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Abstract:

Fast Fourier Transform (FFT) is used in many signal and image processing tasks that need high-speed
computation. FPGAs are good options for this because they offer fast performance at a low cost. However,
programming them is often complex and requires detailed hardware knowledge.

This paper presents an easy-to-use framework for implementing 1-D and 2-D FFTs on FPGAs for real-time
applications. The results show that the 2-D FFT runs faster when parallel processing is used, even for large
data sizes. A flexible FPGA-based setup is also developed for image filtering in the frequency domain.

Keyword: Fast Fourier Transform (FFT); Parallel Computing; Field Programmable Gate Array (FPGA);
Algorithm Benchmarking, Computational Complexity.

1. Introduction

The Fourier Transform is a cornerstone of many digital signal processing applications, including fields such
as acoustics, optics, telecommunications, speech processing, and image analysis [1], [2]. However, computing
the Discrete Fourier Transform (DFT) directly requires approximately N2 operations, where N is the
transform length. The Fast Fourier Transform (FFT), initially introduced by Cooley and Tukey[3],
significantly reduced this computational burden by lowering the complexity to NlogzN.

Since then, numerous FFT algorithms have been developed. Among the most commonly used are radix -2,
radix-4, split-radix, and Fast Hartley Transform (FHT) due to their computational efficiency and compatibility
with in-place implementations [4], [5]. Traditionally, these algorithms have been implemented on general-
purpose processors [6], digital signal processors (DSPs) [7], [8], or custom integrated circuits (ICs) [9].

With advancements in FPGA technology—offering increased capacity, better performance, and reduced
cost—Field Programmable Gate Arrays (FPGAS) have become a practical alternative for executing complex
FFT computations [10]— [13]. Despite this, existing hardware implementations often suffer from limited
flexibility, as they are typically optimized for fixed platforms, fixed FFT algorithms, and predefined design
parameters like transform size or word lengths [14].

This Paper propose :

A flexible, parameterizable architecture that supports various 1-D FFT algorithms.

An FPGA-based FFT library incorporating radix-2, radix-4, split-radix, and FHT algorithms under a unified
framework.

A scalable, parallel 2-D FFT architecture designed for real-time image processing applications.

And a parameterized FPGA system tailored for frequency- The architectures are implemented using the
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Handel-C language [15], chosen for its high-level abstraction and rapid development capabilities, suitable for
IP core generation domain image filtering.

The architectures are implemented using the Handel C language, chosen for its high-level abstraction and
rapid development capabilities, suitable for IP core generations.

2. Proposed System

The proposed system features a user-friendly Graphical User Interface (GUI) designed to map both 1-D and
2-D FFT algorithms onto FPGA hardware. Through this interface, users can generate customized Handel-C
code or EDIF netlists based on specific configuration parameters shown in figure 1.

At the core of this system is a parameterizable FFT library, which supports multiple FFT algorithm variants
and allows users to tailor implementations for various application needs. The Handel-C modules in the library
can be configured using several key parameters:

FFT dimension: 1-D or 2-D

FFT algorithm: radix-2, radix-4, split-radix, or Fast Hartley Transform (FHT)

Transform length (N): size of the FFT

Input/output data word lengths: Li, Lo

Coefficient word length: W

Number of parallel processing elements (PEs) in 2-D FFT architecture: p

FPGA device type: target hardware platform

This setup allows system designers to quickly generate optimized FFT hardware modules by adjusting these
parameters via the GUI interface.

User's

Specification - FFT Type (1-D/2-D)

- FFT Algorithm
- FFT length (M)
Input/Output data

© Generic - ‘Graphical User Interface]
parameters word-length (L) —>| (GUI)
) - Word-length of the ’
coefficients (1)
- Number of PEs (p) . A

- FPGA device T ™,
. Generator J

B

Parametrisable — T
Handel-C code/ g ;I—:E_.I‘r_ arﬂl}le—D -
EDIF En-x___:___ FTs Lit rarz,:r_;:,/

-

v
FPGA

|
Figurel: Proposed system for the FFTs implementation.

