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Abstract

Properties of divisor functions ox (n), defined as sums of k-th powers of all divisors of n, are studied
through the analysis of Ramanujan’s deferential equations. This system of three deferential
equations is singular at x = 0. Solution techniques suitable to tackle this singularity are developed
and the problem is transformed into an analysis of a dynamical system. Number theoretical
consequences of the presented dynamical system analysis are then discussed, including recursive
formulas for divisor functions.
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Introduction
In 1916, Ramanujan [8] showed that certain arithmetic functions satisfy a system of three singular

deferential equations. Denoting the scaled Eisenstein series by

Uy(x) = C(ZU%—I(V’)xn: (1.1)

n=1

wheref € N, x| < 1,0x(n) =) din d* and ¢ isa scaling constant, Ramanujan formulated
his differential equations in terms of three dependent variables

P=1-U, Q=1+U; R=1-U3 (1.2)
with the choice of scaling constants
c1 =24, c¢3 =240, c3 =504 (1.3)

as the following system

d» P2-Q
xa = 12 ) (143)
dQ PQ-R
— = , 1.4
% dx 3 (1)
dR PR-—Q?
xa = T (1.4C)

[JCRT2505395 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d459


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

System (1.4) may be derived alternatively through a triple product identity and a quintuple product
identity [3], and that approach was later extended to derive similar deferential equations for
Eisenstein series of level 2 [10]. Ramanujan’s deferential equations were previously mapped into a
first order Riccati deferential equation by [5,6], with the solutions expressed in terms of hyper
geometric functions after a sequence of transformations. Along these lines, Zudilin [12] provides
further connections between Eisenstein series and hyper geometric functions. A similar method for
cubic theta functions was given by Huber [7]. In the present paper we take a different approach,
utilizing a series development about the singular point x = 0. One benefit of the presented approach
is that we are able to extract information about the Eisenstein series and divisor functions through
recursive calculation of the series coefficients.

The paper is organized as follows. In Sect. 2, we rewrite Ramanujan’s system (1.4) in terms of
variables Ui, Uz, and Us defined by (1.1) and derive recursive relation for their solutions. It is
natural to wonder if there are other solution branches, and in Sect. 3, we transform this singular
system of deferential equations to a regular system by changing the independent variable from x to t
= - log x. The large-t behaviour of the resulting system is then investigated, with different steady
sates corresponding to different initial conditions at x = O for the original system. We present the
number theoretical consequences of our analysis in Sect. 4, and conclude with a discussion of the
obtained results in Sect. 5.

2 Recursive formulas to solve Ramanujan’s deferential equations
We outline the series development which will prove useful in solving Ramanujan’s deferential

equations. It will be helpful to work in terms of the functions U rather than P, Q, R, and substituting
(1.2) into (1.4), we obtain
din 22U + Uy — U12

—_—= 2.1
e 12 foela)
di =+ Uy + Us — UL Uy
— = ; 2.1b
T 3 (216)
dis Uy 42Uy + Uz — Uy U3 + U?
x—3= 1+2Uy + U3 1Us + 2 2.1¢)
dx 2
Denoting the vector U = [U), Uy, Us)T, this system of equations can be equivalently
described in a matrix form as
dU
— =AU +b(U), 2.2
X +b(U) (2.2)
where matrix A € R3*3 and vector-valued function b : R3 — R3 are defined by
1 2 1 0
A=— |- :
B 4 4 4 (2.3)
6 12 6
and
i —u? m
b(u) = 5 —4uquy for u=|u|. (2.4)
6u3 — 6uruz u3

We observe that the matrix A has eigenvalues 1 (with multiplicity 1) and 0 (with multi-
plicity 2). The eigenvector corresponding to eigenvalue 1 is proportional to

¢ = [c1, e c3]T = [24, 240,504]T, (2.5)
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i.e., it contains information about scaling constants (1.3) used by Ramanujan. Considering the
deferential equation system (2.2) on its own in the context of the theory of deferential equations, the
first two fundamental questions would concern the existence and uniqueness of its solutions, i.e.:

(i) Does system (2.2) have a solution?
(i) If a solution exists, is it unique?

