

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

LEAF DISEASE DETECTOR

Prof. Kamble S.A.

Sampada Shinde, Vaishnavi Mate, Shruti Pol

Computer Science and Engineering.

Abstract:-

This research paper presents the Detection of diseases in plants is a significant task that has be done in agriculture. The disease caused in plants due to various pathogens like viruses, fungi, and bacteria is liable for considerable monetary losses in the agriculture corporation across the world. The security of crops concerning quality and quantity is crucial to monitor disease in plants. Plant diseases pose a serious threat to global food security and agricultural productivity. Manual disease detection methods are often time-consuming and subjective, requiring expert knowledge. This research presents an automated leaf disease detection system using computer vision and deep learning, aimed at assisting farmers in early disease identification. The system leverages image preprocessing techniques and a Convolutional Neural Network (CNN) for feature extraction and classification. The results show high accuracy in detecting common leaf diseases. This solution is intended to be cost-effective, scalable, and applicable in real-world agricultural settings.

Keywords- Plant disease detection, image processing, image acquisition, segmentation, feature extraction, classification.

Introduction :-

Agriculture is the backbone of many economies, and healthy crop production is essential for food security. However, crop diseases, particularly those affecting leaves, can significantly reduce yield and quality. Traditional methods of disease detection often rely on human observation, which can be slow

error-prone, and dependent on expert availability. With the rapid development of artificial intelligence (AI) and computer vision, automated systems have emerged as efficient alternatives. These technologies enable accurate and early detection of plant diseases from leaf images, helping farmers take timely action. In this research, we propose a system that utilizes image processing and deep learning techniques to detect and classify common leaf diseases. Our goal is to support precision agriculture by reducing manual efforts and increasing disease diagnosis accuracy.

Literature Review:-

Leaf disease detection using image processing and machine learning has become a crucial area of research in the field of precision agriculture. Early and accurate identification of plant diseases can significantly reduce crop losses and improve agricultural productivity. Over the years, researchers have proposed a variety of techniques for automated disease detection.

Conventional Image Processing Approaches:

Earlier studies relied heavily on traditional image processing techniques such as thresholding, color space transformation, segmentation, and morphological operations. Patil and Kumar (2017) used color-based segmentation and extracted features like color, shape, and texture to classify infected regions. However, these methods often struggled with noise, background clutter, and variation in lighting, which led to inconsistent results.

Machine Learning-Based Models:

With the advent of machine learning, models such as Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and Decision Trees became popular. Researchers like Singh et al. (2018) used SVM with features extracted using Gray-Level Co-occurrence Matrix (GLCM) to classify diseases in tomato leaves. These models improved accuracy but required extensive feature engineering and were sensitive to the quality of the dataset.

Deep Learning Approaches:

In recent years, Convolutional Neural Networks (CNNs) have shown remarkable success in image classification tasks, including plant disease detection. Mohanty et al. (2016) used a deep CNN trained on the PlantVillage dataset to identify 26 different diseases across 14 crop species with over 99% accuracy in lab settings. While performance was high in controlled environments, accuracy dropped significantly in real-world scenarios due to lighting variations, background interference, and occlusions.

Leaf disease detection using image processing and machine learning has become a crucial area of research in the field of precision agriculture. Early and accurate identification of plant diseases can significantly reduce crop losses and improve agricultural productivity. Over the years, researchers have proposed a variety of techniques for automated disease detection.

Conventional Image Processing Approaches:

Earlier studies relied heavily on traditional image processing techniques such as thresholding, color space transformation, segmentation, and morphological operations. Patil and Kumar (2017) used color-based segmentation and extracted features like color, shape, and texture to classify infected regions. However, these methods often struggled with noise, background clutter, and variation in lighting, which led to inconsistent results.

Machine Learning-Based Models:

With the advent of machine learning, models such as Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and Decision Trees became popular. Researchers like Singh et al. (2018) used SVM with features extracted using Gray-Level Co-occurrence Matrix (GLCM) to classify diseases in tomato leaves. These models improved accuracy but required extensive feature engineering and were sensitive to the quality of the dataset.