3. Fast Fourier Transforms: A Review

The Discrete Fourier Transform (DFT) for an N- point sequence x(n), where

n=0,1,2,......... , N- 1,is defined as
X(K) =XNZ3x(n).WE™ , k=0, 1, cecvrercrnnen N-1
—iZTt/ ; ]
Where Wy =e N is known as the twiddle factor.

Computing the DFT directly is computationally intensive, especially for large N, requiring O(N2) operations.
To address this, Fast Fourier Transform (FFT) algorithms were developed. These algorithms reduce the
computational complexity to O(Nlog. N) , significantly speeding up the process.

Most FFT methods work by recursively breaking down the N-point DFT into smaller sub-transforms—
commonly known as butterfly structures. The next subsections provide a brief overview of widely used FFT
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variants such as radix-2, radix-4, and split-radix algorithms. A detailed theoretical foundation of these
techniques can be found in [1], [2], [16]-[19].

3.1.1 Radix-2" FFT Algorithms

The radix-2 FFT algorithm, introduced by Cooley and Tukey [1], is one of the most widely used FFT methods
due to its simplicity and efficiency. It works by recursively decomposing the original N-point DFT into
smaller 2-point DFTSs, significantly reducing the overall number of computations.

In the Decimation-In-Frequency (DIF) radix-2 algorithm, the DFT equation is split into two parts—one for
even-indexed and one for odd-indexed outputs. The equations for this decomposition are as follows:

For even indices : k=0,1,2, ............ N/oy —1:
X(K) = Xe(K) + WEXo(K)
For odd indices : k= N/Z, ......... , N—1:

_ k-N/,
X(K) = Xe (K- NI2) - W 72Xo (k - NI2)

—j2
Where Xeand X, represent the DFTs of even and odd-indexed data points respectively, and Wy = e N
is the twiddle factor.

The basic computational unit in this algorithm is the 2-point butterfly, which combines two data inputs to
generate two frequency domain outputs, as shown in Figure 2(a).

Radix-4 FFT

The radix-4 FFT algorithm extends this concept by breaking down the DFT into 4-point transforms. This
method effectively merges two stages of radix-2 butterflies into one, leading to fewer stages and reduced
computational complexity for sequences whose lengths are powers of 4 [2].

In radix-4 decomposition, the frequency components are divided into four parts:

X(4k), X(4k+1), X(4k+2), and X(4k+3)

The radix-4 butterfly has four inputs and outputs, reducing the number of multiplications required when
compared to the radix-2 approach. Figure 2(b) shows the structure of a radix-4 butterfly.

Split-Radix FFT

The split-radix algorithm [19] is a hybrid approach that combines the benefits of both radix-2 and radix-4
methods. It recursively decomposes the DFT into a combination of 2-point and 4-point transforms. The even-
indexed terms are computed using radix-2, while the odd terms are handled using a more efficient mix of
radix-4 structures.

The decomposition for the split-radix algorithm involves breaking the DFT into three parts:

X(K) = X1(K) + j . X2(K) +WgX3(K)

This structure leads to lower computational complexity than either radix-2 or radix-4 alone, especially for
large transform sizes. Figure 2(c) depicts the L-shaped butterfly unit used in this algorithm.
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Figure2: The "butterfly” used in (a) radix-2, (b) radix-4, (c) split-radix algorithms.

3.1.2 The Fast Hartley Transform (FHT)

The Discrete Hartley Transform (DHT) is a type of frequency-domain transform similar to the Discrete
Fourier Transform (DFT), but with a key advantage—it works entirely with real numbers. Unlike the DFT,
which uses complex numbers (real and imaginary parts), the DHT eliminates the need for complex arithmetic,
making it computationally more efficient for real-valued signals.

The DHT of an N-point sequence x(n) , where n=0,1, ,N -1 is defined as:

_ 2nk
H(k) = ZN=5 x(n).cos(—)
Where cos0 = cos0 +sin@

This unique kernel function (cos + sin) helps simplify hardware implementation and reduces the number of
multiplications and additions compared to the DFT.