The answer to the first question is trivial, because the system (2.2) is derived for U1, Uz, and U3
defined by (1.1), i.e. there is at least one solution given by series (1.1). The second question is
more important here, because if we can prove the uniqueness of solutions to the deferential
equation system (2.2), then any properties of solutions which can be obtained by analyzing
deferential equations (2.2) will also immediately give us properties of arithmetic functions (1.1).
To obtain uniqueness of solutions, the standard Picard theorem [4] for first-order ordinary
deferential equations can be applied, because the right hand side of (2.2) is Lipschitz continuous
for any interval not containing x = 0. That is, if we specify the value of U(xo) at a given point Xo =
0 as the initial condition of the system (2.2), then the application of the Picard theorem would
apply the existence and uniqueness of solutions of (2.2) on an interval containing Xo.
Unfortunately, the knowledge of U(Xo) at Xo = O requires one to know some non-trivial information
about functions U1, Uz, and Uz defined by (1.1). Thus, we consider the singular case, x = 0, as our
initial condition, for which the standard Picard theorem is not applicable, but the value of U(0) can
be easily obtained. Substituting

X = 0 in definition (1.1), we get

U1(0) = U2(0) = Uz(0) = 0. (2.6)
Considering our deferential equation system (2.2) with initial condition (2.6), we observe that it
has at least two solutions, one of them is a function of Ui, Uz, and Uz defined by (1.1) and the
other solution is the trivial solution where all functions U1, U, and Uz are identically equal to zero.
This non-uniqueness is caused by the singularity which the deferential equation system (2.2) has
on the left hand side when x = 0, making the Picard theorem inapplicable. To look for all possible
analytic solutions, we assume that the solution of (2.2) is written as the series expansion

U(x) = Z a(n) x”, (2.7)

n=1

where a(n) = [a1(n), az(n), az(n)]T are coefficients to be determined. Substituting (2.7)

into (2.2), we obtain

Z(nl —A)a(m)x” =b <Z a(n) x"> : (2.8)

n=1 n=1

where | is the identity matrix. Since matrix A, given by (2.3), has eigenvalues 0 (with multiplicity
2) and 1 (with multiplicity 1), matrix nl — A on the left hand side of (2.8) has eigenvalues n (with
multiplicity 2) and n — 1 (with multiplicity 1) forn=1,2,3, .. ..

Moreover, the eigenvector corresponding to the eigenvalue n— 1 is proportional to ¢ given by
(2.5).

Next, we compare coefficients in front of the corresponding terms x" on the left and right hand
sides of Eq. (2.8). Using (2.4), we observe that b is quadratic. Therefore the right hand side of Eq.

(2.8) has no terms of the lowest order, x, while the corresponding coefficient on the left hand side
yields
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(I-A)a(1) =0. (2.9)
Since matrix | — A has eigenvalue 0 (with multiplicity 1), we can express the solutions of
this system as
a(l)=ac, (2.10)
where ¢ is given by (2.5) and a € R is a constant. Formula (2.10) includes both solutions
which we are already aware of: the trivial zero solution corresponds to a = 0 and the solution

given by (1.1) corresponds to a = 1. We also observe that there is a possibility that the system
could have solutions for other values of a. To show that this is indeed the case, we consider the

" ( —ai(1)? )
(21 —A)a(2) = 5 —4ai(1)az(1) = b(a(1)).
6a3(1)> — 6a;(1)asz(1)
Since matrix 2 — A has eigenvalues 2 and 1, it is invertible. Thus, we have

a(2) = (21 — A)"'b@@)) = 2 —A) " 'b(xc), (2.11)

coefficients in front of the corresponding terms x2 on the left and right hand sides of Eq. (2.8).
We have which gives us a-dependent solutions for coefficient a(2). Repeating this for all
orders x", we arrive at the following lemma.

