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Abstract  
Properties of divisor functions σk (n), defined as sums of k-th powers of all divisors of n, are studied 

through the analysis of Ramanujan’s deferential equations. This system of three deferential 

equations is singular at x = 0. Solution techniques suitable to tackle this singularity are developed 

and the problem is transformed into an analysis of a dynamical system. Number theoretical 

consequences of the presented dynamical system analysis are then discussed, including recursive 

formulas for divisor functions. 
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Introduction 
In 1916, Ramanujan [8] showed that certain arithmetic functions satisfy a system of three singular 

deferential equations. Denoting the scaled Eisenstein series by 
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System (1.4) may be derived alternatively through a triple product identity and a quintuple product 

identity [3], and that approach was later extended to derive similar deferential equations for 

Eisenstein series of level 2 [10]. Ramanujan’s deferential equations were previously mapped into a 

first order Riccati deferential equation by [5,6], with the solutions expressed in terms of hyper 

geometric functions after a sequence of transformations. Along these lines, Zudilin [12] provides 

further connections between Eisenstein series and hyper geometric functions. A similar method for 

cubic theta functions was given by Huber [7]. In the present paper we take a different approach, 

utilizing a series development about the singular point x = 0. One benefit of the presented approach 

is that we are able to extract information about the Eisenstein series and divisor functions through 

recursive calculation of the series coefficients.  
The paper is organized as follows. In Sect. 2, we rewrite Ramanujan’s system (1.4) in terms of 

variables U1, U2, and U3 defined by (1.1) and derive recursive relation for their solutions. It is 

natural to wonder if there are other solution branches, and in Sect. 3, we transform this singular 

system of deferential equations to a regular system by changing the independent variable from x to t 

= − log x. The large-t behaviour of the resulting system is then investigated, with different steady 

sates corresponding to different initial conditions at x = 0 for the original system. We present the 

number theoretical consequences of our analysis in Sect. 4, and conclude with a discussion of the 

obtained results in Sect. 5. 

2 Recursive formulas to solve Ramanujan’s deferential equations 
We outline the series development which will prove useful in solving Ramanujan’s deferential 

equations. It will be helpful to work in terms of the functions U rather than P, Q, R, and substituting 

(1.2) into (1.4), we obtain 
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i.e., it contains information about scaling constants (1.3) used by Ramanujan. Considering the 

deferential equation system (2.2) on its own in the context of the theory of deferential equations, the 

first two fundamental questions would concern the existence and uniqueness of its solutions, i.e.: 

 

(i) Does system (2.2) have a solution?  
(ii) If a solution exists, is it unique? 
 
The answer to the first question is trivial, because the system (2.2) is derived for U1, U2, and U3 

defined by (1.1), i.e. there is at least one solution given by series (1.1). The second question is 

more important here, because if we can prove the uniqueness of solutions to the deferential 

equation system (2.2), then any properties of solutions which can be obtained by analyzing 

deferential equations (2.2) will also immediately give us properties of arithmetic functions (1.1).  
To obtain uniqueness of solutions, the standard Picard theorem [4] for first-order ordinary 

deferential equations can be applied, because the right hand side of (2.2) is Lipschitz continuous 

for any interval not containing x = 0. That is, if we specify the value of U(x0) at a given point x0 = 

0 as the initial condition of the system (2.2), then the application of the Picard theorem would 

apply the existence and uniqueness of solutions of (2.2) on an interval containing x0. 

Unfortunately, the knowledge of U(x0) at x0 = 0 requires one to know some non-trivial information 

about functions U1, U2, and U3 defined by (1.1). Thus, we consider the singular case, x = 0, as our 

initial condition, for which the standard Picard theorem is not applicable, but the value of U(0) can 

be easily obtained. Substituting  
x = 0 in definition (1.1), we get 
 

U1(0) = U2(0) = U3(0) = 0. (2.6)  
Considering our deferential equation system (2.2) with initial condition (2.6), we observe that it 

has at least two solutions, one of them is a function of U1, U2, and U3 defined by (1.1) and the 

other solution is the trivial solution where all functions U1, U2, and U3 are identically equal to zero. 