To further improve efficiency, the Fast Hartley Transform (FHT) algorithm is used. Similar to the FFT, the
FHT breaks the original DHT computation into smaller sub-transforms, allowing for a significant reduction
in the number of operations.

Since the FHT does not involve complex numbers, it is especially suitable for real-time signal and image
processing tasks where the input data is purely real—such as audio signals or grayscale images.

The FHT can also be efficiently mapped to FPGA architectures, leveraging its regular structure and real-
valued arithmetic for high-speed and low-power implementations [1].

The Discrete Hartley Transform (DHT) belongs to the class of frequency-domain transformations. Unlike the
Discrete Fourier Transform (DFT), the DHT operates entirely with real-valued inputs and outputs, which
makes it computationally efficient for certain applications [2]. The DHT for a sequence of length N , where
x(n) is a real-valued signal for n=0,1, ,N— 1 is mathematically expressed as:

H(K) = ¥V -2 x(n).cos((28y k=0, 1, ..., N-1

N

where . ¢o0s0 = cos0 +sin@

The Fast Hartley Transform (FHT) algorithm is structurally similar to the radix-2 FFT and is designed to
reduce the computational complexity of the DHT. It leverages symmetry and decomposition techniques by
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breaking down the transform into smaller components, as shown in the expression:

H(k) = Z:izo [x(n) +x (n + N;)] .cos(%) +[x(n) _x (n " g)].sin ZT;kn).cos zf;kn)

Each half-length DHT can then be recursively decomposed, following a decimation-in-frequency (DIF)
approach similar to FFT, to complete the transformation.

3.2 Two-Dimensional FFT

The 2-D Discrete Fourier Transform (DFT) is an extension of the 1-D DFT applied to two-dimensional data,
such as images. For an NxN matrix x(ni,n2 ) , the 2-D DFT is defined by:

—j2n(k1n1+k2n2)

X (K1, k2)= ¥ N1, N1, x(n1,n2).e N
where 0<k1,k2 <N-1 [17,18].

The standard method for computing the 2-D FFT involves applying 1-D FFTs to each row, followed by 1-D
FFTs on the resulting columns. This approach results in a computational complexity of O (N? logr N) where r
Is the radix.

3.2.1 Parallel Algorithm for 2-D FFT

To optimize performance using parallel computing, let N =q.p, where N is the dimension of the square
matrix, p is the number of processors, and g is an integer. The parallel 2-D FFT algorithm proceeds through
the following steps:

Stepl: Row-wise FFT: Each processor i computes 1-D FFTs on consecutive rows: [qi,qi+1,.....qi +
q — 1]. This parallel step reduces the computational burden to O (% .log2N) .

Step2: Matrix Transposition: The intermediate matrix is transposed to prepare for column-wise FFT
computation.

Step3: Column-wise FFT: As in step 1, processors perform 1-D FFTs across the matrix columns.
Step4: Final Transposition: The result matrix is transposed again to return it to its original orientation.

4. FFT Architectures
4.1 One-Dimensional FFT Architecture
The 1-D FFT hardware design consists of a single DIF radix-2, radix-4, split-radix, or FHT butterfly,
supported by two dual-port RAMs (one for FHT) and an address generator unit.A schematic view is illustrated
in Figure 3.
Memory Modes:

Internal Memory Mode: This can be implemented as either a single-memory or dual-memory (double-
buffering) configuration.

Single-Memory Mode: A single memory unit (Memory A) serves as the input, computation, and output
memory. The data is loaded, processed, and then read out—all within the same memory.

Dual-Memory Mode: Two memories (A and B) are used alternately for input and output. While one memory
is used for computation, the other is loaded with the next input set. This pipeline method ensures non-idle
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processor cycles, achieving high throughput for real-time operations.

External Memory Mode: For larger FFT sizes, real and imaginary input/output data and twiddle factors are
stored in external SRAM memory banks. This design facilitates FFT sizes of up to 1 million points without
requiring large internal buffers.

