drop in

Lightweight | Scalogram | ECAPA- scalable, NICU

CNN+ TDNN strong accuracy

ECAPA- performance

TDNN
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