www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE
RESEARCH THOUGHTS (1JCRT)
An International Open Access, Peer-reviewed, Refereed Journal

Development Of A Gui-Based To-Do List
Application Using Python And Sqlite

Mrs. R. Divya Vani

Ms. Jannapureddy Kalyani

ABSTRACT

This document outlines the creation of a
Python-based graphical to-do list application
aimed at simplifying daily task organization and
enhancing productivity. The application uses
Python’s Tkinter library to provide an intuitive
user interface and relies on SQLite for its
database, offering reliable and scalable task
storage. Users can perform core task operations —
creating, editing, deleting, and setting priorities
for tasks — along with advanced features such as
due-date notifications and priority tagging
(high/medium/low).

The interface supports dynamic task
management, enabling users to mark tasks as
complete and to filter or categorize tasks based on
deadlines or custom labels. Under the hood,
Python code with embedded SQL commands
handles all Create, Read, Update, and Delete
(CRUD) operations, ensuring that any change in
the GUI is immediately reflected in the database.
The database schema is designed to store essential
task attributes such as a unique ID, description,
due date, priority level, and completion status,
promoting efficient data integrity and retrieval.

By leveraging Python’s simplicity and
SQL’s robustness, this project demonstrates a

Mr. Susheel

Ms. Guduru Shruthilaya Kiran

Mr. Kanturi Vikas

Mr. Bitla Uday Kiran

practical integration of GUI development, event-
driven programming, and database management.
Its modular architecture is built for scalability,
laying the groundwork for future enhancements
like cloud data synchronization, calendar API
integration, or support for multiple users.
Emphasizing clean interface design and
maintainable code, the application offers a solid
example of a desktop tool that balances user-
friendly functionality with technical robustness to
meet real-world time-management needs.

INTRODUCTION

In today’s fast-paced world, efficient task
management is crucial for maintaining
productivity and reducing stress. Traditional to-
do lists, while simple, often lack the persistence
and flexibility needed for modern workflows. To
address this gap, this document describes the
development of a desktop to-do list application
built with Python and SQLite. It uses Python’s
Tkinter library to create an intuitive graphical
interface and SQLite to manage data storage,
offering a scalable, user-friendly solution for
organizing daily tasks.

The application is designed to let users
seamlessly create, modify, and delete tasks. Key
capabilities include assigning due dates to tasks,
marking tasks as completed, and designating

IJCRT2505481] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ e218

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

priority levels (high, medium, or low). By
integrating SQLite, the application ensures that
users’ task lists are saved persistently between
sessions. Meanwhile, the Tkinter-based interface
provides an intuitive and responsive experience,
making the tool accessible to users of all
backgrounds.

This project emphasizes the synergy
between graphical interface design and database
systems. Embedded SQL queries in the Python
code perform the CRUD (Create, Read, Update,
Delete) operations, dynamically synchronizing
user actions with the underlying database. The
database schema is optimized to store each task’s
attributes — such as a unique ID, description, due
date, priority, and completion status — enabling
efficient data retrieval and integrity.

Beyond its practical functionality, this
project also serves as an educational
demonstration of core programming concepts like
event-driven design, modular code architecture,
and database integration. The documentation
outlines the system’s scalability and proposes
possible enhancements, such as cloud
synchronization, support for multiple users, or
integration with external APIs. By focusing on
clean design and maintainable code, the
application provides an example of how a desktop
program can combine user-centric features with
technical depth to meet real-world productivity
needs.

LITERATURE SURVEY

e GUI Development in Python: The
application’s interface is built with
Tkinter, the standard GUI toolkit for
Python. Resources such as Python’s
official documentation and GUI
programming guides provide
foundational knowledge for this aspect.

o Database Management: The project
employs SQLite for lightweight, local
data storage, accessed through Python's
built-in sqlite3 module for executing SQL
commands.

o Task Management Principles: Core task
management features are incorporated
into the design, including due dates,
priority levels, subtasks, and file
attachments, aligning with research on
productivity and task organization.

e Enhanced User Interaction: Usability is
improved with the tkcalendar library for
date selection via a calendar widget, and
tkinter.filedialog for attaching external
files to tasks.

o Related Projects: This work builds on
ideas from open-source Python to-do list
projects, focusing on simplicity and
essential features that benefit personal
users.