This non-uniqueness is caused by the singularity which the deferential equation system (2.2) has 

on the left hand side when x = 0, making the Picard theorem inapplicable. To look for all possible 

analytic solutions, we assume that the solution of (2.2) is written as the series expansion 

 

 

 

 

 

 

 

 

where I is the identity matrix. Since matrix A, given by (2.3), has eigenvalues 0 (with multiplicity 

2) and 1 (with multiplicity 1), matrix nI − A on the left hand side of (2.8) has eigenvalues n (with 

multiplicity 2) and n − 1 (with multiplicity 1) for n = 1, 2, 3, . . . . 
 
Moreover, the eigenvector corresponding to the eigenvalue n− 1 is proportional to c given by 

(2.5). 

Next, we compare coefficients in front of the corresponding terms xn on the left and right hand 

sides of Eq. (2.8). Using (2.4), we observe that b is quadratic. Therefore the right hand side of Eq. 

(2.8) has no terms of the lowest order, x1, while the corresponding coefficient on the left hand side 

yields 
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(I − A) a(1) = 0. (2.9) 

Since matrix I − A has eigenvalue 0 (with multiplicity 1), we can express the solutions of 
 

this system as  

a(1) = α c, (2.10) 

where c is given by (2.5) and α ∈ R is a constant. Formula (2.10) includes both solutions 

which we are already aware of: the trivial zero solution corresponds to α = 0 and the solution 

given by (1.1) corresponds to α = 1. We also observe that there is a possibility that the system 

could have solutions for other values of α. To show that this is indeed the case, we consider the 

coefficients in front of the corresponding terms x2 on the left and right hand sides of Eq. (2.8). 

We have which gives us α-dependent solutions for coefficient a(2). Repeating this for all 

orders xn, we arrive at the following lemma. 
 
Lemma 1 The system of deferential equations (2.2) with the initial condition (2.6) has the 

one-parameter family of series solutions parametrized by α ∈ R, where the first coeffi-cient 

a(1) is given by (2.10), the second coefficient a(2) by (2.11) and other coefficients can be 

obtained iteratively by 
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We note that Formula (2.12) reduces to (2.11) for n = 2. In Fig. 1, we plot functions U1(x) and 
U2(x) for representative values of parameter α. A qualitatively similar plot can also be obtained for 
U3(x) (graph not shown). We observe that functions U (x), for = 1, 2, 3, are increasing functions of 
x with U (x) → ∞ as x → 1−. For a fixed value of x, the value of (x) is also an increasing function 
of parameter α. We use the first one hundred terms in the series expansion (2.7) to approximate 
U(x) numerically. Considering additional terms would not change the computed result (to the 

machine precision) in the visualized interval x ∈ [0, 0.5].  
Although Lemma 1 states that there is a one-parameter family of solutions, all these solutions are 

self-similar and can be collapsed into one by rescaling the independent variable x accordingly. 

This is formalized in the next lemma. 
 
Lemma 2 All analytic solutions of the system of deferential equations (2.2) with initial condition 

(2.6) are given as 
 

U1(αx),  U2(αx),  U3(αx), (2.13)  

where U1, U2, and, U3 are functions defined by (1.1) and α ∈ R. 
 
The trivial zero solution is recovered from the solution Formula (2.13) for α = 0. Increas-ing α 

from 0 to 1, the solution Formula (2.13) connects the zero solution with Ramanu-jan’s solution 

given by (1.1). Lemma 2 is a statement of uniqueness of solutions which will 
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Fig. 1 a Function U1(x) obtained by calculating its series expansion (2.7) using iterative 
Formula (2.12) given in Lemma 1 for several different values of parameter α. b Results 
for function U2(x), with units on the y-axis expressed as multiples of 103 

 
help us to translate some properties of the deferential equation system into properties of series 

(1.1) and divisor functions. The iterative Formula (2.12) in Lemma 1 will give us an iterative 

formula for divisor functions. We will discuss such number theoretical consequences in Sect. 4. 
 
