

On Locally (1,2)Q-Sets In Bitopological Space

¹ Archana Devi S, ² Abinaya A

¹Assistant Professor, ² Student, M.Sc., Mathematics

¹Department of Mathematics,

Nadar Saraswathi College of Arts and Science, (Autonomous), Theni.

Abstract

Bourbaki studied the concept of locally closed sets in topological spaces. Following this topologists introduced the new notions of locally closed sets by replacing open sets by nearly open sets and generalized open sets and/or by replacing the closed sets by nearly closed sets and generalized closed sets. Levine studied the concept of Q-sets in 1961 and Thangavelu and Rao introduced the notion of q-sets in 2002. Recently, the authors further investigated the properties of q-sets and Q-sets in topology. A. Gowri studied the combined study on the concept Locally Q-sets and its properties in 2019. The aim of this paper is to study new concept of sets in Locally (1,2) Q-sets in Bitopological space and its properties.

I. INTRODUCTION

Kelly introduced the concept of Bitopological space in 1961. Levine introduced the concept of Q-sets in 1961. The concept of q-set was introduced in 2002. The author aimed to explained about the further properties of q-sets and Q-sets. This paper have been studied about the concept of the Locally (1,2) Q-sets in Bitopological space and its properties.

II. PRELIMINARIES

Throughout this paper (X, τ_1, τ_2) and (Y, σ_1, σ_2) denote the bitopological spaces. $X \setminus A$ is the complement of a subset A of X . The interior and closure operators are respectively denoted by $\text{int}_1 A$ and $\text{cl}_2 A$. The following definitions and lemmas will be useful in sequel. The phrase “iff” is used for the phrase “if and only if”. The following definitions and lemmas will be useful in this paper.

2.1 DEFINITION

A subset A of a topological space X is called $(1, 2)\alpha$ – open if $A \subseteq (\text{int}_1(\text{cl}_2(\text{int}_1 A)))$ and $(1, 2)\alpha$ – closed if $(\text{int}_1(\text{cl}_2(\text{int}_1 A))) \subseteq A$

2.2 DEFINITION

A subset B of a topological space X is called Regular open if $A = \text{int}_1(\text{cl}_2(A))$ and Regular closed if $A = \text{cl}_2(\text{int}_1(A))$

2.3 DEFINITION

A subset A of a topological space X is called A q-set if $\text{int}_1(\text{cl}_2(A)) \subseteq \text{cl}_2(\text{int}_1(A))$

2.4 DEFINITION

A subset B of a topological space X is called A Q-set if $int_1(cl_2(A)) = cl_2(int_1(A))$

III. LOCALLY (1,2)Q-SETS

3.1 DEFINITION

Let (X, τ_1, τ_2) be a topological space. A subset of X is called a locally (1,2) Q-set if it is the intersection of an open set with a (1,2) Q-set. Also, a subset of X is called a locally (1,2) Q-set if it is the intersection of an open set with a (1,2) Q-set.

3.2 DEFINITION

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function. f is locally (1,2) Q-continuous from (X, τ_1, τ_2) to (Y, σ_1, σ_2) if the inverse image of every open set in σ_1 is a locally (1,2) Q-set in (X, τ_1, τ_2) .

3.3 LEMMA

A is a (1,2)Q-set if and only if $X \setminus A$ is a (1,2)Q-set.

3.4 LEMMA

If B is open and A is a (1,2)q-set then $A \cap B$ and $B \setminus A$ are (1,2)q-sets.

3.5 THEOREM

Every (1,2) Q-set is a locally (1,2) Q-set and every open set is locally (1,2) Q-set.

Proof Case(i)

Every (1,2) Q-set is a locally (1,2) Q-set. Let A be a (1,2) Q-set. Then, by definition, $int_1(cl_2(A)) = cl_2(int_1(A))$. Since A is a (1,2) Q-set, we can write $A = A \cap X$, where X is the entire space. Now, X is an open set in τ_1 , and A is a (1,2) Q-set. Therefore, $A = A \cap X$ satisfies the definition of a locally (1,2) Q-set. Hence, every (1,2) Q-set A is a locally (1,2) Q-set.

Case(ii)

Every open set is a locally (1,2) Q-set. Let U be an open set in τ_1 . Then, we can write $U = U \cap X$, where X is the entire space. Since X is a (1,2) Q-set as $int_1(cl_2(X)) = cl_2(int_1(X)) = X$ we have $U = U \cap X$, where U is an open set and X is a (1,2) Q-set. Therefore, U satisfies the definition of a locally (1,2) Q-set. Hence, every open set U is a locally (1,2) Q-set.

3.6 THEOREM

A subset B of a space X is a locally (1,2) Q-set if and only if $X \setminus B$ is a union of a closed set with a (1,2) Q-set.