SYSTEM ARCHITECTURE

The application follows a multi-layer
architecture that separates the user, interface,
logic, and data storage components:

e User: The end user interacts with the
application through the interface.

o Presentation Layer (User Interface):
The front-end ~ of the application,
implemented using Python’s Tkinter
library. This layer displays information to
the user and captures user input, operating
as a desktop GUL

o Business Logic Layer (Application
Logic): The core processing component,
written in Python. It receives input from
the interface, performs operations such as
adding, updating, or deleting tasks, and
communicates with the database.

e Data Layer (Database): A SQLite
database that provides persistent storage
of tasks. SQLite is a lightweight, file-
based relational database well-suited for
smaller or standalone applications, storing
all task data on the local file system.

IJCRT2505481 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] e219

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

e

User

i

Tkinter

.

APPLICATION

-

Python

DATABAS

@

SQLite
Databas

Fig: System architecture of TO-DO LIST GUI

program

MODULES

e TKkinter: Provides the GUI framework
with widgets like frames, labels, buttons,
and entry fields for creating the interface.

o tkinter.messagebox and
tkinter.filedialog: The messagebox
module displays alert, info, or error
dialogs to the user; the filedialog module
allows users to select files from the system
for attaching to tasks.

o sqlite3: A Python module for interacting
with the SQLite database. It is used to
execute SQL commands that create, read,
update, and delete task records in the
database (including marking tasks as
completed).

o datetime: Manages date and time
functions in Python, used here to record
current timestamps for tasks and handle
due-date calculations.

o tkcalendar: An additional library that
provides a calendar widget, enabling users
to pick due dates from a graphical
calendar control.

CONCLUSION

This application serves as an intuitive tool
for organizing and tracking tasks. It supports
setting priority levels and due dates for tasks,
creating subtasks, and attaching files or other
resources to tasks. The application also keeps
track of which tasks have been completed and
offers ways to review them, helping users
maintain an organized workflow. Together, these
features provide a streamlined approach to
handling daily activities.

Looking ahead, the application has significant
potential for future enhancements, including:

e Recurring Tasks: Automating tasks to
repeat on a chosen schedule (daily,
weekly, etc.).

o Task Dependencies: Allowing tasks to be
linked so that one task depends on
another’s completion.

IJCRT2505481 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e220

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

e Collaboration Features: Enabling shared
task lists and real-time synchronization
for teams or multiple users.

o Integration with External Services:
Connecting the to-do app to calendars,
email, or other project management tools
for enhanced productivity.

Implementing these enhancements would
transform the application into an even more
versatile and powerful tool for managing tasks
both individually and collaboratively.

FUTURE SCOPE

o Task Management Improvements:

o Add recurring tasks that
automatically schedule
themselves (daily, weekly, or
custom intervals).

o Implement task dependencies to
manage the order of task execution
and visualize their relationships.

o Allow users to create and manage
subtasks under larger tasks.

e Collaboration and Multi-User

Features:

o Enable shared task lists to
facilitate team collaboration.

o Implement real-time updates so
changes sync immediately across
multiple users.

o Integration with External Services:

o Connect the to-do list with third-
party services (such as calendars,
email clients, or project
management tools).

o Add cloud synchronization so
users can access their tasks from
multiple devices.

o User Experience Enhancements:

o Improve filtering and sorting
options for easier task
organization.

Introduce a calendar view to
visualize tasks by date.

Implement drag-and-drop
functionality for rearranging tasks
and allow customizable themes.

Accessibility and Cross-Platform
Support:

o

Develop a mobile application
(Android/iOS) to complement the
desktop version.

Create a web-based version of the
task manager for access through
web browsers.

Notifications and Alerts:

o

Implement advanced notifications
(email, SMS, or push
notifications) to remind users of
due tasks.

Allow users to customize their
alert preferences and settings.

Enhanced Task Details and
Attachments:

o

Include a rich text editor for more
detailed = and -~ formatted task
descriptions.

Enable attaching various files and
documents to tasks for
comprehensive information

tracking.

IJCRT2505481 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e221

http://www.ijcrt.org/