Lemma 1 The system of deferential equations (2.2) with the initial condition (2.6) has the
one-parameter family of series solutions parametrized by a € R, where the first coeffi-cient
a(1) is given by (2.10), the second coefficient a(2) by (2.11) and other coefficients can be
obtained iteratively by

i n—1 —a1(f) ar(n —j)
a(n) = o (il —A)' ) —dai() ax(n — ) . (2.12)
J=1 \6as(j) ax(n — j) — 6 ai(j) az(n — j)
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We note that Formula (2.12) reduces to (2.11) for n = 2. In Fig. 1, we plot functions Ui(x) and
U(x) for representative values of parameter a. A qualitatively similar plot can also be obtained for
Us(x) (graph not shown). We observe that functions U (x), for = 1, 2, 3, are increasing functions of
x with U (xX) — «~ as x — 17. For a fixed value of x, the value of (x) is also an increasing function
of parameter a. We use the first one hundred terms in the series expansion (2.7) to approximate
U(x) numerically. Considering additional terms would not change the computed result (to the

machine precision) in the visualized interval x € [0, 0.5].
Although Lemma 1 states that there is a one-parameter family of solutions, all these solutions are

self-similar and can be collapsed into one by rescaling the independent variable x accordingly.
This is formalized in the next lemma.
Lemma 2 All analytic solutions of the system of deferential equations (2.2) with initial condition
(2.6) are given as

Ui(ax), Uz(ax), Us(ax), (2.13)
where U1, U, and, Us are functions defined by (1.1) and a € R.
The trivial zero solution is recovered from the solution Formula (2.13) for a = 0. Increas-ing a
from 0 to 1, the solution Formula (2.13) connects the zero solution with Ramanu-jan’s solution
given by (1.1). Lemma 2 is a statement of uniqueness of solutions which will

a . . . . ) .
—a — 0.5 —na — 0.5

80—o —09 ] He—a—0.9
—_—a —1
a—1.1

) /107

Ul (J,j

IJQ (:

0 ' 0
U Ul UZ U3 U4 UD U Ul UZ U3 U4UD

Fig. 1 a Function Ui(x) obtained by calculating its series expansion (2.7) using iterative
Formula (2.12) given in Lemma 1 for several different values of parameter a. b Results
for function U2(x), with units on the y-axis expressed as multiples of 103

help us to translate some properties of the deferential equation system into properties of series
(1.1) and divisor functions. The iterative Formula (2.12) in Lemma 1 will give us an iterative
formula for divisor functions. We will discuss such number theoretical consequences in Sect. 4.
We note that the statement of uniqueness of solutions in Lemma 2 would not hold if we replaced
our condition that solutions are analytic with a weaker condition that solutions were only
differentiable. Indeed, a solution given by (2.13) with a = 1 for x 2 0 could be continued for x <0
by (2.13) for any other value of parameter a € R.

3 Dynamical system analyses of Ramanujan’s deferential equations

Through the series development of Sect. 2 we have been able to use series in a neigh-bourhood of
X = 0 in order to extract salient features of the solutions to Ramanujan’s deferential equations,
identifying a one-parameter family of solutions (2.13) to Eq. (2.2). Due to the singular nature of
these equations, it is not clear that the only solutions will originate with U (0) =0 for =1, 2, 3, or
if there are other solution branches which are fundamentally singular. In this section, we change
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the independent variable and treat Ramanujan’s deferential equations as a dynamical system which
evolves toward a condi-tion as x — 0.
Consider the system of deferential equations (2.2) and transform the independent vari-able x to t

by using t = — log x. Then the limit x — 0* corresponds to t — . We have
dv
5= —AV —b(V), (3.1)

where V = V(t) = U(exp(-t)), matrix A € R*3 is given by (2.3), and vector-valued function b : R®
— R3is given by (2.4). Initial conditions (2.6) transform to limiting values of function V = [V1,
V2, V3] at t = =, namely

lim V¢(t)=0, for £=1,23. (3.2)
t—00

To get some insights into this limiting behaviour, we investigate the steady states of our deferential

equation system (3.1). To do this, we denote the Jacobian matrix of the vector-

valued function b in definition (2.4) by

—2u; 0 0
J(u) = T —4uy —4u; O . (3.3)
—6us 12uy —6u;