Data Format: The input/output data and the twiddle factor precision (word-lengths) are parametrizable,
offering flexibility for diverse applications in image/video processing and communication system.

. N x 2*L-bit
x(n) Dual Port RAM Radix-2 / Radix-4 | | &
Memory A Split-Radix/FHT = £
> C 3
T Butterfly Unit @
Dual Port RAM X(k)
Memory B >
—  N/2N®@ x 2*W-bit

Address _ Twiddle
Generation Unit LUT

% Waorking memory B is only used in Dual Memory configuration.
2 LUT table is N and 2N words for radix-2 and radix-4 algorithms, respectively.

Figure 3: Functional block diagram of 1-D FFT architecture

The input and output data within the FFT processor are represented using L-bit fixed-point values for the real
and imaginary components (only the real part in the case of FHT), encoded in two’s complement format. Data
IS input and output in natural order, while the twiddle factors—the sine and cosine coefficients required for
the transformation—are generated internally with W-bit precision, also using two’s complement
representation.

Butterfly Processing Unit

At the core of the FFT algorithm lies the butterfly computation unit, responsible for executing the
mathematical operations that constitute the FFT. This unit reads data from memory, processes it using the
FFT formulae, and writes the results back to the same memory locations, reflecting an in-place computation
approach.

The butterfly unit is pipelined to deliver one result per clock cycle and comprises parallel L-bit multipliers,
L-bit adders/subtractors, and extended (L+W)-bit arithmetic units.The resource utilization for various FFT
algorithms is summarized in Table 1.

Figure 4 illustrates a 7-stage pipeline structure for a radix-2 DIF-FFT butterfly. To prevent numerical
overflow, intermediate outputs are scaled—by a factor of 2 for radix-2 and FHT, and by a factor of 4 for radix-
4 and split-radix FFTs. This ensures the final FFT result is scaled down by a factor of N.

Address Generation Unit (AGU)

The AGU is designed to manage the addressing of input/output RAMs and twiddle coefficient Look-Up
Tables (LUTSs). It adapts to different operational modes (input, computation, output), dynamically generating
the appropriate memory addresses. Additionally, the AGU performs bit-reversal of the FFT output data, a
necessary operation for ordering the results in standard FFT output format.
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FFT Algorithm L-bit Multipliers L-bit (L+W)-bit
Add/Subtractors Add/Subtractors
Radix-2 4 4 2
Radix-4 12 16 6
Split-Radix 8 16 4
FHT 4 6 2
Table 1: Hardware Resources for FFT Algorithm Butterflies
e e — el LR T el

X L Xey X

Y : : K-Y)w

M Xy (X-Y)x ¥

Figure 4: Pipeline diagram of DIF-FFT Radix-2 butterfly

4.2 Parallel 2-D FFT Architecture

The architecture of the proposed parallel 2-D FFT processor. The design integrates p processing elements
(PEs) sharing four memory banks (M0-M3) under the control of a centralized Control Unit (CU). Each PE
operates as an independent 1-D FFT processor, complete with local working registers and Processor Element
Memory (PEMi ) for temporarily storing assigned row/column vectors.

Each PE is equipped with one of the four possible N-point 1-D FFT cores (radix-2, radix-4, split-radix, or
FHT) along with its associated twiddle factor LUTs. The PEMi consists of two dual-port memories (or one in
the FHT case), each NxL bits deep, to store real and imaginary parts (real only for FHT) of the input/output
vectors with L-bit precision.

The transformation is carried out in three stages:

Input Transfer: The assigned data vector (row or column) is loaded into the PE's local memory.
Computation: Upon completion of the data transfer, the PE initiates the 1-D FFT process.

Output Transfer: Once the FFT is complete, the result vector is read out. The bit-reversal operation required
for FFT outputs is performed on-the-fly by the AGU, ensuring zero-cycle delay.