Proof Case(i)

Suppose B is a locally (1,2) Q-set. Then, by definition, there exists an open set G in X and a (1,2) Q-set A in X such that $B = G \cap A$. $X \setminus B = (X \setminus G) \cup (X \setminus A)$, Where, $B = G \cap A$, and taking the complement of both sides. $X \setminus G$ is closed. Since G is open in X , its complement $X \setminus G$ is closed. $X \setminus A$ is a (1,2) Q-set. Since A is a (1,2) Q-set in X , its complement $X \setminus A$ is also a (1,2) Q-set. $X \setminus B$ is a union of a closed set $(X \setminus G)$ with a (1,2) Q-set $(X \setminus A)$.

Case(ii)

Suppose $X \setminus B$ is a union of a closed set F with a (1,2) Q-set C . Then $X \setminus B = F \cup C$. $B = X(F \cup C)$. $X \setminus B = F \cup C$, and taking the complement of both sides. $B = (X \setminus F) \cap (X \setminus C)$ where $B = X(F \cup C)$, and using the distributive law. $X \setminus F$ is open. Since F is closed in X , its complement $X \setminus F$ is open. $X \setminus C$ is a (1,2) Q-set. Since C is a (1,2) Q-set in X , its complement $X \setminus C$ is also a (1,2) Q-set. B is a locally (1,2) Q-set, since it is the intersection of an open set $(X \setminus F)$ with a (1,2) Q-set $(X \setminus C)$.

3.7 THEOREM

In an extremely disconnected space, every q-set is a (1,2) Q-set and hence every (1,2) Q-set is a locally (1,2) Q-set.

Proof

By the definition of (1,2) Q-set and (1,2) Q-set and by the definition of extremely disconnected bitopological space: A bitopological space (X, τ_1, τ_2) is said to be extremely disconnected if the closure of every open set in τ_1 is open in τ_2 .

Firstly; every (1,2) Q-set is a (1,2) Q-set. Let A be a (1,2) Q-set in X . Then, by definition, $\text{int}_1(\text{cl}_2(A)) \subseteq \text{cl}_2(\text{int}_1(A))$. Since X is extremely disconnected, $\text{cl}_2(A)$ is open in τ_2 , we have $\text{int}_1(\text{cl}_2(A)) = \text{cl}_2(A)$. Also, Since $\text{int}_1(A)$ is open in τ_1 , it follows that $\text{cl}_2(\text{int}_1(A))$ is open in τ_2 . Given that $\text{int}_1(\text{cl}_2(A)) \subseteq \text{cl}_2(\text{int}_1(A))$, we deduce that $\text{cl}_2(A) \subseteq \text{cl}_2(\text{int}_1(A))$. As $\text{cl}_2(A)$ is open in τ_2 , we have $\text{cl}_2(A) = \text{int}_1(\text{cl}_2(A))$. Therefore, $\text{int}_1(\text{cl}_2(A)) = \text{cl}_2(\text{int}_1(A))$, demonstrating that A is a (1,2) Q-set. Now, To prove, every (1,2) Q-set is a locally (1,2) Q-set: Since every (1,2) Q-set is a (1,2) Q-set, and every (1,2) Q-set is a locally (1,2) Q-set (by definition), it follows that every (1,2) Q-set is a locally (1,2) Q-set.

3.8 THEOREM

Let $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be two bitopological spaces. Let $(X_1 \times Y_1, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$ be the product bitopological space. Let U and V be subsets of X and Y , respectively. Then $U \times V$ is a locally (1,2) Q-set in $(X_1 \times Y_1, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$ if and only if U is a locally (1,2) Q-set in (X, τ_1, τ_2) and V is a locally (1,2) Q-set in (Y, σ_1, σ_2)

Proof**Case(i)**

Suppose $U \times V$ is a locally (1,2) Q-set in $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$. Then there exists an open set G in $\tau_1 \times \sigma_1$ and a (1,2) Q-set A in $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$ such that $U \times V = G \cap A$. Let $p_1: X \times Y \rightarrow X$ and $p_2: X \times Y \rightarrow Y$ be the projection maps. Then $p_1(G)$ is open in τ_1 and $p_2(G)$ is open in σ_1 . U is a locally (1,2) Q-set in (X, τ_1, τ_2) To see this, note that $p_1(A)$ is a (1,2) Q-set in (X, τ_1, τ_2) since A is a (1,2) Q-set in $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$. Then $U = p_1(G \cap A) = p_1(G) \cap p_1(A)$ shows that U is a locally (1,2) Q-set in (X, τ_1, τ_2) . Similarly, V is a locally (1,2) Q-set in (Y, σ_1, σ_2) .

