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Abstract: Artificial Intelligence (Al) is increasingly influencing high-stakes decision-making across various
domains, particularly within the criminal justice system, where predictive risk assessment models inform
decisions regarding parole, sentencing, and bail. The Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS) tool has been widely utilized to assess recidivism risk; however, it has
also faced scrutiny due to potential racial biases, especially its disproportionate false positive rates (FPR) for
African- American individuals compared to Caucasian and Hispanic counterparts. This study conducts a
fairness analysis of COMPAS-based predictions using machine learning models, evaluating the impact of
different classifiers on racial groups and examining whether mitigation techniques can improve fairness
outcomes. Our analysis employs Logistic Regression, Decision Trees, and Random Forest classifiers to
evaluate the fairness of risk assessments. To address these biases, we implement fairness-aware adjustments,
which progressively reduce disparities within each classifier. After mitigation, the FPR for African-
Americans decreases by 11%, and the Disparate Impact Ratio improves significantly, reducing from 0.11 to
0.08 (Random Forest). These reductions indicate that fairness-aware methods can enhance equitable
outcomes while maintaining model performance. We advocate for continued fairness interventions, policy
regulations, and interdisciplinary efforts to ensure the responsible deployment of Al in real-world decision-
making processes for high-impact applications such as criminal justice, where biased decisions can have
severe consequences.

Index Terms - Machine learning, Al Fairness, Bias Mitigation, Demographic Parity Difference, Social
Impact.

I. INTRODUCTION

Predictive risk assessment models, using machine learning algorithms, are now crucial in parole, sentencing,
and bail decisions. These models predict recidivism or future criminal behavior to guide decision-makers.
For example, studies on the New York State Parole Board suggest that algorithmic assessments could
double parole release rates without increasing crime and reduce racial disparities in release decisions [1,2].
However, the implementation of these tools is not without controversy. Critics argue that these models can
perpetuate or even exacerbate existing biases, particularly racial biases, as seen in the use of risk assessment
software in bail and sentencing decisions across the United States [3]. Despite these challenges, there are
efforts to improve fairness and accuracy, such as using optimal transport and conformal prediction sets to
adjust for biases and enhance predictive performance [4,5]. Overall, while predictive risk assessment models
hold promise for more informed and equitable decision-making in criminal justice, their deployment must
be carefully managed to mitigate biases and ensure fairness [6,7]. The COMPAS algorithm impacts on the
criminal justice system by perpetuating racial disparities and influencing judicial decisions. Used in the
United States for predicting recidivism, it has been criticized for higher false positive rates for Black
offenders compared to White offenders, raising concerns about fairness and equity [8,9]. This bias is rooted
in the use of arrest data as a proxy for criminal offending, which itself is racially biased, thus embedding
systemic racial disparities into the algorithm's predictions [10]. The ProPublica investigation highlighted
these biases, sparking widespread debate about the ethical implications of using such tools in the justice
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system [9]. Judges in states like Florida and Wisconsin rely on COMPAS scores to make decisions about
incarceration, effectively delegating normative decisions to proprietary software, which can favor jailing
over release and exacerbate racial inequities [11,12]. The algorithm's lack of transparency and
accountability further complicates its integration into judicial processes, as it challenges the balance
between personal freedoms and public safety [13]. Ethical considerations, including privacy threats and the
need for robust policies, are crucial to ensure that Al tools like COMPAS enhance justice rather than
perpetuate discrimination [14,15]. The ongoing discourse in both the data science and legal arenas
underscores the necessity for interdisciplinary research and policy development to address algorithmic bias
and promote fairness in the criminal justice system [16,17].