Control Unit (CU)

The CU acts as the central coordinator for system operations. Its tasks include resource allocation, managing
access to shared memory, and scheduling the concurrent execution of FFT operations across the PEs. Each
PE is assigned a unique processor 1D, which the CU uses to track the row/column vector currently associated
with that processor. It manages memory read/write requests using two circular queues to optimize throughput.

Memory Interconnection and Storage

A crossbar switch-based Memory Interconnection (MI) mechanism ensures that multiple concurrent memory
accesses are possible without conflicts—no two PEs are allowed to access the same memory bank
simultaneously. The external shared memory is composed of four memory banks directly interfaced with an
FPGA, each bank supporting up to 2 MB (512K x 32-bit) of data. Together, they provide an addressable space
of 8 MB.

The real parts of the input, intermediate, and output matrices are stored in banks 0 and 1, while

The imaginary parts are kept in banks 2 and 3.

4.3 Functional block Diagram of Parallel 2-D Architecture

Figure 5 illustrates the functional architecture of the proposed parallel 2-D FFT processor. The design employs

four external memory banks—MO0 (BankO0) through M3 (Bank3)—connected directly to the FPGA, which
hosts multiple processing units. Each Processing Element (PE) comprises the following core modules:
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A Radix-2 or Radix-4 butterfly computation unit
A local memory ( PEMI) for input/output buffering
A twiddle factor Look-Up Table (LUT)

An Address Generation Unit (AGU)

A scaling unit to normalize intermediate results
Interfaces for input vector x(n) and output X(K)

The overall architecture is tailored for efficient data handling, synchronization, and pipelined computation
across multiple PEs, significantly accelerating the 2-D FFT execution.
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Figure5: Functional block diagram of parallel 2-D FFT architecture
5. FPGA Implementation

The FFT processor designs (both 1-D and 2-D) have been developed using a parametrizable Handel-C coding
approach, allowing flexibility with respect to:

Input/output word lengths (L, W)
Vector/matrix sizes (N)
Number of processing elements (p)

5.1 Hardware Platform

The implementation targets the Celoxica RC1000-PP FPGA development board, a PCl-based platform
featuring the Xilinx Virtex-E2000 FPGA (package: bg560, speed grade: -6). The board includes 8 MB of
SRAM, organized as four 32-bit wide memory banks, all accessible in parallel by both the FPGA and PCI
bus-connected devices.

5.2 One-Dimensional FFT Implementation

All four FFT algorithms—radix-2, radix-4, split-radix, and Fast Hartley Transform (FHT)—were
implemented within a common framework and evaluated across FFT lengths ranging from 1K to 256K points.
Figure 6 illustrates comparative performance in terms of maximum operating frequency and FPGA area
utilization.
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Among all evaluated methods, radix-2 offers the most efficient design in terms of logic area and maximum
clock frequency, making it suitable for resource-constrained applications.

Algorithm Frequency (MHz) Computation Time (us)
Radix-2 84 121.6

Radix-4 80 68

Split-Radix 63 63

FHT 60 60

Table 2: Computation Time for 1024-Point FFT
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Figure 6: Performance results, influence of transform length

The radix-4 algorithm clearly outperforms others in terms of computation time. Conversely, if memory
efficiency is the main design constraint, the FHT algorithm is preferable due to its 50% lower memory usage

compared to other approaches.

5.3 Parallel 2-D FFT Implementation

The parallel 2-D FFT architecture was implemented and tested for matrix sizes N=128,256,512,1024 with
varying numbers of processing elements p=1,2,4,8., , considering the resource limitations of the Virtex-
E2000E FPGA. The design is highly modular, allowing for scalability to larger matrix sizes and higher PE
counts on more advanced platforms such as Xilinx Virtex-11 or Altera Apex-I11, provided they are paired with

sufficient external memory.

The speed-up achieved by the parallel implementation is defined as:

_Ts
p= o
Where:

Ts = Execution time using a single processor

Tp = Execution time using p processors
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It is observed that the shared memory architecture becomes a performance bottleneck as the number of PEs
increases. This is due to contention in memory access, heavily influenced by the efficiency of the memory
arbitration mechanism. Consequently, while initial increases in p yield significant speed-up, the benefits
diminish beyond a certain point due to memory access conflicts.