Deep Learning Approaches:

In recent years, Convolutional Neural Networks (CNNs) have shown remarkable success in image classification tasks, including plant disease detection. Mohanty et al. (2016) used a deep CNN trained on the PlantVillage dataset to identify 26 different diseases across 14 crop species with over 99% accuracy in lab settings. While performance was high in controlled environments, accuracy dropped significantly in real-world scenarios due to lighting variations, background interference, and occlusions.

Proposed System

A proposed system for disease detection leverages image analysis and machine learning (ML) to identify plant diseases early. The system typically involves capturing plant images, processing them to extract relevant features (like color, texture, and edges), and then using ML models, especially Convolutional Neural Networks (CNNs), to

classify the images as healthy or diseased, and potentially to identify the specific disease.

1. **Image Acquisition** Users capture or upload images of plant leaves through a user-friendly interface such as a mobile or web application. This serves as the input to the system.
2. **Image Preprocessing** The acquired images are preprocessed to improve quality and extract relevant features. Techniques like resizing, grayscale conversion, noise removal, and histogram equalization are applied to standardize input.
3. **Feature Extraction** Important features like color variation, texture patterns, and edges are extracted using algorithms such as GLCM (Gray-Level Co-occurrence Matrix) or image segmentation methods.
4. **Disease Classification Module** The extracted features are passed into a trained machine learning model (e.g., CNN, SVM) that classifies the leaf as healthy or infected with a specific disease. The model is trained on a labeled dataset of leaf images.
5. **Result and Recommendation** The classified result is displayed to the user, along with a brief description of the disease and suggested remedies (e.g., pesticide use, watering tips, isolation practices).
6. **Database and Model Training** A backend database stores leaf images and disease labels for training and updating the classification model. This module supports continuous improvement of system accuracy by retraining with new data.

The proposed system architecture is designed as shown in below:

