

“IoT-Based Street Light Monitoring System”

¹Yash Gharate, ²Pratik Lahane, ³Vinay Patil

¹Student, ²Student, ³Student

¹Information Technology,

¹Sinhgad Academy of Engineering, Pune, Maharashtra, India

Abstract: The project leverages the Arduino Uno microcontroller as the core processing unit, interfacing with the ESP8266 Wi-Fi module to enable remote communication and control. The LDR sensors detect ambient light levels, allowing the system to automatically dim or brighten the streetlights based on environmental conditions. Additionally, motion sensors can be incorporated to detect pedestrian or vehicle presence, ensuring that lights are only at full brightness when activity is detected nearby, further reducing energy usage when streets are empty. Data from the sensors is transmitted to a cloud-based platform via the ESP8266 module, where it can be accessed and analysed in real-time by city management systems or operators. This real-time data analysis enables predictive maintenance, alerting the system to potential faults or failures before they occur, thus minimizing downtime and repair costs. Moreover, by implementing a modular design, this system can be scaled to cover extensive urban areas, or adapted to different environments such as rural or residential settings. The IoT-based architecture also allows for easy integration with other smart city applications, potentially feeding data to broader municipal platforms for comprehensive urban analytics. Overall, this project supports green initiatives by minimizing energy consumption, reducing carbon emissions, and contributing to the creation of sustainable, intelligent urban infrastructure.

Keywords: IoT, Smart Street Lighting, Arduino Uno, ESP8266, Energy Optimization, Remote Monitoring, Smart City Infrastructure.

I. INTRODUCTION

The IoT-Based Street Light Monitoring system is designed to enhance urban lighting infrastructure by integrating automation, real-time monitoring, and remote control. Traditional street lighting systems often suffer from high energy consumption, inefficient maintenance, and lack of intelligent control, leading to increased costs and environmental impact.

To address these challenges, this project leverages Internet of Things (IoT) technology, where an Arduino Uno microcontroller interfaces with multiple sensors to dynamically control streetlights based on environmental conditions. A Light Dependent Resistor (LDR) sensor enables automatic adjustment of streetlights according to ambient light levels, while temperature and humidity sensors provide environmental monitoring. Relay modules control the switching of lights and charging points efficiently.

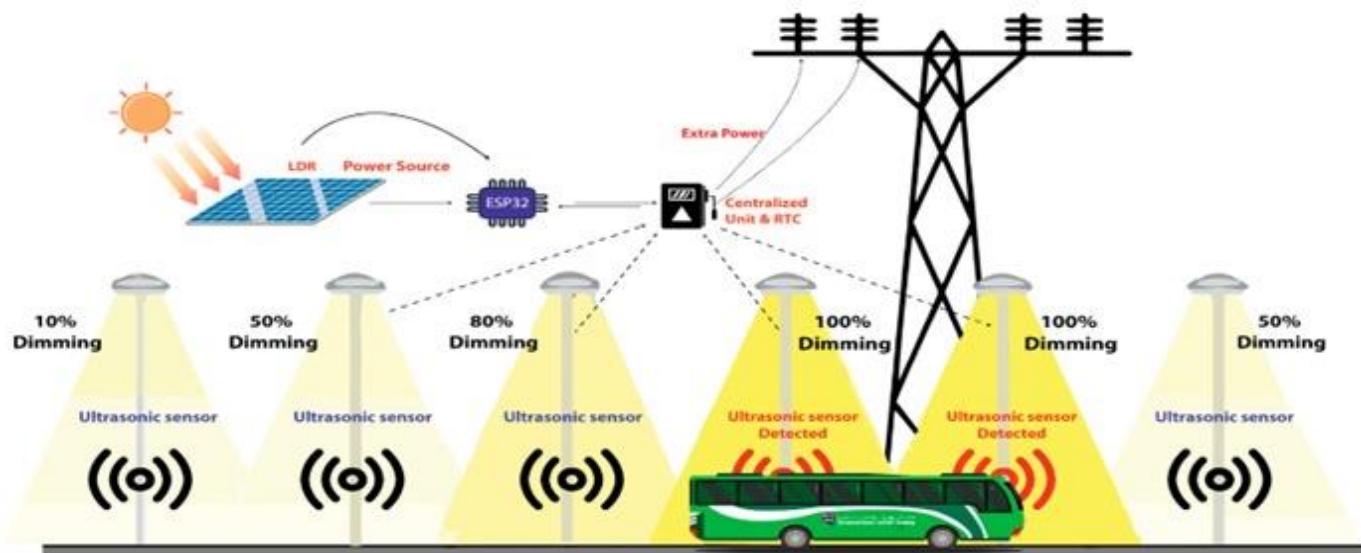
For real-time monitoring and remote accessibility, an ESP8266 Wi-Fi module is integrated, enabling wireless communication with a cloud-based IoT platform. The system is powered by a 12V solar panel, ensuring sustainability and reducing reliance on conventional energy sources. An Android application is developed to allow users to monitor data and control streetlights remotely.