5.4 Performance Analysis of Parallel 2-D FFT Architecture

As the number of processing elements (PES) increases, memory contention becomes more pronounced,
resulting in increased conflict delay. where the speed-up gains begin to plateau beyond a certain number of
PEs. The overall performance of the 2-D FFT processor is also significantly influenced by the choice of the
underlying 1-D FFT algorithm.

Matrix Size P a (Radix-2) b (Radix-4)
128 1 112 -

2 215 -

4 382 -

8 420 -
256 1 25 43

2 47 78

4 87 107

8 94 99
512 1 6 -

2 12 -

4 20 -

8 35 -
1024 1 2 4

2 4 8

4 8 16

8 13 12

Table 2: Frames per Second (fps) for 2-D FFT (a: Based on Radix-2; b: Based on Radix-4 Algorithm)

An important design aspect is that data transposition, as described in Section 3.2.1, is carried out
simultaneously with the column data transfer into the local memories of the PEs, thereby eliminating any
delay penalty.

Table 3: Real-Time Performance Observations

The performance trends in Table 2 show that real-time processing (> 30 fps) is achievable with:

. One PE for matrix sizes N=128 and N=512

. Eight PEs for N=512 using a radix-2 core, consuming 45% of available logic slices and 30% of BlockRAM
on the Virtex-2000E FPGA

3.Four PEs for N=1024 using a radix-4 core, achieving 16 fps, sufficient for many medical and astronomical

imaging applications.

Above diagram shows how maximum operating frequency (fmax) and chip area vary with the number of PEs

for matrix sizes N=256 and N = 1024 . While the chip area increases linearly with PE count, fmax exhibits a

slight decrease due to routing complexity and resource contention.

5.5 Comparison with Existing FPGA-Based 2-D FFT Designs

A performance comparison with other FPGA-based designs is provided in Table 3. The proposed

implementation outperforms several prior works in terms of frame rate and resource efficiency.

Design Reference FPGA Used Input Size Frame Rate
Shirazi et al. [20] 2 x XC4000E 512x512 2.12 fps
Dick [21] XC4000E 512x512 24 fps
Dillon Engineering [22] 2 x XC2V6000 2048x2048 120 fps
Proposed Design XCV2000E 512x512 35 fps

Table 3: Comparison with Prior FPGA Implementations
While Dillon et al. achieved the highest performance using dual Virtex-11 FPGAs, the proposed single-FPGA
design offers a cost-efficient solution with competitive throughput, making it suitable for low- to mid-range
applications.
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5.6 Comparative Evaluation on Multiprocessor Platforms
As 2-D FFT is a widely used benchmark for performance evaluation, Table 4 provides a comparison of
execution times (in milliseconds) on various multiprocessor systems.

Platform 1024>1024 256x256 (ms)

(ms)
| 1 PE 14 PE li6PE  |1PE |4 PE |6 PE |
Cavadini et al.
[24] 90.7 23.0 6.4 6.1 1.9 0.83
Hartley et al. [25]|[3164 11169 264 1157.5 62.7 113.9 |
ISgro [26] 2045 1272 74 I52.2 [13.6 3.7 |
Ereanf23] |- = = = |45 = |

Table 4: 2-D FFT Performance on Multiprocessor Platforms

This comparative analysis validates the effectiveness of the proposed design not only among FPGA platforms,
but also across general multiprocessor systems.

6. Application Case Study: Frequency Domain Image Filtering
One of the primary applications of the 2-D FFT is in frequency-domain image filtering, where it dramatically
reduces computational complexity, particularly for large images or filter kernels.

While spatial-domain convolution is straightforward for small image sizes, it becomes inefficient as
dimensions grow. Frequency-domain convolution offers a superior alternative based on the convolution
theorem[27]

Steps for Frequency Domain Filtering:

Step 1 Forward 2-D FFT

Both the input image I (X,y) and the filtering kernel H (x,y) are transformed into the frequency domain.