We note that the statement of uniqueness of solutions in Lemma 2 would not hold if we replaced 

our condition that solutions are analytic with a weaker condition that solutions were only 

differentiable. Indeed, a solution given by (2.13) with α = 1 for x ≥ 0 could be continued for x < 0 

by (2.13) for any other value of parameter α ∈ R. 
 
3 Dynamical system analyses of Ramanujan’s deferential equations  
Through the series development of Sect. 2 we have been able to use series in a neigh-bourhood of 

x = 0 in order to extract salient features of the solutions to Ramanujan’s deferential equations, 

identifying a one-parameter family of solutions (2.13) to Eq. (2.2). Due to the singular nature of 

these equations, it is not clear that the only solutions will originate with U (0) = 0 for = 1, 2, 3, or 

if there are other solution branches which are fundamentally singular. In this section, we change 
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the independent variable and treat Ramanujan’s deferential equations as a dynamical system which 

evolves toward a condi-tion as x → 0+. 
 
Consider the system of deferential equations (2.2) and transform the independent vari-able x to t 

by using t = − log x. Then the limit x → 0+ corresponds to t → ∞. We have 

 

  
 

 

where V ≡ V(t) = U(exp(−t)), matrix A ∈ R3×3 is given by (2.3), and vector-valued function b : R3 

→ R3 is given by (2.4). Initial conditions (2.6) transform to limiting values of function V = [V1, 

V2, V3] at t = ∞, namely 
 
 

 

 

To get some insights into this limiting behaviour, we investigate the steady states of our deferential 

equation system (3.1). To do this, we denote the Jacobian matrix of the vector- 
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In Fig. 2, we plot the steady state curve for a range of positive values of parameter β . We 

visualize it as a black dotted-dashed line in Fig. 2a which shows its projection to the (V1, V2)-

plane. We also plot solutions converging to a representative selection of steady states (highlighted 

as black dots). Considering β = 1 in (3.4), we obtain the zero steady state s(1) = (0, 0, 0)T 

corresponding to limiting values (3.2). It has one linearly stable direction (with eigenvalue -1) and 

the corresponding eigenvector (3.5) is proportional to vector c given by (2.5), which is also the 

first coefficient of the series solution (2.7), see Eq. (2.10). This series solution is visualized as the 

red trajectory in Fig. 2—two different branches correspond to positive and negative values of 

parameter α. We note that all solutions converging to s(1) = (0, 0, 0)T are given by Lemma 2, 

which means that they are all represented by the red line in Fig. 2—they only correspond to 

different re-scalings of the independent variable x. In fact, if we included α in the transformation 

of the independent variable x to t by t = − log(αx), we would obtain the same deferential equation 

(3.1).  
In Fig. 2, we also plot solutions converging to the steady states s(β ) for β = 1. They are visualized 

as blue lines. Their long time behaviour satisfies 

lim V(t) = s(β ), (3.6) 
t→∞  

where s(β ) is given by (3.4). Transforming back to the original variable x = exp(−t), the limiting 

condition (3.6) is equivalent to the initial condition 
 

U(0) = s(β ). (3.7)  
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Fig. 2 a Projection of steady states (3.4) to the (V1, V2)-plane for values of β ∈ [0.2, 
1.8] (black dotted-dashed line). Solutions (2.13) given by Lemma 2 converging to s(1) 
= (0, 0, 0)T (red line). Representative solutions for values β = 1 obtained by Lemma 4 
(blue lines) converging to s(β) (black circles). b Results visualized in the (V1, V2, V3)-
phase space 
 

http://www.ijcrt.org/


www.ijcrt.org                                                 © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 
2320-2882 

IJCRT2505395 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d466 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering β = 1, Lemma 4 reduces to Lemma 1, i.e. a(n) in (2.12) is equal to a(n; 1) given 

by (3.11). Considering general values of β , we use the recursive Formula (3.11) in Lemma 4 

for α = 1 and α = −1 to obtain solutions converging to s(β ) which are visualized in Fig. 2 as 

blue trajectories. The solution for any other positive (resp. negative) value of α corresponds to 

the case α = 1 (resp. α = −1), because the parameter α rescales the independent variable in a 

similar way to what we have already observed in Lemma 2 for the case β = 1. In Fig. 2b, we 

use a higher number of representative blue trajectories (than in Fig. 2a) and observe that we 

have generalized the scaled Eisenstein series (1.1) (red line in Fig. 2b) to the blue surface in 

the (V1, V2, V3)-phase space (the surface swept by blue trajectories). 