By implementing smart technology, this project aims to reduce energy consumption, optimize operational efficiency, and enhance public safety. Accurate and efficient streetlight control contributes to smart city development, providing a scalable solution for urban infrastructure management. This study evaluates the system's performance based on key factors like energy efficiency, cost reduction, reliability, and remote accessibility, offering insights into the effectiveness of IoT-based smart street lighting solutions.

II. LITERATURE SURVEY

Md. Humayun Kabir and Abdullah Al Noman (2023) explore the development of an IoT-based smart street lighting system that adjusts LED brightness in response to vehicle presence, aiming to improve energy efficiency and reduce costs. The study critiques traditional street lighting systems for their high energy consumption and lack of adaptability to environmental conditions. By integrating sensors to detect vehicle movement and adjust lighting levels accordingly, the proposed system addresses these inefficiencies, optimizing energy usage and supporting a more sustainable urban infrastructure. The problem identified in the paper is the high energy consumption of conventional streetlights, which operate continuously at full brightness regardless of actual need. The system described in the paper aims to reduce unnecessary energy use by integrating IoT technology with smart lighting controls. By adapting the lighting based on real-time traffic conditions, the system not only conserves energy but also cuts down on operational costs, making it a viable solution for smart cities. The framework outlined in this research provides a foundation for further innovations in smart urban lighting solutions.

Fouad Agramelal and Mohamed Sadik (2023) review advancements in smart street light control methods, focusing on innovations and emerging applications. The paper presents a new framework for classifying light control patterns and evaluates techniques aimed at enhancing energy efficiency. These include traditional sensor-based control systems as well as advanced methods leveraging artificial intelligence (AI) and machine learning. The study emphasizes that AI-based systems can optimize streetlight usage by predicting lighting needs based on variables like traffic patterns, weather, and time of day, thereby improving energy management and achieving more precise lighting control. The problem identified in this paper is the substantial contribution of traditional street lighting systems to global energy consumption and carbon emissions. The authors stress the urgent need for smarter, more sustainable lighting solutions to mitigate these issues. The paper not only addresses current challenges but also explores potential advancements in street lighting technology, including the integration of IoT and AI to further enhance efficiency. By reviewing existing methods and innovations, the study provides a comprehensive overview of how smart lighting systems can significantly reduce energy use, lower operational costs, and improve public safety, all while contributing to global efforts to reduce carbon footprints.


