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Abstract — This review paper explores recent advancements in infant cry analysis using artificial intelligence (AI) 

methodologies, particularly machine learning (ML) and deep learning (DL). The discussion consolidates findings from ten 

notable studies focusing on techniques such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), 

and support vector machines (SVMs), with key acoustic features including Mel-Frequency Cepstral Coefficients 

(MFCCs). Results indicate that enhanced DL methods significantly improve detection accuracy in challenging 

environments like neonatal intensive care units (NICUs). Challenges remain, such as dataset limitations, non-uniform 

labelling standards, and the need for real-time applications. This paper provides a synthesized perspective on current 

methodologies and outlines future directions for creating intelligent cry interpretation systems to support early 

healthcare interventions [1]–[10]. 

Index Terms — Infant cry analysis, machine learning, deep learning, convolutional neural networks (CNN), recurrent neural 

networks (RNN), Mel-Frequency Cepstral Coefficients (MFCC), cry classification, audio signal processing, neonatal care, 

real-time monitoring. 

 

I. Introduction 

                   Crying is the primary mode of communication 

for infants during early developmental phases, enabling 

expression of needs such as hunger, pain, or discomfort. 

Effective and prompt interpretation of infant cries is vital 

for delivering proper care. However, interpretations based 

on caregiver experience can be inconsistent and delayed. 

The rise of AI, and particularly the growth of ML and DL 

technologies, has enabled promising developments in 

automating cry interpretation [2], [6], [11]. ML/DL 

algorithms have demonstrated success in recognizing and 

classifying vocal patterns across various domains. In cry 

analysis, techniques ranging from classical SVMs and k-

Nearest neighbors (k-NN) to advanced CNNs and RNNs 

have been applied [5], [9], [18].Features like MFCCs, 

spectrograms, and energy-based descriptors enhance 

model performance [13], [14]. Studies have examined 

deployment under real-world conditions, particularly 

NICUs, where background noise is significant [16], [21]. 

Persistent issues include a lack of standardized datasets, 

labelling inconsistencies, and challenges in deploying 

models in resource-constrained environments [17], [24]. 

Research emphasizes the necessity of benchmarking 

frameworks, larger annotated datasets, and lightweight 

architectures suitable for real-time use [11], [24]. 

 

Methods such as data augmentation, transfer 

learning, and hybrid feature modelling are suggested to 

address these limitations [7], [10], [23]. This review 

surveys ten pivotal studies, focusing on methodologies, 

outcomes, and technological development to guide 

future efforts [1], [4], [19]. 

 

II. Related works 

Infant cry analysis has evolved significantly with 

the application of deep learning methods, particularly for 

emotional classification tasks. Early systems focused on 

handcrafted acoustic features like MFCCs, pitch, and 

formants combined with classifiers such as SVMs or 

decision trees. While effective at basic detection, they 

often struggled to model temporal and emotional nuances 

in cries [5], [9], [12]. 

Recent advances introduced end-to-end 

architectures combining CNNs for spatial pattern 

recognition and LSTMs or BLSTMs for temporal 

modelling. A significant contribution is the multiscale 

CNN-BLSTM network, which was trained on a self- 

constructed dataset featuring four emotional categories—

hunger, discomfort, awake, and diaper change [1], [19]. 

Multiscale convolution layers extracted varied spectral 

components, while BLSTM layers captured sequential 

dependencies.
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IV. Methods 

 

This work presents a lightweight CNN model optimized for 

real-time neonatal care deployment. The focus is on computational 

efficiency without sacrificing performance [11]. 

 

1.Audio Cleaning and Preparation 

Training was conducted on CryCeleb2023, comprising 

26,000 cry samples from 786 newborns [3]. Denoising utilized RMSE, 

ZCR, and energy-based filtering. Audio segmentation used 32ms 

Hamming windows with 50% overlap [11]. 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Datasets 

 

This hybrid design achieved an 83.7% accuracy, 

outperforming traditional CNNs. Evaluation using 

weighted and unweighted accuracy, macro/micro F1 

scores, and confusion matrices confirmed the 

effectiveness of combining multiscale spectral analysis 

with sequential modelling [1], [4]. 

 

III. Dataset 

 

A. Data Acquisition and Annotation 

Cry data is recorded in diverse settings-homes, 

clinics, and NICUs. Publicly available datasets like Baby 

Chillanto offer examples labelled for hunger, pain, and 

other states [3], [13]. Clinical datasets are often 

annotated by healthcare professionals based on 

observation [17]. Custom datasets using caregiver logs 

or event records are also common. Lack of 

standardization in annotation remains a major hurdle 

across studies [17]. 

 

B. Preprocessing and Augmentation 

Preprocessing steps involve noise filtering, episode 

segmentation, and normalization. Techniques like band- 

pass filtering and silence removal are widely used [21]. 