1. LITERATURE REVIEW

Predictive models like logistic regression, decision trees, and random forests predict outcomes such as
parole decisions or recidivism risk. However, they struggle to balance accuracy and fairness. Studies show
that, although accurate, these models often fail to meet fairness standards across various metrics, indicating
a tradeoff between accuracy and fairness [18,19]. Efforts to address these issues include optimizing decision
trees using evolutionary algorithms to balance accuracy and fairness, as demonstrated by Qi et al., who
propose a multi-objective optimization approach that refines decision trees to promote fairness while
maintaining interpretability [20]. Additionally, techniques such as FairRepair have been developed to rectify
biases in decision trees and random forests by flipping outcomes to improve fairness, providing formal
guarantees of soundness and completeness [21]. Despite these advancements, the integration of fairness into
machine learning models remains a challenging endeavor, which emphasizes the need for a holistic
evaluation of predictive policing technologies to ensure they do not exacerbate social injustices [22].
Overall, while predictive models hold promise for enhancing decision-making in criminal justice, ongoing
research and development are crucial to ensure these systems are both fair and effective. Random forests,
for instance, are particularly effective due to their ensemble learning approach, which enhances robustness
to noise and scalability, making them suitable for high-dimensional crime data analysis [23,24]. In
comparative studies, random forests have demonstrated superior accuracy over logistic regression in
classifying correlations of arrest among probationers and parolees, suggesting their potential for enhanced
risk classification in criminal justice applications [25]. Decision trees, while slightly less accurate than
random forests, offer better interpretability, which is crucial for ensuring fairness and. transparency in
predictive modeling [20]. Moreover, hybrid models that combine decision trees and random forests have
shown improved predictive power, indicating potential advancements in processing speed and accuracy
[26]. Despite these advancements, challenges such as bias in historical data and the need for fairness remain,
necessitating multi-objective optimization methods to balance accuracy and fairness in predictive models
[20]. Additionally, the application of these models in real-world settings requires careful consideration of
ethical implications, emphasizing the importance of transparency and accountability [24]. Overall, while
machine learning models like random forests and decision trees offer promising tools for reducing FPR and
FNR in criminal justice, ongoing research and development are essential to address their limitations and
enhance their applicability in diverse contexts. In the realm of criminal justice, predictive models such as
logistic regression, decision trees, and random forests are employed to address the Demographic Parity
Difference, which is a measure of fairness concerning sensitive attributes like race or gender. The Fair Tree
Classifier, which employs a compound splitting criterion combining strong demographic parity with ROC-
AUC, extends to bagged and boosted tree frameworks, allowing for the simultaneous consideration of
multiple sensitive attributes and tuning the performance-fairness trade-off [27]. Logistic regression, along
with other models like decision trees and random forests, has been applied in crime analysis to predict crime
incidents with an average accuracy of approximately 86%, showcasing its utility in structured datasets [28].
However, achieving fairness in these models is challenging due to inherent biases in historical data, which
can be amplified by algorithms. Approaches like conformal prediction sets aim to remove unfairness from
risk assessments, ensuring fair forecasts across racial groups [29]. Additionally, the mixed integer
optimization framework for decision trees enables the incorporation of fairness constraints. This framework
offers an analysis of the balance between interpretability, fairness, and accuracy, noting a minor decrease in
accuracy to achieve improved fairness [30].
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I11l. METHODOLOGY
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The fairness-aware machine learning pipeline aims to balance predictive performance with bias mitigation.
It starts with data preparation, including feature selection, handling missing values, encoding categorical
variables, and scaling. Logistic Regression, Decision Tree, and Random Forest models are trained and
evaluated for accuracy and fairness across demographic groups. A two-stage fairness mitigation strategy is
applied: ExponentiatedGradient with EqualizedOdds constraints, followed by ThresholdOptimizer to refine
decision boundaries and reduce false negative rate gaps. Sensitive attributes like race are tracked to measure
bias. The pipeline evaluates performance and fairness metrics at baseline, intermediate, and final stages to
show improvements in both accuracy and fairness.

i Dataset

The dataset used in the current study is publicly available at [31]. ProPublica acquired two years of
COMPAS scores from the Broward County Sheriff’s Office in Florida, covering 18,610 people scored in
2013 and 2014 through a public records request.

ii  Models

The models compared in this study are Decision Tree, Random Forest, and Logistic Regression. Decision
trees and Random Forest are chosen for their accuracy with large network intrusion data, while Logistic
Regression is selected for its interpretability and reliable performance in binary classification.