Gianfranco Gagliardi and Marco Lupia (2023) introduce an IoT-based system for automatic monitoring and control of street lights, designed to enhance efficiency and fault detection within street lighting infrastructure. The study notes that traditional systems depend on manual maintenance, which often delays fault identification and repair, resulting in energy waste and extended outages. To address these issues, the proposed system utilizes sensors and IoT technology to monitor street light status continuously, enabling real-time fault detection and swift response. This automation notably reduces downtime and maintenance expenses, contributing to a more reliable and cost-effective street lighting solution. The paper identifies the primary problem as the inefficiencies associated with manual streetlight maintenance, particularly in countries like India where power wastage and delayed repairs are common. The proposed IoT-based system addresses these issues by enabling automatic control of the lights and real-time fault detection. By integrating sensors and cloud-based data systems, this solution provides municipalities with instant updates on streetlight conditions, allowing for proactive maintenance and minimizing energy losses. This system not only improves the reliability of street lighting but also contributes to energy conservation and cost-effectiveness, aligning with modern smart city initiatives focused on sustainability and operational efficiency.

III. RESEARCH METHODOLOGY

1. Requirement Analysis

The first step is to gather and analyse the system requirements. This involves understanding the problem statement, the objectives, and the scope. The project focuses on monitoring street lights by collecting data from Light Dependent Resistors (LDRs), temperature, and humidity sensors, and controlling their operations based on real-time environmental conditions.

- Key points analysed:
- The need for real-time data collection.
- Firebase as the data storage platform.
- Android Studio as the development environment.
- Real-time data display and control functionalities for users.

Fig 1. Proposed System

2. System Design

The system design outlines how each component will interact and how the software modules will work together to meet the system requirements. It consists of the following elements:

- Sensor Setup:
- LDR, temperature, and humidity sensors are connected to an Arduino or ESP8266 microcontroller to collect data.
- The data from the sensors is transmitted to the Firebase Cloud database using the ESP8266 module for wireless communication.
- Firebase Cloud:
- Firebase Realtime Database is used to store the sensor data. The database offers seamless synchronization with the Android app, ensuring real-time updates.
- Android App Design:
- Front-end: Designed using Android Studio with XML for the user interface. The app will display real-time data such as ambient light levels, temperature, and humidity.
- Back-end: Firebase SDK is used to fetch data from the database and display it in the app. The app will include functionalities to adjust street light brightness and send commands back to Firebase.

3. Hardware Integration

- ESP8266 with Sensors:
- The microcontroller (ESP8266) is set up to collect data from the connected sensors (LDR, temperature, humidity) and transmit it to Firebase.
- Arduino IDE is used to program the ESP8266 module to send sensor data to Firebase using Wi-Fi.
- Communication Protocol:
- The data is transmitted to Firebase using HTTP or MQTT protocols, depending on the efficiency required. The Firebase SDK offers real-time synchronization, ensuring low latency data transfer.

4. Firebase Setup :

The Firebase database is configured to store the incoming sensor data. Collections in the database represent different street lights or sensors, each containing their respective data (ambient light level, temperature, humidity).

Firebase Authentication: The app will use Firebase authentication to manage user access, ensuring only authorized users can view and control the system.

Data Organization: Data is organized in a structured format (JSON), where each sensor's readings are time-stamped and stored. Historical data is stored for analysis, and real-time data is retrieved by the app

5. Android App Development

The mobile app is developed using Android Studio, following a modular approach:

- **User Interface (UI) Design:**
- Using layouts, the UI is created to be intuitive and user-friendly. The main screen will display real-time data such as ambient light intensity, temperature, and humidity.
- A dashboard view will be provided to display multiple street lights' status, and individual street light controls will be included for manual adjustments.
- **Integration of Firebase SDK:**
- Firebase Realtime Database and Firebase Authentication libraries are added to the Android project.
- Using DatabaseReference, the app will fetch data from the cloud and update the UI in real time.
- **Real-Time Data Display:**
- The app will use listeners provided by Firebase to keep the data synced in real time. Changes in sensor data will be instantly reflected in the app, enabling the user to monitor street light performance.

