

“Design And Analysis Of A Mechanical Four-Wheel Steering Linkage System”

¹Prof. Rajesh Barange, ² Mona Sahu, ³Ankita dawande, ⁴Shubham Nawange, ⁵Sharadha Rathore, ⁶Dikhsha Baraskar

¹Assistant Professor, ^{2,3,4,5,6} Under Graduate Student.

¹Mechanical Engineering Department,

¹Shri Balaji Inst. of Tech. & Management. Betul, Madhya Pradesh, India

ABSTRACT: Traditional vehicles often exhibit understeer or oversteer, which cannot be automatically corrected by conventional steering systems. This limits the vehicle's ability to maintain neutral steering under various driving conditions. The introduction of a four-wheel steering (4WS) system aims to overcome these challenges by improving maneuverability and achieving near-neutral steering. In scenarios such as low-speed cornering, navigating through heavy traffic, or parking in tight spaces, vehicles with longer wheelbases face difficulty due to a larger turning radius. By integrating a 4WS mechanism, the turning radius can be significantly reduced, enhancing the vehicle's agility and control. This project focuses on designing and implementing a mechanical four-wheel steering system that allows the rear wheels to turn in coordination with the front wheels. Depending on the driving condition, the rear wheels can steer either in the same direction or opposite to the front wheels, improving vehicle handling, stability, and parking convenience. Although traditional mechanical 4WS systems are complex and not widely used, some advanced models like the Honda Prelude and Nissan Skyline GT-R have adopted them with success. Our proposed system introduces a simplified, three-mode interchangeable 4WS mechanism that transmits the steering input to the rear wheels, replicating the front-wheel steering action. The system is developed to provide better control and minimize turning effort, particularly in constrained environments.

Index Terms - Efficiency, radius, vehicular, steering, mechanism, equipped, parking.

INTRODUCTION- In conventional two-wheel steering (2WS) systems, only the front wheels are responsible for steering the vehicle. The rear wheels remain fixed and merely follow the path dictated by the front wheels. While this approach works for most standard vehicles, it presents challenges when it comes to maneuvering large or long-wheelbase vehicles in tight spaces. Vehicles with greater dimensions require larger turning radii, making it difficult to navigate through sharp corners, crowded city roads, or compact parking areas. This limitation has led to the development of Four-Wheel Steering (4WS) systems, which offer a more advanced and efficient alternative.

A Four-Wheel Steering system allows both the front and rear wheels to steer, either in the same or opposite directions, depending on the vehicle's speed and maneuvering requirements. This dynamic steering configuration significantly enhances the handling and stability of the vehicle, especially in conditions where traditional 2WS systems fall short. At low speeds, the rear wheels turn in the opposite direction to the front wheels, effectively reducing the turning radius. This makes tasks such as parallel parking, U-turns, and maneuvering in narrow lanes far easier and more efficient.

The mechanism involved in 4WS typically includes actuators, sensors, and control systems that coordinate the movement of all four wheels. In some systems, the driver has control over whether to engage the 4WS or stick to the conventional front-wheel steering. In more advanced models, the system automatically adapts based on driving speed and conditions. For instance, at high speeds, both the front and rear wheels turn in the same direction. This reduces the lateral force acting on the vehicle, improves stability, and enhances safety during lane changes or evasive maneuvers.

One of the key advantages of four-wheel steering lies in its versatility. It is especially useful in heavy-duty and commercial vehicles such as trucks and trailers, where the long wheelbase can make tight turns nearly impossible. In agricultural vehicles like tractors and large farm trucks, 4WS improves field maneuverability and efficiency. It also provides better control when towing large trailers, as the rear-wheel steering helps counterbalance the turning dynamics.

The concept of four-wheel steering is not entirely new. It has been used in motorsport applications such as rally racing, where extreme agility is crucial. One of the first widely recognized vehicles to implement this system was the Peugeot 405, which debuted during the 1988 Pikes Peak International Hill Climb. Since then, several automotive manufacturers have adopted and refined the 4WS system for both performance and utility vehicles.

In urban environments, where drivers often face challenges related to limited parking space and dense traffic, a four-wheel steering system proves to be an ideal solution. It enhances driver comfort by reducing the physical effort required to maneuver the vehicle and provides a more responsive and intuitive driving experience. In this project, a prototype of the four-wheel steering system has been developed and analyzed to demonstrate its functionality and benefits. The implementation of such a system can lead to significant improvements in vehicular performance, making it an important innovation in the field of automotive design.

OBJECTIVES –

1. Significant Reduction in Turning Radius - The primary goal is to decrease the turning radius of the vehicle by approximately 45–55%, which allows vehicles to maneuver easily in tight spaces. This is achieved by enabling the **rear wheels to turn in coordination** (either in the same or opposite direction) with the front wheels.

2. Easier Parallel Parking - Parallel parking becomes significantly simpler with four-wheel steering, as the rear wheels can turn in the **opposite direction** of the front wheels at low speeds, allowing the car to move more **diagonally** into tight parking spots with minimal adjustments. This minimizes the driver's effort and parking time.