Decision Tree: A supervised machine learning algorithm used for both regression and classification. It
builds a tree top-down, splitting data at each node based on attribute values. Leaf nodes represent class
labels or regression values. Metrics like Entropy or Gini Index measure data impurity at each node.

Random Forest: This supervised machine learning algorithm is used for regression and classification,
utilizing ensemble techniques to combine multiple decision trees. For classification, it uses majority voting;
for regression, it averages outputs to reduce overfitting and improve generalization. It remains popular due
to its reliable performance.

Logistic Regression: This supervised algorithm is used for binary classification, predicting output
probabilities between 0 and 1. It is simple, interpretable, and good with linearly separable data but less
effective for complex non-linear relationships.

iii Performance Metrics

The performance of the proposed technique is evaluated using standard classification metrics, Precision,
Recall, Accuracy and F1-Score, Confusion matrix. In classification tasks involving images, the terms TP
(True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) are used to evaluate the
classifier's performance. The terms "True" and "False" indicate whether the classifier's prediction aligns
with the actual classification, while "Positive” and "Negative" refer to the classifier's prediction. The
calculation methods for these metrics are detailed below.

IJCRT2504631 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ] f472


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Precision is the ratio of the correctly classified actual positives to everything classified as positive.
TP

TP +FP

Precision =

Recall is the proportion of all actual positives that were classified correctly as positives.

‘F1 Score’ or ‘F-measure’ is a measure that combines precision, and recall is the harmonic mean of

precision and recall.

2 = precision * recall
F1 Score =

precison + recal

The false positive rate (FPR) is the ratio of false positives (FP) to the total number of actual negatives (FN +

TN)
FP

TN +FP

FPR =

The False Negative Rate (FNR) is the ratio of false FN to the total number of actual positive (FN + TP)
FN
PR = Ny

DPD (Demographic Parity Difference) is a fairness metric used to measure the disparity in outcomes
between different demographic groups. It evaluates whether a machine learning model's predictions are
independent of a sensitive attribute (e.g., race, gender).

DPD =|P(Y=1/A=0)-P(Y =1|A=1)|

¥ is the predicted outcome.

A is the sensitive attribute (e.g., race, gender).
P(¥ = 1|4 = 1) is the probability of predicting a positive outcome when the sensitive attribute is 1.

P(¥ = 1]4 = 0) is the probability of predicting a positive outcome when the sensitive attribute is 0.
IV. RESULTS AND DISCUSSION

Figure 1 FNR for Random Forest

FPR Throughout Mitigation Process - Randorm Forest
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Figure 1 shows a decline in false positive rates (FPR) across three mitigation stages for racial groups. The
African-American group's FPR drops from 0.45 (Baseline) to 0.40 (Hybrid). The Caucasian group's FPR
decreases from 0.23 (Baseline) to 0.21 (Hybrid), while the Hispanic group's FPR reduces from 0.33
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(Baseline) to 0.30 (Hybrid). Despite successful reduction in FPRs, relative disparities between groups
persist, indicating that algorithmic interventions can reduce but not eliminate racial differences in false
positives.

Figure 2 FNR for Random Forest
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Figure 2 shows the FNR decreasing across three mitigation stages, though less significantly than DPD. The
African-American group's FNR drops from 0.26 to 0.24, with similar small reductions for Caucasian and
Hispanic groups. These results suggest that while fairness metrics improve, reducing false negatives still
poses challenges without compromising predictive performance for different racial groups.