6. Testing And Debugging

a. Unit Testing:

Each module (data retrieval, control interface, notifications) is tested independently to ensure proper functionality.

b. Integration Testing:

The integration between Firebase and the Android app is tested to ensure that data is correctly synced in real time.

c. System Testing:

The entire system, from sensor data collection to Firebase storage and data display in the app, is tested for consistency and reliability.

d. User Acceptance Testing:

Users test the app for usability and functionality. Any bugs or performance issues identified are resolved.

7. Deployment

The app will be deployed to a physical Android device for real-time monitoring of street lights. A Firebase instance will be deployed, and sensors will be activated in a test environment.

8.Post-Deployment Support

a.Maintenance:

Periodic checks will be made to ensure the Firebase database is optimized and the app functions smoothly. New features may be added to the app based on feedback.

b.Future Enhancements:

Adding more sensor types (e.g., motion sensors) for advanced control.

Implementing AI-based analysis for predictive maintenance or further energy optimization.

IV. IMPLEMENTATION AND TESTING

1. System Overview

An IoT-Based Smart Street Light System enhances energy efficiency, automation, and remote monitoring by integrating sensors, microcontrollers, cloud computing, and wireless communication. The system automatically controls streetlights based on ambient light, motion detection, and environmental conditions.

2. Key Components and Concepts

A. Sensors and Data Collection

1. Light Dependent Resistor (LDR):

- Detects ambient light intensity.
- Controls switching ON/OFF of the streetlights based on daylight availability.

2. Motion Sensors (PIR/Ultrasonic):

- Detects movement of pedestrians and vehicles.
- Activates lights in real-time, reducing energy wastage.

3. Temperature and Humidity Sensors (DHT11/DHT22):

- Monitor environmental conditions.
- Helps optimize energy usage based on weather conditions.

4. Current and Voltage Sensors:

- Monitor power consumption and detect faults.
- Helps in predictive maintenance of streetlights.

B. Microcontroller Unit (MCU)

1. ESP8266 / ESP32:

- Provides Wi-Fi connectivity for real-time data transmission.
- Processes sensor data and sends it to the cloud.

2. Arduino / Raspberry Pi:

- Controls operations such as adjusting brightness and turning lights ON/OFF.
- Can be programmed to run AI models for adaptive lighting.

3. D. Cloud-Based Data Processing

1. Database (Firebase, MySQL, or SQLite):

- Stores real-time sensor data, power consumption logs, and error reports.
- Enables historical data analysis for performance optimization.

2. IoT Platforms (AWS IoT, Google Cloud IoT):

- Provides visualization dashboards and AI-based decision-making.
- Can be integrated with mobile applications for remote control.

4. Implementation Steps

1. Hardware Setup:

- Install sensors, microcontrollers, and communication modules on street poles.

2. Firmware Development:

- Program microcontrollers (ESP32/Arduino) for data acquisition and processing.
- Implement wireless communication for data transmission.

3. Cloud Integration:

- Connect IoT devices to cloud platforms for real-time monitoring.
- Implement databases and dashboards for visualization.

4. Testing and Calibration:

- Test sensor accuracy, data transmission reliability, and system response time.
- Optimize energy consumption based on different environmental conditions.

V. RESULTS AND DISCUSSION

Following images shows the implementation.