Solving the steady state equations
AV +b(V)=0
corresponding to the system (3.1) and analyzing the stability of the steady states found,

we obtain the following lemma.

Lemma 3 All steady state solutions of the differential equation system (3.1) are given as a
curve, parametrized by B € R, in the form

s1(B) 1-5 1
sB) =28 |=|-0-)]|=0-8| -1+8) |. (3.4)
s3(B) 1-p3 1+ B+ B2

Denoting V. = s(B) + v and linearizing the system (3.1) around the steady state(3.4)
corresponding to B € R, we obtain a linear system of differential equations,

dv

e —(A+T6B)) v,

where the matrix -(A + ](s(/S))) has eigenvalues 0 (with multiplicity 2) and —p with
(multiplicity 1). The eigenvector corresponding to the eigenvalue —B is given as

1 (5]
1
108 | == | B |. (3.5)
2182 Bc3
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In Fig. 2, we plot the steady state curve for a range of positive values of parameter 8 . We
visualize it as a black dotted-dashed line in Fig. 2a which shows its projection to the (Vi, V2)-
plane. We also plot solutions converging to a representative selection of steady states (highlighted
as black dots). Considering 8 = 1 in (3.4), we obtain the zero steady state s(1) = (0, 0, 0)"
corresponding to limiting values (3.2). It has one linearly stable direction (with eigenvalue -1) and
the corresponding eigenvector (3.5) is proportional to vector ¢ given by (2.5), which is also the
first coefficient of the series solution (2.7), see Eq. (2.10). This series solution is visualized as the
red trajectory in Fig. 2—two different branches correspond to positive and negative values of
parameter a. We note that all solutions converging to s(1) = (0, 0, 0)T are given by Lemma 2,
which means that they are all represented by the red line in Fig. 2—they only correspond to
different re-scalings of the independent variable x. In fact, if we included a in the transformation
of the independent variable x to t by t = — log(ax), we would obtain the same deferential equation
(3.2).

In Fig. 2, we also plot solutions converging to the steady states s(8) for 8 = 1. They are visualized

as blue lines. Their long time behaviour satisfies
lim V(t) = s(B), (3.6)

t—

where s(B ) is given by (3.4). Transforming back to the original variable x = exp(-t), the limiting
condition (3.6) is equivalent to the initial condition

U(0) =s(B). (3.7)
\
0
= 1 w2
i N \\\\\ 7
3 9 P ) '
_1 1 0 i1 "_
Wi Vs
-0.6 -0.3 0 0.3 0.6
Fig.2 a Pr?jection of steady states (3.4) to the (V1, V2)-plane for values of 8 € [0.2,
1. 3 (black dotted-dashed line). Solutions (2.13) given by Lemma 2 converging to s(1)
= (0, 0, 0)T (red line). Representative solutions for values B = 1 obtained by Lemma 4

(blue lines) converging to s(B) (black circles). b Results visualized in the (V1, V2, V3)-
phase space
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In particular, we generalize (2.7) to the series solution

U(x; B) =s(B) + _ a(m B) "7, (3.8)

n=1
where a(1; 8) = [a1(m; B), az(n; B), az(m; B)]T are coefficients to be determined. Substitut-
ing (3.8) into (2.2) and using A s(8) + b(s(8)) = 0, we obtain

oC

> (nBI—A—J(s(®)) alm p)x" =b (Z a(n;ﬂ)x"ﬂ) , (3.9)
1

n= n=1

which is the generalization of (2.8) to the case 8 # 1. Using Lemma 3, matrix —A — J(s(8))
has eigenvalues — 8 (with multiplicity 1) and O (with multiplicity 2). Thus the matrix n87 —
A—J(s(B)) on the left hand side of (3.9) has eigenvalues n8 (with multiplicity 2) and (n—1)8
(with multiplicity 1) for » = 1, 2, 3, . . .. Comparing coefficients of the lowest order x? on
the left and right hand sides of Eq. (3.9), we generalize (2.9) to