Figure 3 DPD for Random Forest
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Figure 3 illustrates the impact of the mitigation process on different racial groups in a Random Forest
model, focusing on DPD at three stages: Baseline, Mitigated, and Hybrid. In the figure, DPD consistently
decreases across all racial groups as mitigation strategies are applied, with the Hybrid stage showing the
lowest DPD values. The most notable reduction is observed for African-American individuals (from 0.11 at
Baseline to 0.08 in Hybrid), followed by Caucasian and Hispanic groups. This indicates that mitigation
efforts reduce disparate impact, although disparities still exist.
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Table 1 shows the FPR, FNR, dpd, Precision, Recall, F1-Score for Logistic Regression and Decision Tree

by race.

model Logistic Logistic Logistic Decision | Decision | Decisio
Regressio | Regressio | Regressio | Tree Tree n
n n n Tree

race African- Caucasian | Hispanic | African- | Caucasia | Hispani
American America | n c

n

FPR_ 0.48 0.26 0.35 0.47 0.25 0.34

Baseline

FPR_ 0.43 0.25 0.33 0.43 0.24 0.32

Mitigated

FPR_ 0.41 0.24 0.32 0.41 0.23 0.31

Hybrid

FNR_ 0.3 0.20 0.25 0.28 0.19 0.24

Baseline

FNR_ 0.29 0.19 0.24 0.27 0.18 0.23

Mitigated

FNR_ 0.28 0.18 0.23 0.26 0.17 0.22

Hybrid

dpd_ 0.13 0.10 0.07 0.12 0.08 0.05

Baseline

dpd_ 0.1 0.08 0.05 0.09 0.06 0.04

Mitigated

dpd_ 0.08 0.07 0.04 0.07 0.05 0.03

Hybrid

Precision | 0.65 0.82 0.74 0.67 0.84 0.76

Baseline

Precision | 0.67 0.83 0.75 0.69 0.85 0.77

Mitigated

Precision | 0.68 0.84 0.76 0.70 0.86 0.78

Hybrid

Recall_ 0.6 0.72 0.68 0.62 0.73 0.70

Baseline

Recall_ 0.62 0.73 0.69 0.63 0.74 0.71

Mitigated

Recall_ 0.63 0.74 0.70 0.64 0.75 0.72

Hybrid

F1-Score_ | 0.62 0.75 0.71 0.64 0.77 0.74

Baseline

F1-Score_ | 0.64 0.76 0.72 0.66 0.78 0.75

Mitigated

F1-Score_ | 0.65 0.77 0.73 0.67 0.79 0.76

Hybrid

IJCRT2504631 | International Journal of Creative Research Thoughts (IJCRT)www.i'|crt.org| f475


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Table 2 shows the FPR, FNR, dpd, Precision, Recall, F1-Score for Random Forest by race.

Random Random
model Random Forest Forest Forest
race African-American | Caucasian Hispanic
FPR_Baseline 0.45 0.23 0.33
FPR_Mitigated 0.41 0.22 0.31
FPR_Hybrid 0.40 0.21 0.30
FNR_Baseline 0.26 0.18 0.23
FNR_Mitigated 0.25 0.17 0.22
FNR_Hybrid 0.24 0.16 0.21
dpd_Baseline 0.11 0.08 0.04
dpd_Mitigated 0.09 0.07 0.03
dpd_Hybrid 0.08 0.06 0.02
Precision_Baseline | 0.68 0.85 0.77
Precision_Mitigated | 0.70 0.86 0.78
Precision_Hybrid 0.71 0.87 0.79
Recall _Baseline 0.62 0.74 0.70
Recall_Mitigated 0.63 0.75 0.71
Recall Hybrid 0.64 0.76 0.72
F1-Score Baseline | 0.64 0.78 0.75
F1-Score Mitigated | 0.65 0.79 0.76
F1-Score_Hybrid 0.66 0.80 0.77

V. CONCLUSIONS

The study finds that mitigation strategies reduce disparities in FPR, FNR, and DPD across racial groups.
FPR consistently decreases, with African-Americans improving from 0.45 to 0.40. FNR declines less
significantly, showing the challenge of reducing false negatives without harming predictive performance.
The most notable reduction is in DPD, especially for African-Americans (0.11 to 0.08). Though
improvements are made, disparities persist, requiring more effective fairness-awareinterventions and policy
measures for equitable Al-driven decision-making in criminal justice.
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