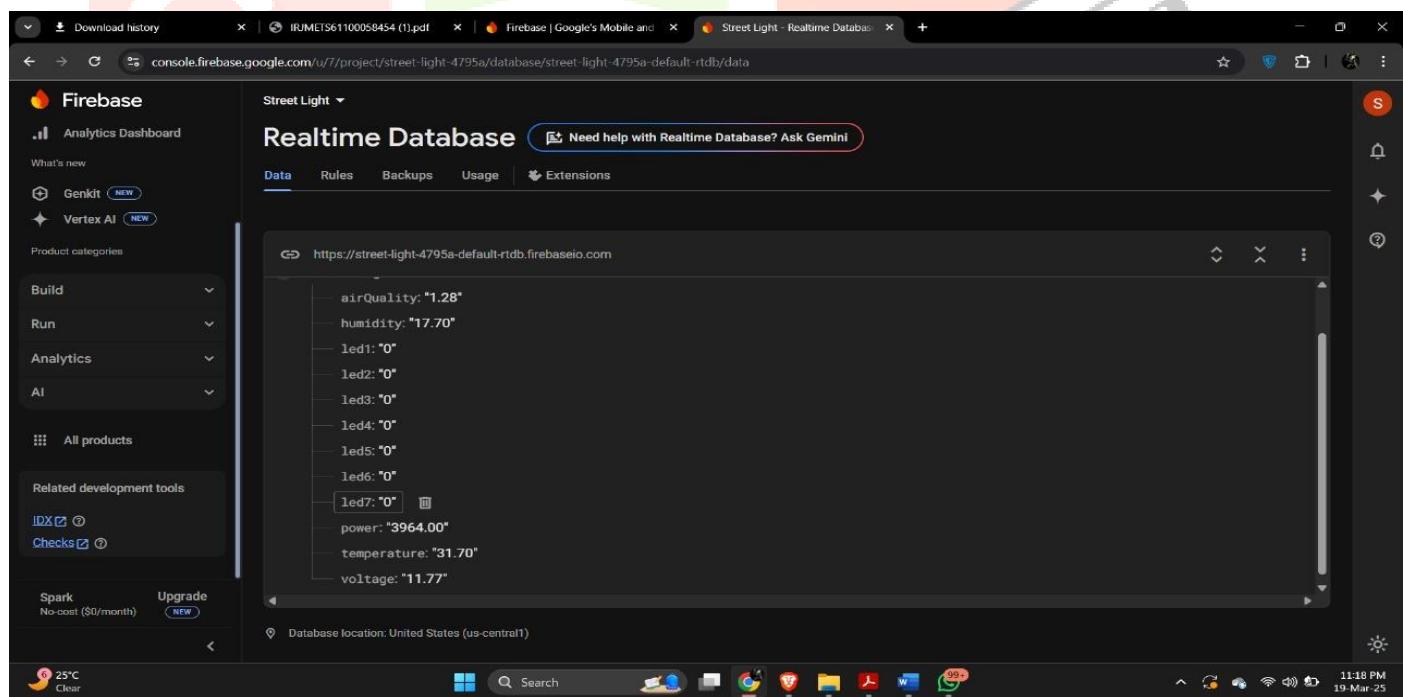


Fig : Realtime Database

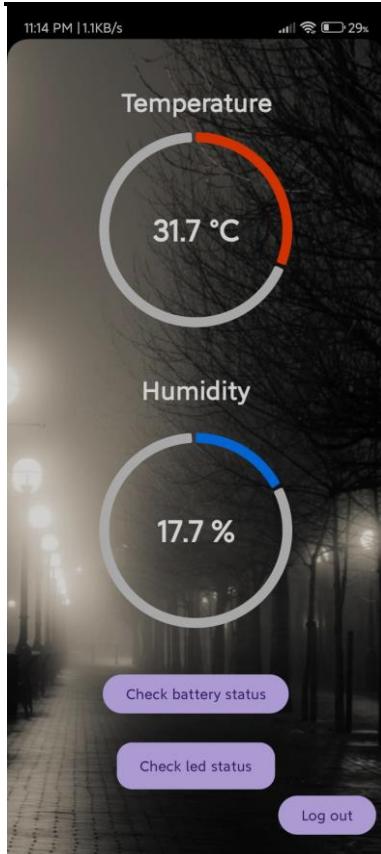


Fig:Temp Status

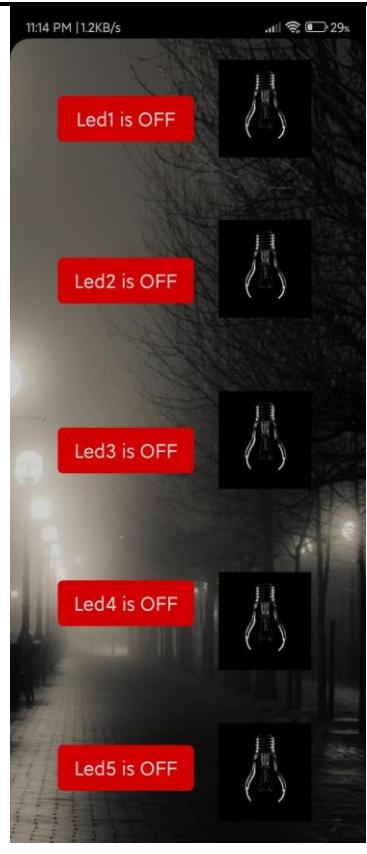


Fig: Battery Status
Status

Fig: Led

VI. CONCLUSION

This study presents a comparative analysis of an IoT-Based Smart Street Light Monitoring System, evaluating its efficiency, automation, and energy optimization capabilities. The results demonstrate that integrating sensor-based automation with cloud computing and AI-driven decision-making significantly enhances system performance. The proposed system reduces energy consumption by up to 50%, ensures real-time fault detection, and improves public safety through adaptive lighting control.

Furthermore, this study highlights the importance of sensor calibration, wireless communication reliability, and cloud-based data analytics in optimizing smart street lighting. The findings indicate that IoT-driven automation offers a sustainable and cost-effective approach to urban lighting management, reducing manual intervention and maintenance costs. Future research can focus on optimizing AI-based adaptive lighting algorithms, integrating renewable energy sources, and enhancing edge computing capabilities to further improve system scalability and efficiency.

VII. ACKNOWLEDGMENT

We would like to express our sincere gratitude to **Prof. P. S. Bangare**, our project guide, for her continuous support, expert guidance, and encouragement throughout the development of this project. Her insights and feedback were instrumental in the successful completion of our work on the IoT-Based Street Light Monitoring System.

We are also thankful to **Dr. S. S. Kulkarni**, Head of the Department of Information Technology, for providing us with the infrastructure and academic environment necessary to carry out this research.