MFCCs, chroma features, and spectrograms are frequently 

extracted for robust pattern representation [13], [15]. Data 

augmentation methods, including pitch shifting, time 

stretching, and noise injection, are applied to increase 

variability and generalization capacity [7], [23]. 

2. Feature Extraction for CNN Input 

Handcrafted features included 80-dimensional 

MFCCs with delta and delta-delta coefficients, pitch, 

loudness, and spectral descriptors [5], [14].Deep 

representations like Log-Mel filter banks and scalograms 

were formatted into 2D matrices for CNN input [13], [19]. 

 

3. Data Augmentation Strategies 

To simulate real-world scenarios and improve 

generalization: 

Spectral Masking: Frequency/time masking [23] Speed 

Perturbation: ±10% time stretch [7] Background 

Simulation: Synthetic NICU noise overlays [21]. 

 

4. Custom CNN Design 

The architecture comprises six stages: 

convolutional blocks, Batch norm, max pooling, dropout, 

and a fully connected layer feeding into SoftMax outputs 

[11]. 

 

Fig 1. Flowchart 
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5. Benchmarking with ECAPA-TDNN 

Performance was compared with ECAPA- 

TDNN, an architecture utilizing TDNN blocks, Res2Net 

modules, and attentive pooling for superior feature 

modelling [3], [20]. 

 

6. Dataset Balancing 

SMOTE was employed to address class 

imbalance by synthesizing new minority class examples 

[12]. 

 

7. Training Strategy 

Training employed Adam optimizer with 

adaptive learning rate decay. AAM-SoftMax was used to 

enhance class separation. Five-fold cross- validation 

ensured no infant overlap between training and testing sets 

[11]. 

 

8. Performance Metrics 

Metrics included accuracy, recall, precision, F1-

score, and EER, visualized using ROC curves and 

confusion matrices [1], [16]. 

 

V. Results and Discussion 

A. Cry Detection Performance 
 

 
Table 2. Cry Detection Performance 

Discussion: High robustness across different 

environments, with slight drops under NICU noise [16]. 

B. Cry Classification (Reason/Mood Identification) 
 

Table 3. Cry Classification 

Discussion: The CNN+LSTM hybrid model captures both 

spatial and temporal cry signal characteristics effectively 

[4], [19]. 

 

C. Infant Identification via Cry 

With ECAPA-TDNN, the system achieved a 

28.1% Equal Error Rate, demonstrating potential for cry-

based infant identification under controlled settings [3], 

[20]. 

 

D. Overall Discussion 

Robustness: Consistent high performance 

across recording environments [16]. Effectiveness of 

Augmentation: Augmentation greatly improved model 

generalization [7], [23]. 

Multi-Task Capability: Integrated detection, 

classification, and identification functionality [25]. 

Clinical Impact: Supports proactive and precise caregiving 

[9], [24]. 

 

VI. Taxonomy of Techniques for Infant Cry Analysis 

 

Infant cry emotion recognition methods can be 

classified based on three main aspects: feature extraction 

methods, model architectures, and deployment 

environments. 

 

Feature Extraction Approaches: 

Handcrafted Features: Traditional methods rely 

on manually designed features like MFCCs and pitch, 

which are often used to capture acoustic properties in 

frequency domain [5], [14]. 

Learned Features: Automatically derived 

through deep learning models using spectrograms or time-

frequency representations, enabling more complex pattern 

discovery [1], [19]. 

 

Modelling Approaches: 

Classical Machine Learning (ML): SVM, k-

NN use handcrafted features; less complex but efficient for 

smaller datasets [5], [9]. 

Deep Learning (DL): CNNs and hybrid CNN-

LSTM models learn spatial and temporal features directly 

from raw signals [1], [4], [19]. 

 

Application Contexts: 

Hospital NICU Systems: Prioritize accuracy and 

robustness for clinical diagnosis under noisy conditions 

[6], [16], [21]. 
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VII. Comparison of Methods in Infant Cry Emotion Recognition 

 

 

 

VIII. Conclusion 

This paper reviews recent progress in 

neonatal emotion recognition using cry signal processing 

and machine learning approaches. While traditional 

spectrographic analyses provided early diagnostic insight, 

modern deep learning methods like CNNs, RNNs, and 

ECAPA-TDNN have delivered superior classification and 

verification capabilities, even under real-world NICU 

conditions [1], [3], [4], [6], [11]. 

Smart, real-time cry interpretation systems can 

significantly enhance proactive healthcare for infants. 

Future work must address challenges around dataset 

availability, labelling standardization, and lightweight 

real-time deployment, alongside exploration of 

multimodal approaches integrating wearable and IoT 

technologies [10], [17], [24]. 
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