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Abstract: The biometric authentication is improved over the recent last years to enhance the security. Face
Recognition and Al based authentication are regular models to validate the human presence.

The attackers can hack the above mentioned biometrics so that there is a need to protect the users data with
other biometrics like Finger Veins . In this work, we are proposing that Finger Veins as they are presented
under the skin so there is less chance to hack and also economically viable. The feature extraction and
registration process is carried out by the deep learning techniques like Convolution neural networks
(CNN).

INTRODUCTION

Biometrics, derived from the Greek words "Bio™" (meaning life) and "Metric" (to measure), represents a
pioneering field offering a compelling solution for person recognition. Biometric systems stand as robust,
highly secure, and inherently natural alternatives for verifying one’s identity. The central objective of these
systems revolves around the automation of human identification processes. Unlike traditional methods
reliant on easily manipulated or compromised means such as badges, personal identification numbers
(PINSs), passwords (which can be words or phrases), and ID cards, biometric systems rely on an
individual’s distinctive physiological traits (e.g., fingerprint, iris, vein patterns, hand geometry, and ear
shape) or behavioral characteristics (e.g., gait, signature, and keystroke dynamics)[1]. Identity verification
systems have become indispensable in various domains, encompassing account logins, online payments,
and automated teller machines (ATMs). These technologies are designed to safeguard user privacy and
information security. The classical password, though widely used, suffers from drawbacks such as
protracted

BIOMETRIC SYSTEM PERFORMANCE EVALUATION

The evaluation of biometric systems’ performance represents a pivotal and indispensable facet in the
design and architecture of biometric recognition systems. This section delves into the techniques for
analyzing biometric systems and elucidates various metrics and graphical representations that shed light on
the intricacies of biometric system operations. As previously alluded to, biometric systems can be
categorized into two primary modes: verification and identification. It is imperative to differentiate
between these two modes, as they exert substantial influence on the evaluation of performance.

The field of biometrics offers an array of solutions for addressing image classification problems [15].
These methods are adaptable to classification problems involving two or more classes, and the performance
of classifiers is contingent upon the number of samples per class and their composition. Consequently, the
choice of the most suitable method hinges on the specific requirements of the targeted application. A
pragmatic approach involves initial method selection, followed by rigorous testing and subsequent
evaluations.
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In data analysis, the initial step typically involves the construction of an array representation known as a
"confusion matrix." This table (Table 2.3) quantifies the number of predictions, denoted as Xi, j (or X class,
prediction), representing samples of class i assigned to class j among a set of C classes. The number of
samples constituting class i is denoted as Ki, and the total number of predictions attributed to this class is
referred to as

Prediction
Classi [Classi [Classc Total /Classes
Classi [XI,1 X, X1,c K1
Real Class | Class2 [Xi,1 Al Ai.c Ki
Classc [*c,1 A, \c,C Kc
Total Predictions Mi Mi Mc I

Table 2.3: Prediction Confusion Matrix of a C-Class Classifier

Prediction
Positive Class |Negative Class Total /Classes
Positive Class  [Tp Fn P
Real Class Negative Class |Fp Tn N
Total Predictions P P I
L pos L neg

Table 2.4: Prediction Confusion Matrix of a C-Class Classifier
Mi. The sums of Ki and Mi collectively amount to the total number of samples (I).
With this context, for each class i, treated as a binary problem (Class i as positive, all other classes i E j as

negative), or directly for a two-class problem, the predictions can be classified into four principal

categories:

1. True Positive (Tp): Samples of the positive class (i) correctly classified (X,i).

2. False Negative (Fn): Samples of the positive class (i) incorrectly classified ((X,y
ViE]).

3. True Negative (Tn):Samples of the negative class (j) correctly classified (X,t,V t6
[1,C]E).

4, False Positive (Fp): Samples of the negative class (j) incorrectly classified (X,
NIEI),

In the case of a problem with N classes, treated individually as binary problems, confusion matrices are
constructed for each class i. The confusion matrix for a two-class problem establishes a connection
between the total number of samples (P) from the positive class, the total number of samples (N) from the
negative class, and the four aforementioned categories, which in turn determine the total number of
samples classified as positive (Ppos) and negative (Pneg).

Various measures can be derived from a confusion matrix, from the problem with Two-classes we can

describe the following metrics:
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False Acceptance Rate (FAR): Defined as the probability that the biometric security

system mistakenly accepts an access attempt by an unauthorized user.

FAR= "(21)
Tn+Fp N

- False Rejection Rate (FRR): Defined as the probability that the biometric security system mistakenly

reject an access attempt by an authorized user name.

Fn Fn
FRR= =— (2.2)
Tp+Fn P

- Sensitivity: is calculated as the number of correct positive predictions divided by the total number of

positives. It is also called recall or True Positive Rate or Genuine Acceptance Rate (GAR) witch is given by
GAR =1-FRR.
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o Tp Tp
Sensitivity Tp+Fn p (2.3)

- Specificity: is calculated as the number of correct negative predictions divided by the total number of

negatives. It is also called true negative rate. It can also be calculated by (1 - speci ficity = FAR).
Tn Tn

Specif icity (2.4)
Tn+Fp N

Precision: is calculated as the number of correct positive predictions divided by the total number

of positive predictions. It is also called positive predictive value.

Precision TP TpTp+FpPpos (2.5)
Equal Error Rate (EER): is calculated as the number of all incorrect predictions divided by the

total number of the classes. EER defined also as the best compromise between FAR and FRR .
The best error rate is 0.0, whereas the worst is 1.0.

EER = FEp+Fn
Tp+Tn+Fp+Fn Fp+Fn (26)
P+N

- Accuracy (ACC): is calculated as the number of all correct predictions divided by the total number

of the dataset. The best accuracy is 100%, whereas the worst is 0.0.

Tp+Tn
Tp+Tn+Fp+Fn

ACC @.7)

Each of this metrics has a percentage describing a certain capability of the model.
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Methodology [Accuracy (%) Execution Time
(ms)
85.3 2.1 4.5 120

raditional
Feature-Based

(SIFT)

Deep Learning-EZ2 1.4 3.2 95
Based (ResNet-|

)

Proposed CNN EZ&: 0.8 2.0 60
Model

Performance Comparison

CONCLUSION

The field of biometric security systems has witnessed remarkable advancements and a shift toward more
secure, efficient, and convenient methods of personal identification. Security has grown increasingly
crucial in recent years. The Finger Vein Authentication System has attracted our interest due to its
robustness, consistency, and high level of performance.

Biometrics, such as fingerprint and iris biometrics, have a lower level of reliability. Finger vein
authentication removes the possibility of tampering since it relies on the fact that each person's veins are
distinct, even if they are identical twins, and reside beneath the skin their whole lives. In recent years, a
number of deep learning algorithms have greatly increased the ability to recognize finger vein patterns.
Finger vein authentication and the deep learning approaches used to build the Finger Vein Recognition
system are the major objectives of this manuscript..
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