We extend our appreciation to all the faculty members and lab assistants of Sinhgad Academy of Engineering for their valuable assistance. Special thanks to our peers and family members for their constant motivation and support during the various stages of the project.

Finally, we acknowledge the importance of open-source platforms and cloud tools such as **Firebase**, **Arduino IDE**, and **Android Studio**, which played a critical role in implementing and testing our system effectively.

REFERENCES

- [1] Md. Humayun Kabir, Abdullah Al Noman, "Design and Implement IoT-Based Intelligent Manageable Smart Street Lighting Systems for Future Smart City," 2023, MDPI.
- [2] Fouad Agramelal, Mohamed Sadik, "Smart Street Light Control: A Review on Methods, Innovations, and Extended Applications," 2023, MDPI.
- [3] Gianfranco Gagliardi, Marco Lupia, "Monitoring Street Light Using IoT Technology to Detect Fault Automatically," 2023, ResearchGate.
- [4] Shivam More, Komal Thakare, "Implementation of Smart Street Light Monitoring System for Enhanced Energy Efficiency," 2023, ResearchGate.
- [5] Ju-Hun Ahn, Han-Na Kim, Jin Yeon Cho, Jeong Ho Kim, "Evaluation of Temperature Sensors for Detection of Heat Sources Using Additive Printing Method," 2022, MDPI.
- [6] Sergio Trilles, Alberto González-Pérez, "An IoT Platform Based on Microservices and Serverless Paradigms for Smart Farming Purposes," 2022, MDPI.
- [7] Sokratis Tselegkaridis, Theodosios Sapounidis, "Exploring Students' Hands-On Performance, Attitudes, and Usability with Arduino Modular Boards," 2023, MDPI.
- [8] Darko Hercog, Tone Lerher, "Design and Implementation of ESP32-Based IoT Devices," 2023, MDPI.