3. Enhanced Maneuverability at Junctions and Sharp Turns- The system ensures better **cornering** at low speeds, especially at crowded intersections and roundabouts. Rear wheels turning opposite to the front wheels help the vehicle navigate tight turns without the need to reverse or make multiple adjustments.

4. Reduced Driver Effort and Fatigue- By improving the vehicle's **handling characteristics**, this system reduces the strain on the driver. The turning force is distributed across all four wheels, requiring less steering input and making it easier to control, especially during repetitive steering in traffic or long drives.

5. Improved Safety on Slippery and Uneven Roads- On wet, icy, or rough surfaces, four-wheel steering enhances stability by allowing the **rear wheels to assist** in the vehicle's directional control. This reduces the chances of skidding and helps maintain better **traction and alignment**, especially during emergency maneuvers.

METHODOLOGY DESIGN-

The methodology design for this project revolves around the implementation of a Four-Wheel Steering (4WS) system, which enhances vehicle maneuverability, stability, and safety. The system consists of various mechanical components and linkage arrangements, working cohesively to transmit steering motion to all four wheels of the vehicle. The key focus is on the appropriate selection and arrangement of linkages, tires, and mechanical motion transfer elements to ensure precise control and responsiveness under various driving conditions.

1 Linkages-

Linkages are foundational components in mechanical systems, acting as the framework for transmitting motion and force. In a 4WS system, linkages connect the steering mechanism to both front and rear wheel assemblies. A linkage is typically composed of a series of rigid bodies (commonly called links), connected using rotary or sliding joints that allow controlled relative motion.

There are two broad categories of linkages: **simple planar linkages** and **complex specialized linkages**.

- **Simple planar linkages** perform basic mechanical functions and maintain motion within a single plane.
- **Complex specialized linkages** enable intricate motion paths and greater degrees of freedom.

The linkages used in our project primarily serve three functional goals:

1. **Function Generation** – Ensuring consistent and proportional motion transmission between input (steering wheel) and output (wheels).
2. **Path Generation** – Determining the exact path that a particular point on the linkage traces during motion.
3. **Motion Generation** – Governing how the entire mechanism moves, particularly how the rear wheels react to the front wheel input.

Linkage systems chosen include various configurations based on the required mechanical advantages and steering modes.

2 Types of Linkage Mechanisms Employed-

a) Reverse-Motion Linkage

A reverse-motion linkage enables the transmission of force or motion in opposite directions. In this setup, an input link, typically in the form of a lever, pivots around a central axis. When the pivot is equidistant from both the input and output links, the resulting motion is symmetrical but opposite in direction. This kind of linkage is instrumental when implementing **opposite-phase rear wheel steering**, which is particularly useful at low speeds to reduce turning radius. Adjustments in pivot positioning allow for tailoring mechanical advantage and steering responsiveness.

b) Push-Pull Linkage

The push-pull linkage operates by transferring motion in the same direction for both input and output links. When an input force is applied (pushed or pulled), the output reacts in unison. This system is useful in **same-phase steering** where the front and rear wheels turn in the same direction, which increases lane-changing stability at high speeds. A push-pull linkage often forms part of a four-bar system, which can continuously rotate without altering its functionality.

c) Parallel-Motion Linkage

This mechanism maintains a consistent distance and orientation between two moving components. The opposing links form a parallelogram structure with equal pivot spacing, ensuring synchronized motion. In the context of 4WS, it helps maintain **consistent angular alignment** between connected wheels or suspension parts, especially useful in maintaining balance during simultaneous turning.

d) Bell-Crank Linkage

The bell-crank linkage alters the direction of applied force or motion, typically by 90 degrees. This mechanism is composed of two cranks joined at a central pivot and bent at right angles. It is effective in compact spaces, enabling motion redirection from horizontal to vertical or vice versa. In steering systems, bell-crank linkages facilitate the routing of control forces around obstacles or through limited-space assemblies, allowing more flexible positioning of steering components.

e) Crank-Rocker Mechanism

A crank-rocker mechanism is a four-bar linkage that converts rotary motion into oscillatory motion. It has one fixed link (the frame), a crank (which rotates), a coupler (which connects the crank and the rocker), and a rocker (which oscillates). This mechanism is valuable in systems where continuous rotation at the steering column must be converted into a limited back-and-forth motion at the wheel end. The crank-rocker ensures precise angular displacement suitable for steering alignment.

Fig.: (A) Four-Wheel Steering Linkage System”

Tyres-

The tires are crucial components that interface directly with the road. In a 4WS system, each wheel's orientation and motion must be carefully controlled, especially when rear wheels are steered in coordination with the front. The tires used must ensure:

- **Strong lateral grip** for accurate response to turning input.
- **Flexible sidewalls** to accommodate varying steering angles without deforming excessively.
- **Durability** to withstand the mechanical stresses of active rear steering.

Tires with reinforced shoulder blocks and optimized tread patterns improve handling in both low-speed and high-speed maneuvers. Additionally, uniform tire sizing and material consistency are critical to prevent differential motion or uneven wear in a 4WS system.