Case(ii)

Conversely, suppose U is a locally (1,2) Q-set in (X, τ_1, τ_2) and V is a locally (1,2) Q-set in (Y, σ_1, σ_2) . Then there exist open sets G_1 in τ_1 and G_2 in σ_1 , and (1,2) Q-sets A_1 in (X, τ_1, τ_2) and A_2 in (Y, σ_1, σ_2) such that $U = G_1 \cap A_1$ and $V = G_2 \cap A_2$. Then $G_1 \times G_2$ is open in $\tau_1 \times \sigma_1$, and $A_1 \times A_2$ is a (1,2) Q-set in $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$. Moreover, $U \times V = (G_1 \cap A_1) \times (G_2 \cap A_2) = (G_1 \times G_2) \cap (A_1 \times A_2)$ shows that $U \times V$ is a locally (1,2) Q-set in $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$.

3.9 THEOREM

Suppose $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a bijection. Then $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally (1,2) Q-continuous if and only if $f^{-1}(H)$ is a union of a closed set in (X, τ_1) with a (1,2) Q-set in (X, τ_1, τ_2) for every closed set H in (Y, σ_1) .

Proof**case(i)**

Suppose $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally (1,2) Q-continuous. Let H be a closed set in (Y, σ_1) . Then $Y \setminus H$ is open in (Y, σ_1) . Since f is locally (1,2) Q-continuous, $f^{-1}(Y \setminus H)$ is a locally (1,2) Q-set in (X, τ_1, τ_2) . By definition of locally (1,2) Q-set, there exists an open set G in (X, τ_1) and a (1,2) Q-set A in (X, τ_1, τ_2) such that $f^{-1}(Y \setminus H) = G \cap A$. Taking the complement of both sides, $f^{-1}(H) = X(G \cap A) = (X \setminus G) \cup (X \setminus A)$. Since G is open in (X, τ_1) , $X \setminus G$ is closed in (X, τ_1) . Since A is a (1,2) Q-set in (X, τ_1, τ_2) , $X \setminus A$ is also a (1,2) Q-set in (X, τ_1, τ_2) .

Case(ii)

Conversely, suppose $f^{-1}(H)$ is a union of a closed set in (X, τ_1) with a (1,2) Q-set in (X, τ_1, τ_2) for every closed set H in (Y, σ_1) . Let U be an open set in (Y, σ_1) . Then $Y \setminus U$ is closed in (Y, σ_1) .

By assumption, $f^{-1}(Y \setminus U)$ is a union of a closed set in (X, τ_1) with a (1,2) Q-set in (X, τ_1, τ_2) .

Taking the complement of both sides, we get $f^{-1}(U) = X(f^{-1}(Y \setminus U))$ is a locally (1,2) Q-set in (X, τ_1, τ_2) . Therefore, $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally (1,2) Q-continuous.

3.10 THEOREM

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally (1,2) Q-continuous, then for every $x \in X$ and for every open set V in (Y, σ_1) with $f(x) \in V$, there is a locally (1,2) Q-set $G \cap A$ in (X, τ_1, τ_2) such that $x \in G \cap A$ and $f(G \cap A) \subseteq V$.

Proof

Since $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally (1,2) Q-continuous, for every open set V in (Y, σ_1) , $f^{-1}(V)$ is a locally (1,2) Q-set in (X, τ_1, τ_2) . By definition of locally (1,2) Q-set, there exists an open set G in (X, τ_1) and a (1,2) Q-set A in (X, τ_1, τ_2) such that $f^{-1}(V) = G \cap A$. Since $f(x) \in V$, $x \in f^{-1}(V) = G \cap A$. Since $f^{-1}(V) = G \cap A$, we have $f(G \cap A) \subseteq V$. Therefore, for every $x \in X$ and for every open set V in (Y, σ_1) with $f(x) \in V$, there is a locally (1,2) Q-set $G \cap A$ in (X, τ_1, τ_2) such that $x \in G \cap A$ and $f(G \cap A) \subseteq V$.

3.11 THEOREM

Let (X, τ_1, τ_2) be a bitopological space such that the class of locally (1,2) Q-sets is closed under arbitrary union. Then for any function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following are equivalent:

- (a) $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally (1,2) Q-continuous.
- (b) $f^{-1}(H)$ is a union of a closed set in (X, τ_1) with a (1,2) Q-set in (X, τ_1, τ_2) for every closed set H in (Y, σ_1) .
- (c) For every $x \in X$ and for every open set V in (Y, σ_1) with $f(x) \in V$, there is a locally (1,2) Q-set $G \cap A$ in (X, τ_1, τ_2) such that $x \in G \cap A$ and $f(G \cap A) \subseteq V$.