(BT — A —J(s(8))) a(; B) = 0.
Since matrix I — A —J(s(B)) has eigenvalue O (with multiplicity 1) with the corresponding
eigenvector proportional to (3.5), we can express the solutions of this system as

c1
abB)=a | Bea |- (3.10)
B3c3
Moreover, we can generalize Lemma 1 to the following result giving us a recursive formula
for finding series solutions (3.8) for general values of parameter .

Lemma 4 The system of differential equations(2.2) with the initial condition (3.7) has
the one-parameter family of series solutions (3.8) parametrized by « € R, where the first
coefficienta(1; B) is given by (3.10) and other coefficients can be obtained iteratively by
1 —1
a(m B) = o5 (nBI — A —J(s(B)))

n—1 —a1(j; B)ar(n —j; B) (3.11)
x Z — 4 ay(j; B) azx(n — j; B)
/=1 \6azx(j; B) az(n — j; B) — 6 a1(j; B) as(n — j; B)

Considering 8 = 1, Lemma 4 reduces to Lemma 1, i.e. a(n) in (2.12) is equal to a(n; 1) given
by (3.11). Considering general values of 8, we use the recursive Formula (3.11) in Lemma 4
for a = 1 and a = -1 to obtain solutions converging to s(8 ) which are visualized in Fig. 2 as
blue trajectories. The solution for any other positive (resp. negative) value of a corresponds to
the case a = 1 (resp. a = —1), because the parameter a rescales the independent variable in a
similar way to what we have already observed in Lemma 2 for the case 8 = 1. In Fig. 2b, we
use a higher number of representative blue trajectories (than in Fig. 2a) and observe that we
have generalized the scaled Eisenstein series (1.1) (red line in Fig. 2b) to the blue surface in
the (V1, V2, V3)-phase space (the surface swept by blue trajectories).

4 Number theoretical consequences
The evaluation of sums of the form ¢ (m)o (n) has attracted interest in the literature [1,2], and

we use our results to calculate certain sums of this type in terms of the coef-ficients of
solutions to Ramanujan’s deferential equations. Considering a = 1 in For-mula (2.12) and
comparing with (1.1), we obtain the following iterative relation between divisor functions
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o1(n) /et 0 O
o3(n) | = 0 1/cp O (A—nl)!
o5(n) 0 0 1/cs

n—1 48 01(j) o1(n — )
%Y. 1920 01 (j) o3(n — j) ; (4.1)
/=1 \ 6048 0 (j) o5(n — j) — 28800 o3(j) 03(1 — )
where ¢ is given by (2.5). This formula can be iteratively used to compute the values
of 01(n), o3(n), and o5(n). It can also be rewritten in the form of convolution identities.
Following Ramanujan’s notation [8], we denote

n
Zis(m) = ox() oln — j), (4.2)
j=0
where the definition of oy (#) is extended to n = 0 by 03 (0) = ¢(—k)/2, namely

—1)¢
02¢-1(0) = =1 , fort=1,23,
ce

where ¢; is given by (2.5). Multiplying the iterative Formula (4.1) by the diagonal matrix
with vector [cy, ¢, c3] on the diagonal, then by matrix A — »/ and using (2.4), we obtain

—6n 5 0 0’1(1’1) 12 21,1(1’1)
0 —-10mn 7 o3(n) | = 80 X 3(n) ; (4.3)
0 0 —-7n os5(n) 84 Xy 5(n) — 400 X3 3(n)

The first two lines of this vector system yield formulas for X'y ; (#) and Xy 3(n) which appear
in Table IV of Ramanujan’s paper [8]. The last line is also consistent with his results. In
the same table, he writes
10 07(n) — 21 nos(n) o7(n)
,  X33(n) = ;
252 120
Using this result to calculate 84 X 5(n) — 400 X3 3(n), we obtain the last line of our vector

2h5(n) =

system (4.3).
Considering general values of the parameter 8 > 0, we can also connect the coefficients
calculated by the general recursive Formula (3.11) with divisor functions.