4 Number theoretical consequences 
The evaluation of sums of the form σ (m)σ (n) has attracted interest in the literature [1,2], and 

we use our results to calculate certain sums of this type in terms of the coef-ficients of 

solutions to Ramanujan’s deferential equations. Considering α = 1 in For-mula (2.12) and 

comparing with (1.1), we obtain the following iterative relation between divisor functions 
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Considering general values of the parameter β > 0, we can also connect the coefficients 

calculated by the general recursive Formula (3.11) with divisor functions. 

Lemma 5 Let β > 0. Consider the system of deferential equations (2.2) with the initial condition 

(3.7). Assume α = β and consider the solution U(x; β ) given by series (3.8) which is calculated using 

Formula 

(3.11) in 

Lemma 4. 

Then the 

coefficien

ts a(n; β ) 

are 

related to divisor functions by 
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which connects the general solution U(x; β ) for α = β with the scaled Eisenstein series U(x) given by 

(1.1). Consequently, the recursive Formula (3.11) in Lemma 4 can also be rewritten as a recursive 

formula for calculating σ1(n), σ3(n), and σ5(n), in a similar way as we did when deriving (4.1) in the 

special case β = 1. 
 
5 Discussions 

We have employed both a series development and a dynamical systems approach to better understand 

solutions of Ramanujan’s equations (1.4). Our results imply the existence of a one-parameter family of 

solutions to these equations which comprise a similarity scaling of the scaled Eisenstein series (1.1), in 

addition to another class of solutions which is not zero at x = 0. This latter class of solutions can, 

however, be brought into the form of the scaled Eisenstein series through a shift of the dependent 

variable and a scaling of the independent variable. This suggests that the vital information encoded in 

these series through their coefficients is invariant under Ramanujan’s deferential equations, modulo 

shifting and scaling, and that the value of specific divisor functions remains encapsulated in these 

series solutions. In addition to their intrinsic interest, Ramanujan’s deferential equations (1.4) give 

information about certain Eisenstein series, and we demonstrate that our results 

give an alternate approach to obtain formulae involving sums of products of 

divisor functions. 

 

The results we obtain can be used to better understand solutions of related differen-tial equations of 

relevance to the Eisenstein series. In addition to the Eisenstein series which satisfy Ramanujan’s 

deferential equations (1.4), we remark that solutions of various second-order deferential equations 

with coefficients involving the Eisenstein series have also attracted some attention [9]. Treating the 

Eisenstein series in the manner of (2.7), one can then solve such second-order deferential equations 

with a series, making use of the Cauchy product of the series for the unknown function with our series 

representation for the Eisenstein series.  
The algebraic independence of the functions P, Q, R in (1.2) and hence of U1, U2, U3 in (1.1) was 

discussed in [11]. It is worth noting that additional relations exist between U for ≥ 4, with the first 

several of these shown in Table I of [8]. One can then express U for 

≥ 4 in terms of algebraic combinations of the U1, U2, and U3 variables. As an example, 

from entry 4 in Table I of [8] we have 

that 1 + 480 U4 = Q2 = (1 + U2)
2. Defining 

S = Q2, we see that 

  
 

 

     
Rewriting this as an equation involving U4 by taking c4 = 480, one obtains a fourth-order 

analogue of the third-order system (2.1). Continuing in this manner, one may obtain higher-order 

analogues of system (2.1) involving U1, U2, . . . , UN for N ≥ 4, and using the approach we 

outline for (2.1), one may obtain the series coefficients recursively in a similar manner, providing 

alternate derivations for formulae analogous to (4.3). 
 
 
 
 
 
 
 

2l+3m=nσ (l)σ (m). 
J. Number 
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