
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505481 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e218

Development Of A Gui-Based To-Do List

Application Using Python And Sqlite

 Mrs. R. Divya Vani Mr. Susheel Mr. Kanturi Vikas

Ms. Jannapureddy Kalyani Ms. Guduru Shruthilaya Kiran Mr. Bitla Uday Kiran

ABSTRACT

This document outlines the creation of a

Python-based graphical to-do list application

aimed at simplifying daily task organization and

enhancing productivity. The application uses

Python’s Tkinter library to provide an intuitive

user interface and relies on SQLite for its

database, offering reliable and scalable task

storage. Users can perform core task operations –

creating, editing, deleting, and setting priorities

for tasks – along with advanced features such as

due-date notifications and priority tagging

(high/medium/low).

The interface supports dynamic task

management, enabling users to mark tasks as

complete and to filter or categorize tasks based on

deadlines or custom labels. Under the hood,

Python code with embedded SQL commands

handles all Create, Read, Update, and Delete

(CRUD) operations, ensuring that any change in

the GUI is immediately reflected in the database.

The database schema is designed to store essential

task attributes such as a unique ID, description,

due date, priority level, and completion status,

promoting efficient data integrity and retrieval.

By leveraging Python’s simplicity and

SQL’s robustness, this project demonstrates a

practical integration of GUI development, event-

driven programming, and database management.

Its modular architecture is built for scalability,

laying the groundwork for future enhancements

like cloud data synchronization, calendar API

integration, or support for multiple users.

Emphasizing clean interface design and

maintainable code, the application offers a solid

example of a desktop tool that balances user-

friendly functionality with technical robustness to

meet real-world time-management needs.

INTRODUCTION

In today’s fast-paced world, efficient task

management is crucial for maintaining

productivity and reducing stress. Traditional to-

do lists, while simple, often lack the persistence

and flexibility needed for modern workflows. To

address this gap, this document describes the

development of a desktop to-do list application

built with Python and SQLite. It uses Python’s

Tkinter library to create an intuitive graphical

interface and SQLite to manage data storage,

offering a scalable, user-friendly solution for

organizing daily tasks.

The application is designed to let users

seamlessly create, modify, and delete tasks. Key

capabilities include assigning due dates to tasks,

marking tasks as completed, and designating

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505481 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e219

priority levels (high, medium, or low). By

integrating SQLite, the application ensures that

users’ task lists are saved persistently between

sessions. Meanwhile, the Tkinter-based interface

provides an intuitive and responsive experience,

making the tool accessible to users of all

backgrounds.

This project emphasizes the synergy

between graphical interface design and database

systems. Embedded SQL queries in the Python

code perform the CRUD (Create, Read, Update,

Delete) operations, dynamically synchronizing

user actions with the underlying database. The

database schema is optimized to store each task’s

attributes — such as a unique ID, description, due

date, priority, and completion status — enabling

efficient data retrieval and integrity.

Beyond its practical functionality, this

project also serves as an educational

demonstration of core programming concepts like

event-driven design, modular code architecture,

and database integration. The documentation

outlines the system’s scalability and proposes

possible enhancements, such as cloud

synchronization, support for multiple users, or

integration with external APIs. By focusing on

clean design and maintainable code, the

application provides an example of how a desktop

program can combine user-centric features with

technical depth to meet real-world productivity

needs.

LITERATURE SURVEY

 GUI Development in Python: The

application’s interface is built with

Tkinter, the standard GUI toolkit for

Python. Resources such as Python’s

official documentation and GUI

programming guides provide

foundational knowledge for this aspect.

 Database Management: The project

employs SQLite for lightweight, local

data storage, accessed through Python's

built-in sqlite3 module for executing SQL

commands.

 Task Management Principles: Core task

management features are incorporated

into the design, including due dates,

priority levels, subtasks, and file

attachments, aligning with research on

productivity and task organization.

 Enhanced User Interaction: Usability is

improved with the tkcalendar library for

date selection via a calendar widget, and

tkinter.filedialog for attaching external

files to tasks.