Motion Transmission System-

The design of the motion transmission system integrates these linkages with actuators and mechanical fasteners to coordinate front and rear wheel motion. The system uses:

- **Actuators** to translate steering inputs into physical movements of rear wheels.
- **Bolts, rivets, and pivot pins** to allow controlled rotation between links.
- **Flexible joints and universal couplings** for accommodating steering system misalignments and multi-angle movement.

Depending on the mode selected (opposite-phase or same-phase steering), the motion is altered accordingly to the rear wheels. This is either done mechanically via specially designed linkages or electronically through a drive-by-wire system that interprets driver input and adjusts rear wheel angle appropriately.

Integration and Prototyping-

The integration of all components is done keeping in mind vehicle ergonomics, weight distribution, and real-time control. The final prototype combines:

- **A custom steering rack** that distributes motion to both front and rear systems.
- **A modular linkage arrangement** allowing quick adjustments for different steering modes.

- **Test setups** for evaluating turning radius, steering angle variation, and force requirements under different loads and speeds.

Nuts and Bolts: A nut is a fastener with threaded hole. They are used in conjunction with a mating bolt to fasten many parts together. The two are kept together by combining their threads together. A bolt is a thread fastener type with an external male thread. Nuts and Bolts DC motor: It is a device that converts direct electrical current into useful mechanical energy. In our project, we have used a simple DC motor of 60RPM which is enough to demonstrate the working of the four wheel steering system. DC motor **Steering:** It is the assembly of various components (linkages) fastened together to allow the vehicle to pursue a desired course of path. Its primary use is to help the driver to guide the vehicle efficiently. Four wheel steering system is used to improve steering response and give less effort to the driver's hands while driving. It is also used to decrease the turning radius of the vehicle. Also, it helps in easing the high speed lane changing.

RESULTS AND DISCUSSION-

The four-wheel steering system is designed to improve upon traditional two-wheel and four-wheel steering systems, offering superior results in both low-speed and high-speed conditions. One of the most significant advantages of this system is the reduction in the load exerted on the driver's hands, a common issue with conventional steering systems. Traditional steering systems require considerable physical effort, especially when maneuvering in tight spaces or making sharp turns. In contrast, the four-wheel steering system reduces this strain by making the steering operation smoother and more effortless.

The system works by enabling the rear wheels to move in coordination with or in the opposite direction to the front wheels, depending on the driving conditions. At low speeds, such as during parking or navigating tight corners, the rear wheels turn in the opposite direction to the front wheels, decreasing the vehicle's turning radius and making it easier to maneuver. At higher speeds, the rear wheels align with the front wheels, enhancing vehicle stability and control during lane changes and high-speed driving.

This steering system is particularly advantageous in urban environments, where space is limited, and maneuverability is crucial. In countries like India, where traffic congestion and parking space shortages are common, the four-wheel steering system can significantly improve the ease of parking and overall vehicle handling. The ability to park in tighter spaces and make smoother, more precise turns without taking up excessive space is a major benefit in crowded areas. Additionally, the system's enhanced maneuverability contributes to safer driving by improving control over the vehicle in both slow and fast-moving traffic.

CONCLUSION-

This methodology design section outlines a structured and detailed approach to developing a 4WS system using specialized linkage mechanisms and motion transmission components. The combination of reverse-motion, push-pull, parallel-motion, bell-crank, and crank-rocker linkages allows for sophisticated control over rear-wheel behavior, improving maneuverability, safety, and comfort. Through this mechanical innovation, the prototype aims to demonstrate a significantly reduced turning radius and enhanced handling—particularly in tight urban environments and high-speed lane changes.

REFERENCES-

- [1] Four wheel steering report, <http://www.scribd.com/doc/34677964/FourWheel-Steering-report>,
- [2] Four-wheel steering, <http://www.wisegeek.com/what-is-four-wheelsteering.htm>
- [3] Four-wheel steering, <http://what-whenhow.com/automobile/four-wheel-steering4wsautomobile/>
- [4] "Honda Prelude Si 4WS: It Will Never Steer You Wrong," Car and Driver, Vol. 33, No. 2, pp. 40-45, August 1987.

[5] S. Sano et. al., "Operational and design features of the steer angle dependent four wheel steering system." 11th International conference on Experimental safety vehicles, Washington D.C 1988.

[6] Jack Erjavec., Automotive Technology, A System Approach, 5th Edition, 2010.

[7] Alireza Alfi and Mohammad Farrokhi, "Hybrid state-feedback slidingmode controller using fuzzy logic for four-wheel-steering vehicles." http://www.iust.ac.ir/files/ee/farrokhi_0a5f0/journal_papers/j13.pdf,

[8] M. Abe, "Vehicle Dynamics and Control for Improving Handling and Active Safety: From Four-Wheel-Steering to Direct Yaw Moment Control," in Proc. Institution of Mechanical Engineers, Part K, Journal of Milti-body Dynamics, vol. 213, no. 4, 1999.

[9] Lee, A.Y., "Vehicle Stability Augmentation Systems Designs for Four Wheel Steering Vehicles," ASME Journal of Dynamical Systems, Measurements and Control, Vol. 112, No. 3, pp. 489-495, September 1990.