Lemma 5 Let B > 0. Consider the system of deferential equations (2.2) with the initial condition
(3.7). Assume a = 8 and consider the solution U(x; B8 ) given by series (3.8) which is calculated using

ae(n; B)

ce B*

Relation (4.4) implies

/B 0 0 Uy (x1/8; B) — s1(B)
Ux)=Ux1)=] 0 1/82 o0 U (xP; B) — s2(B) | »

o_1(n) = for €£=1,23. (4.4)

0 o0 1/8%) \Usx';B) — s3(B)

related to divisor functions by

Formula

(3.11) in
Lemma 4.
Then the
coefficien
tsa(n; B)

are
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which connects the general solution U(x; B8 ) for a = B with the scaled Eisenstein series U(x) given by

(1.1). Consequently, the recursive Formula (3.11) in Lemma 4 can also be rewritten as a recursive
formula for calculating o1(n), o3(n), and os(n), in a similar way as we did when deriving (4.1) in the
special case B = 1.

5 Discussions

We have employed both a series development and a dynamical systems approach to better understand
solutions of Ramanujan’s equations (1.4). Our results imply the existence of a one-parameter family of
solutions to these equations which comprise a similarity scaling of the scaled Eisenstein series (1.1), in
addition to another class of solutions which is not zero at x = 0. This latter class of solutions can,
however, be brought into the form of the scaled Eisenstein series through a shift of the dependent
variable and a scaling of the independent variable. This suggests that the vital information encoded in
these series through their coefficients is invariant under Ramanujan’s deferential equations, modulo
shifting and scaling, and that the value of specific divisor functions remains encapsulated in these
series solutions. In addition to their intrinsic interest, Ramanujan’s deferential equations (1.4) give
information about certain Eisenstein series, and we demonstrate that our results
give an alternate approach to obtain formulae involving sums of”*+3m=0 (o (m). products  of
divisor functions.

The results we obtain can be used to better understand solutions of related differen-tial equations of
relevance to the Eisenstein series. In addition to the Eisenstein series which satisfy Ramanujan’s
deferential equations (1.4), we remark that solutions of various second-order deferential equations
with coefficients involving the Eisenstein series have also attracted some attention [9]. Treating the
Eisenstein series in the manner of (2.7), one can then solve such second-order deferential equations
with a series, making use of the Cauchy product of the series for the unknown function with our series
representation for the Eisenstein series.

The algebraic independence of the functions P, Q, R in (1.2) and hence of Ui, Uz, Uz in (1.1) was
discussed in [11]. It is worth noting that additional relations exist between U for = 4, with the first
several of these shown in Table I of [8]. One can then express U for

> 4 in terms of algebraic combinations of the Uz, U., and Us variables. As an example,
from entry i dQ 2 5 4 in Table | of [8] we have
that 1 + 480 ¥ - =20Q = =2 (PQ* — QR) = 2 (PS — QR). Us = Q2 = (1 + U2)2 Defining
S =Q? we see that

Rewriting this as an equation involving Us by taking cs = 480, one obtains a fourth-order
analogue of the third-order system (2.1). Continuing in this manner, one may obtain higher-order
analogues of system (2.1) involving Uy, Uz, . . ., Uy for N = 4, and using the approach we
outline for (2.1), one may obtain the series coefficients recursively in a similar manner, providing
alternate derivations for formulae analogous to (4.3).
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