 Related Projects: This work builds on

ideas from open-source Python to-do list

projects, focusing on simplicity and

essential features that benefit personal

users.

SYSTEM ARCHITECTURE

The application follows a multi-layer

architecture that separates the user, interface,

logic, and data storage components:

 User: The end user interacts with the

application through the interface.

 Presentation Layer (User Interface):

The front-end of the application,

implemented using Python’s Tkinter

library. This layer displays information to

the user and captures user input, operating

as a desktop GUI.

 Business Logic Layer (Application

Logic): The core processing component,

written in Python. It receives input from

the interface, performs operations such as

adding, updating, or deleting tasks, and

communicates with the database.

 Data Layer (Database): A SQLite

database that provides persistent storage

of tasks. SQLite is a lightweight, file-

based relational database well-suited for

smaller or standalone applications, storing

all task data on the local file system.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505481 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e220

Fig: System architecture of TO-DO LIST GUI

program

MODULES

 Tkinter: Provides the GUI framework

with widgets like frames, labels, buttons,

and entry fields for creating the interface.

 tkinter.messagebox and

tkinter.filedialog: The messagebox

module displays alert, info, or error

dialogs to the user; the filedialog module

allows users to select files from the system

for attaching to tasks.

 sqlite3: A Python module for interacting

with the SQLite database. It is used to

execute SQL commands that create, read,

update, and delete task records in the

database (including marking tasks as

completed).

 datetime: Manages date and time

functions in Python, used here to record

current timestamps for tasks and handle

due-date calculations.

 tkcalendar: An additional library that

provides a calendar widget, enabling users

to pick due dates from a graphical

calendar control.

CONCLUSION

This application serves as an intuitive tool

for organizing and tracking tasks. It supports

setting priority levels and due dates for tasks,

creating subtasks, and attaching files or other

resources to tasks. The application also keeps

track of which tasks have been completed and

offers ways to review them, helping users

maintain an organized workflow. Together, these

features provide a streamlined approach to

handling daily activities.

Looking ahead, the application has significant

potential for future enhancements, including:

 Recurring Tasks: Automating tasks to

repeat on a chosen schedule (daily,

weekly, etc.).

 Task Dependencies: Allowing tasks to be

linked so that one task depends on

another’s completion.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505481 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e221

 Collaboration Features: Enabling shared

task lists and real-time synchronization

for teams or multiple users.

 Integration with External Services:

Connecting the to-do app to calendars,

email, or other project management tools

for enhanced productivity.

Implementing these enhancements would

transform the application into an even more

versatile and powerful tool for managing tasks

both individually and collaboratively.

FUTURE SCOPE

 Task Management Improvements:

o Add recurring tasks that

automatically schedule

themselves (daily, weekly, or

custom intervals).

o Implement task dependencies to

manage the order of task execution

and visualize their relationships.

o Allow users to create and manage

subtasks under larger tasks.

 Collaboration and Multi-User

Features:

o Enable shared task lists to

facilitate team collaboration.

o Implement real-time updates so

changes sync immediately across

multiple users.

 Integration with External Services:

o Connect the to-do list with third-

party services (such as calendars,

email clients, or project

management tools).

o Add cloud synchronization so

users can access their tasks from

multiple devices.

 User Experience Enhancements:

o Improve filtering and sorting

options for easier task

organization.

o Introduce a calendar view to

visualize tasks by date.

o Implement drag-and-drop

functionality for rearranging tasks

and allow customizable themes.

 Accessibility and Cross-Platform

Support:

o Develop a mobile application

(Android/iOS) to complement the

desktop version.

o Create a web-based version of the

task manager for access through

web browsers.

 Notifications and Alerts:

o Implement advanced notifications

(email, SMS, or push

notifications) to remind users of

due tasks.

o Allow users to customize their

alert preferences and settings.

 Enhanced Task Details and

Attachments:

o Include a rich text editor for more

detailed and formatted task

descriptions.

o Enable attaching various files and

documents to tasks for

comprehensive information

tracking.

http://www.ijcrt.org/