Proof**Case(i) (a) \rightarrow (b)**

Suppose $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally (1,2) Q-continuous. Let H be a closed set in (Y, σ_1) . Then $Y \setminus H$ is open in (Y, σ_1) . Since f is locally (1,2) Q-continuous, $f^{-1}(Y \setminus H)$ is a locally (1,2) Q-set in (X, τ_1, τ_2) . By definition of locally (1,2) Q-set, there exists an open set G in (X, τ_1) and a (1,2) Q-set A in (X, τ_1, τ_2) such that $f^{-1}(Y \setminus H) = G \cap A$. Taking the complement of both sides, we get $f^{-1}(H) = X(G \cap A) = (X \setminus G) \cup (X \setminus A)$. Since G is open in (X, τ_1) , $X \setminus G$ is closed in (X, τ_1) . Since A is a (1,2) Q-set in (X, τ_1, τ_2) , $X \setminus A$ is also a (1,2) Q-set in (X, τ_1, τ_2) .

Case(ii) (b) \rightarrow (c)

Suppose $f^{-1}(H)$ is a union of a closed set in (X, τ_1) with a (1,2) Q-set in (X, τ_1, τ_2) for every closed set H in (Y, σ_1) . Let $x \in X$ and V be an open set in (Y, σ_1) with $f(x) \in V$. Then $f^{-1}(V)$ is a locally (1,2) Q-set in (X, τ_1, τ_2) . By definition of locally (1,2) Q-set, there exists an open set G in (X, τ_1) and a (1,2) Q-set A in (X, τ_1, τ_2) such that $f^{-1}(V) = G \cap A$. Since $x \in f^{-1}(V)$, we have $x \in G \cap A$. Since $f^{-1}(V) = G \cap A$, we have $f(G \cap A) \subseteq V$.

Case(iii) (c) \rightarrow (a)

Suppose for every $x \in X$ and for every open set V in (Y, σ_1) with $f(x) \in V$, there is a locally (1,2) Q-set $G \cap A$ in (X, τ_1, τ_2) such that $x \in G \cap A$ and $f(G \cap A) \subseteq V$. Then $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is locally (1,2) Q-continuous.

3.12 THEOREM

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a locally (1,2) Q-continuous function. If H is a closed set in (Y, σ_1) , then $f^{-1}(H)$ is a union of a closed set in (X, τ_1) with a (1,2) Q-set in (X, τ_1, τ_2) .

Proof

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a locally (1,2) Q-continuous function. Then $Y \setminus H$ is open in (Y, σ_1) . Since f is locally (1,2) Q-continuous, $f^{-1}(Y \setminus H)$ is a locally (1,2) Q-set in (X, τ_1, τ_2) . By definition of locally (1,2) Q-set, there exists an open set G in (X, τ_1) and a (1,2) Q-set A in (X, τ_1, τ_2) such that $f^{-1}(Y \setminus H) = G \cap A$. Taking the complement of both sides, we get $f^{-1}(H) = X(G \cap A) = (X \setminus G) \cup (X \setminus A)$. Since G is open in (X, τ_1) , $X \setminus G$ is closed in (X, τ_1) . Since A is a (1,2) Q-set in (X, τ_1, τ_2) , $X \setminus A$ is also a (1,2) Q-set in (X, τ_1, τ_2) . Therefore, $f^{-1}(H)$ is a union of a closed set $(X \setminus G)$ in (X, τ_1) with a (1,2) Q-set $(X \setminus A)$ in (X, τ_1, τ_2) .

REFERENCES

- Andrijevic D, "Some properties of the topology of α -sets", *Math. Vesnik*, vol.36, pp.1-10, 1984.
- Gowri A, "The role of ρ -sets and some functions in topology and related results", *Ph.D Thesis*, Manomaniam Sundaranar University, Tirunelveli, India, 2017.
- Kelly, J. C. (1963), "Bitopological spaces", *Proceedings of the Cambridge Philosophical Society*, 59, 427-435.
- Levine N, "On the commutativity of the interior and closure operators in topological spaces", *American Mathematical Monthly*, vol.68, pp.474-477, 1961.
- Mashhour, A. S. (1966), "On bitopological spaces", *Journal of the London Mathematical Society*, 41(1), 113-122.
- Njastad O, "Some classes of nearly open sets", *Pacific J.Math.*, vol.15, pp.961-970, 1965.
- Shyla Isac Mary T and Gowri A, "The Role of q-sets in Topology", Volume 8, Number 1 (2016), pp. 1-10.
- Stone M.H, "Application of the theory of Boolean rings to the general topology", *Trans. A.M.S.* vol.41, pp. 375-481, 1937.
- Thangavelu P and Rao K.C, "q-sets in topological spaces", *Prog.of Maths*, vol.36, nos.1&2, pp. 159 165, 2002.