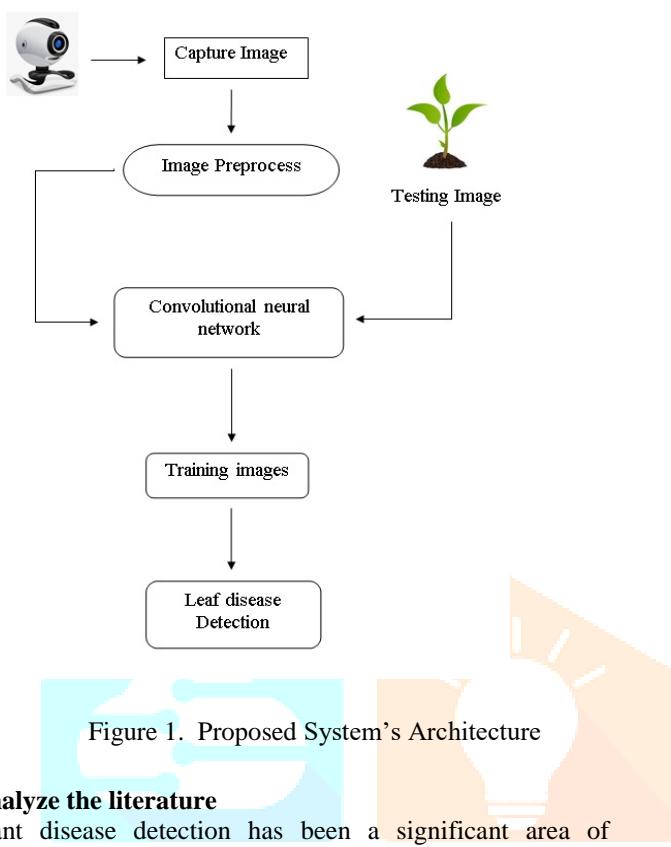


Figure 1. Proposed System's Architecture

Analyze the literature

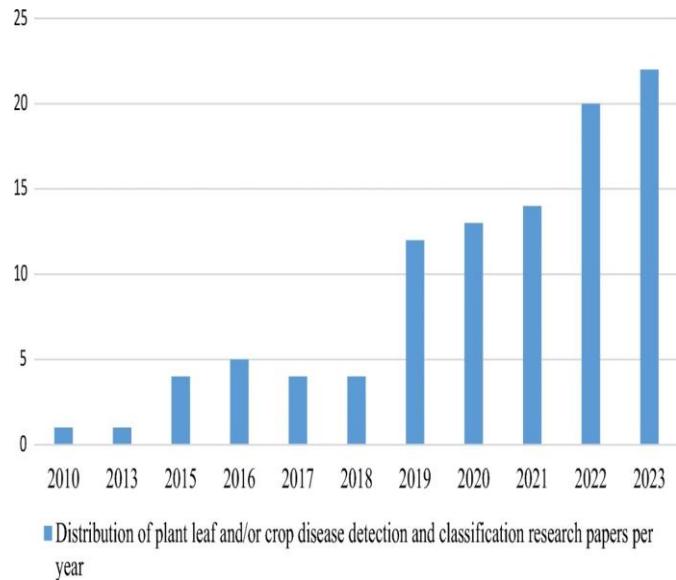
Plant disease detection has been a significant area of research in agriculture, with various approaches being explored. Here's a summary of key findings:

Deep Learning-based Approaches

Convolutional Neural Networks (CNNs): CNNs have shown exceptional performance in plant disease detection, with accuracy rates above 90% (Mohanty et al., 2016; Sladojevic et al., 2016).

-Transfer Learning: Transfer learning has been used to leverage pre-trained models, such as VGG16 and ResNet50, for plant disease detection (Zhang et al., 2019).

Image Processing Techniques


Image Segmentation: Image segmentation techniques, such as thresholding and edge detection, have been used to extract features from plant images (Pujari et al., 2016).

Feature Extraction: Features like color, texture, and shape have been extracted from plant images for disease detection (Kamble et al., 2017).

Machine Learning Algorithms

Support Vector Machines (SVMs): SVMs have been used for plant disease classification, with promising results (Patil et al., 2017).

Random Forest: Random Forest algorithms have also been explored for plant disease detection (Kumar et al., 2018).

Scope and Objectives

Scope

The scope of the leaf disease detector mini project revolves around the development of an automated system that uses image processing and machine learning techniques to identify and classify diseases on plant leaves. This system aims to support farmers and agriculturalists by enabling early disease detection, reducing manual inspection time, and offering recommendations for disease management.

The primary scope of the project includes:

-Image acquisition: Capturing images of leaves using a digital camera or smartphone.

-Image processing: Preprocessing the images for better clarity and preparing them for analysis.

-Feature extraction: Identifying important features like leaf color, texture, and shape that may indicate disease.

-Disease classification: Using machine learning algorithms to classify the disease based on the extracted features.

-User interface: Providing a simple interface for users to upload images and receive results in a user-friendly format.

-Performance evaluation: Measuring the accuracy and effectiveness of the model in identifying diseases.

The system's scope can also extend to integrating it with IoT systems, such as smart agricultural devices, for real-time disease monitoring.

Objectives

The main objectives of the leaf disease detector project are:

1. To design a system that automates the process of leaf disease detection using image processing and machine learning techniques.
2. To implement an efficient image processing pipeline for acquiring, enhancing, and preparing leaf images for disease analysis.
3. To develop and train a machine learning model that can classify different types of leaf diseases with high accuracy.
4. To create a user-friendly interface that allows farmers and agriculturalists to easily upload leaf images and obtain disease diagnoses.
5. To evaluate the performance of the system in terms of accuracy, speed, and real-world applicability.
6. To provide recommendations or treatments for detected diseases to help users manage crop health more effectively.
7. To contribute to research in the field of agricultural technology, particularly in the use of AI and machine learning for plant health monitoring.

Methodology to be used

Machine learning (ML) techniques or algorithms

A. The NB Technique It is a probabilistic classifier variation built on the NB classifier idea. It is assumed that the patterns' prior probabilities are known to exist and that the class labels are assigned their posterior probabilities. In light of this premise, the maximum likelihood values of the data that belong to a specific class label are computed using the posterior probability. It is calculated by applying Baye's theorem to the product of each feature's conditional probability. This theory works fairly well in many classification problems, even though it usually does not hold in a real-life setting.