I (u,v) =FFT {I(x,y)}, H(u ) =FFT{H(X ,y)\}

Step 2 Frequency Domain Multiplication

The transformed filter is applied by element -wise multiplication

Y (u,v) =1I(u, v) . H(u ,v)

Step 3 Inverse 2-D FFT™

The result is transformed back to the spatial domain to yield the filtered image

I'=IFFT{Y(u,v)}

This method achieves a computational speed-up of approximately N? /Nl , which becomes
08r

—N
N= /logr N
increasingly advantageous for large-scale images.

6.1 Environment for Frequency Domain Image Filtering Application

To evaluate the practicality and efficiency of the proposed 2-D FFT processor architecture in real-world
scenarios, a frequency domain image filtering application was implemented using the parallel 2-D FFT
system. The environment setup utilized an RC1000-PP FPGA development board equipped with the Xilinx
Virtex-E2000E FPGA. The image data was loaded into the shared external memory, and filtering operations
were conducted through the following three-step frequency domain convolution process [27]:

RC1000 Dev. Board

Input/Output . Virtex-2000E Filter
Image Paraliel FPGA Coefs.
:>- Input Image —}\ 2D Forward FFT
- Fi - Radix-2
Filter Coeffs. .—1/ sram | — 'R;u::‘4 : SRAM

Bank 0 - Split-Radix 4l Bank 2
-FHT

Point-to-Point W

’ f \ | Multiplication [‘
- Output Image Parallel
2-D Inverse FFT ‘

SRAM | » - Radix-2 0 SRAM

Bank 1 | [\~ -Radx4 Bank 3
- Split-Radix
- FHT

Design Paremeters |
- FFT Type
- Number of PE
- Filter Type
“Filter params.
Figure 7. Flowchart of the Frequency Domain Filtering Process
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The environment was configured to support real-time image processing applications. The transposition steps,
critical in 2-D FFT implementations, were performed concurrently with column data transfer to the local
processor memory, incurring no additional latency. This streamlined data handling improves overall
throughput and minimizes memory bottlenecks.

6. Conclusion

The proposed parameterizable 2-D FFT processor, implemented on the Celoxica RC1000 FPGA board,
achieved real-time performance for large image sizes (e.g., 16 fps for 1024x1024 with 4 PEs using Radix-4
FFT), making it suitable for medical and astronomical imaging applications [20]-[23]. Compared to existing
FPGA and multiprocessor systems, the design demonstrated superior frame rates and efficient resource
usage [24]-[26]. A case study on frequency-domain filtering confirmed its effectiveness for real-time image
enhancement tasks [27].

e Flexible FFT Design:
A flexible system for both 1-D and 2-D FFT was developed using FPGA. It can be easily adjusted to different
input sizes and hardware setups.

e Comparison of Algorithms:
Four FFT algorithms were tested — Radix-2, Radix-4, Split-Radix, and Fast Hartley Transform (FHT) — to
compare their speed, memory use, and hardware needs.

e Best in Speed — Radix-4:
The Radix-4 algorithm was found to be the fastest in processing the data.

e Best in Hardware Efficiency — Radix-2:
The Radix-2 algorithm used the least hardware area and gave good performance.

e Low-Memory Use — FHT:
The FHT algorithm used only half the memory compared to others, making it best for memory-limited
devices.

e Real-Time Image Processing Achieved:
The system could process images in real-time (e.g., 35 frames per second for 512x512 size) with only 8
processors on the FPGA chip.

e Transposition Done Efficiently:
The time-consuming step of transposing data during 2-D FFT was handled smartly with no delay, improving
speed.

e Better than Previous Works:
When compared with other FPGA and multiprocessor systems, this design gave faster frame rates and used
less hardware.

e Useful in Real Applications:
This FFT system can be used in medical, astronomical, or real-time video processing where speed and
accuracy are important.

e Scalable for Future Needs:
The design can be expanded for larger images and more processors using newer FPGA chips.
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