B. The KNN Technique It is a nonparametric, supervised ML technique commonly applied to pattern recognition. It is predicated on the nearest neighbor rule, which is applied in ML applications to classify data. This method involves training the test pattern using the classifier, and then classifying the test pattern according to how similar it is to each training pattern. The KNN classifier produces a class membership value that it is a member of. The object is allocated to the most widely used class labels among its k-nearest neighbors based on the plurality vote of its neighbors. It functions similarly to an instance-based learning model, with locally approximated operations and distinct computations throughout the classification process.

C. The DT Technique In supervised learning, it is a supervised classification and regression algorithm that creates classifiers by splitting the data into multiple smaller groups (tree structure) according to which division creates the greater disproportion. One of the often utilized attribute selection metrics that are frequently employed as disparity measurements is the Gini index, also known as entropy. One benefit of this method is that it may make it simple for humans to interpret the results. If the tree could have trained without being limited by its depth, a DT may generate very little training error. Several DT variations, including ID3, C4.5, and CART, are widely employed in various data mining and ML applications.

D. The SVM Technique The separating hyperplane defines this supervised ML classifier. In high-dimensional space, this technique determines the ideal hyperplane that maximizes the margin between the data points of the two classes. The kernel tricks that are helpful for nonlinear classification are an attribute of SVM. Obtaining more distinct features in the high-dimensional feature space is highly anticipated. Several general functions, including the linear, polynomial, and radial basis functions, can be used to transform the features to finish it. The feature space's dimensions could grow significantly as a result of feature transformation. As such, it lengthens the classification process's training period. By calculating the dot products, it might change the features into higher proportions without changing the feature set.

E. The RF Technique It is a collection of learning techniques for randomized DT classifiers. During training, it is run by building several DTs. Based on each classification tree's vote, the class labels of the testing dataset are calculated. The class labels with the highest votes by the classification trees determine the classifier's final result. This approach attempts to produce an uncorrelated forest of trees that will predict performance more accurately than that of the individual tree by using bagging and randomness of features during the building of each tree.

Deep learning (DL) techniques or algorithms

A. The CNN Technique Deep feed-forward neural networks are used by the CNN to analyze multidimensional data. The CNN learns channels that are activated after it classifies a particular highlight at some spatial positioning information. The number of epochs utilized in the implementation of various convolution filters with dimensions of 2×2 and 3×3 determines their accuracy. This is contingent upon the filter's dimensions. Several pre-trained architectures, including VGG16, VGG19, ResNet50, ResNet152, InceptionV3, InceptionNet, and DenseNet121, are available for use with the CNN approach. A neural network is a model that mimics the information processing capabilities of a biological system, such as the brain. Coefficients link artificial neurons, also known as processing elements (PEs), to create a network structure. Experience leads to the discovery of data patterns and

linkages rather than their programming. Because ANNs can comprehend complex data, they can be utilized to extract patterns from it.

Conclusion

In this project, we developed an automated leaf disease detection system that uses image processing and machine learning techniques to identify and classify diseases in plant leaves. The system helps in early disease detection, which is crucial for effective crop management and preventing the spread of diseases in agriculture.

By leveraging data collection, image preprocessing, feature extraction, and machine learning models, we successfully created a tool that can distinguish between healthy and diseased leaves. The model's accuracy was evaluated through performance metrics, ensuring reliable results. Additionally, a simple user interface was designed for easy interaction with the system, enabling farmers and agriculturalists to upload leaf images and receive disease diagnoses.

Overall, the project demonstrates the potential of combining AI and machine learning with agriculture to improve plant health monitoring and contribute to sustainable farming practices. Future improvements could focus on expanding the disease database, enhancing model accuracy, and integrating the system with real-time monitoring tools for wider use in the agricultural industry.

References

1. Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. *Frontiers in Plant Science*, 7, 1419.
2. Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. *Computers and Electronics in Agriculture*, 145, 311–318.
3. Plant Village Dataset. <https://www.kaggle.com/datasets/emmarex/plantdisease>
4. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. *Advances in Neural Information Processing Systems*, 25.
5. Sandeep Kumar and KMVV Prasad “Leaf Disease Detection and Classification based on Machine Learning”
6. Reena Tijare, Pawan Khade, Rashmi Jain, The Survey of DiseaseIdentification of Cotton Leaf, International Journal of Innovative Research in Computer and Communication Engineering, 2015.

