

Carbon Capture And Utilization: A Green Innovation Frontier

Dr Sarwat .F.Usmani

Associate professor

IIMT, Aligarh

Abstract

Carbon capture and utilization (CCU) has risen as a transformative green innovation frontier, addressing the dual challenge of moderating climate change and fostering sustainable development. CCU technologies capture carbon dioxide (CO₂) emissions outflows from industrial sources and the atmosphere transforms them into profitable and valuable products such as fuels, chemicals, and construction materials. This paper investigates the most recent advancements in CCU technologies, their environmental and economic benefits, and their potential to contribute to a global net-zero emission goals. However, CCU technologies face many challenges, including high costs, scalability issues and energy demands energy which limit their widespread adoption. This paper aims to explore the role of CCU as a sustainable innovation, examining its technological advancements, economic and environmental benefits, and the barriers to its implementation. This study provides actionable insights for researchers, policymakers, and industry pioneers to accelerate the selection of CCU technologies as a key pillar of green innovation.

Keywords: CCU, Green innovation and Sustainable development.

Objectives

1. To analyze the role of carbon capture and utilization (CCU) in mitigating greenhouse gas emissions.
2. To explore the latest advancements and innovations in CCU technologies.
3. To evaluate the economic and environmental benefits of CCU in achieving sustainability goals.
4. To identify barriers to the scalability and widespread adoption of CCU technologies.
5. To propose strategies for integrating CCU into industrial and policy frameworks.

Introduction

One of the main causes of climate change is the rising atmospheric concentration of carbon dioxide (CO₂), which calls for immediate action to cut emissions and move toward a sustainable future. Utilizing carbon capture offers a viable way to cut emissions while simultaneously repurposing carbon as a useful resource, promoting a more circular and sustainable method of managing carbon emissions (Rogelj et al., 2018). This offers the combined advantages of lowering greenhouse gas emissions while producing useful goods using carbon that has been trapped. CCU incorporates cutting-edge technologies to transform CO₂ into fuels, chemicals, building materials, and other industrial goods, in contrast to standard carbon capture and storage (CCS), which only concentrates on sequestration. Thus promoting a carbon economy that is cyclical. According to the Sustainable Development Goals (SDGs) of the UN, sustainable development places a strong emphasis on the necessity of social progress, environmental preservation, and economic expansion. By encouraging green innovation, lowering reliance on fossil fuels, and supporting cleaner industrial processes, CCU is in line with these ideals. Industries may reduce their carbon footprints and help create a more robust, low carbon economy by combining CCU technologies with renewable energy sources. Research and development in materials science, chemical engineering, and biotechnology are all fuelled up by green innovation, which is essential to the advancement of CCU technologies. The field of carbon management is changing due to emerging technologies including direct air collection, bio-based conversion, and electrochemical transformation, which provide scalable and financially feasible substitutes for traditional industrial processes. But difficulties like to fully realize CCU's potential, issues including high energy requirements, economic viability, and associated policies must be resolved. This study examines CCU's function as a green innovation frontier, examining its effects on technical developments, sustainable development, and the prospects of low carbon sectors. This study intends to demonstrate how CCU might support a sustainable and circular carbon economy by looking at important innovations, regulations, and economic feasibility.

Carbon capture Technique and Technology

A key technique for slowing down climate change is carbon capture and storage (CCS), which lowers carbon dioxide (CO₂) emissions from energy and industrial sources. CO₂ is captured before it reaches the atmosphere, then transported to a storage facility and safely stored underground. A number of carbon capture methods, including as oxy-fuel combustion, pre-combustion capture, and post-combustion capture, have been developed. To reduce their environmental impact, these techniques are being used in a variety of industries, including steel, cement, and power generation (Metz et al., 2005). Post-combustion capture, which involves removing CO₂ from power plant and industrial facility flue gases, is one of the most used techniques. This method depends on chemical solvents to specifically extract CO₂ from exhaust gases, such as absorbents based on amines. After being captured, the CO₂ is compressed and moved for use or storage. Because it can be retrofitted into existing power plants without requiring major changes to the combustion process, post-combustion capture is favourable (Boot Hand ford. et al., 2014). Another efficient method that involves eliminating CO₂ prior to fuel combustion is pre-combustion capture. Usually, gasification, the process of turning fossil fuels like coal or natural gas into a mixture of hydrogen and CO₂ is used to accomplish this. After that, the hydrogen can be used as a cleaner fuel source, and the CO₂ is collected and stored. Although this approach is more effective than post-combustion capture, it necessitates significant infrastructure changes, which makes it more appropriate for new power plants rather than retrofitting existing ones (Rubin et al., 2012). Oxy-fuel combustion is a potential method that facilitates easier CO₂ extraction while improving combustion efficiency. This method creates a concentrated stream of CO₂ and water vapor by burning fuel in an oxygen rich environment as opposed to ordinary air. The water

vapor condenses after cooling, leaving behind almost pure CO₂ which can be compressed and stored. Oxy-fuel combustion is highly effective in reducing emissions but requires oxygen separation units, which can be energy intensive (Allam et. al., 2017).

Beyond capture methods, CO₂ can be delivered to safe storage locations by trucks, ships, or pipelines. In order to store carbon, CO₂ is usually injected into deep geological formations like saline aquifers or depleted oil and gas reservoirs. A popular method for increasing oil extraction and storing CO₂ underground is enhanced oil recovery, which involves injecting CO₂ into oil fields. As an alternative, carbon utilization strategies are emerging, where captured CO₂ is converted into useful products such as building materials, fuels, or chemicals, contributing to a circular carbon economy (Lackner et al., 2012).

Advancements in carbon capture technologies continue to improve efficiency and reduce costs. Instead of using point sources, new technologies like direct air capture (DAC) seek to extract CO₂ straight from the surrounding air. Businesses like Carbon Engineering and Clime Works are creating DAC technologies that extract CO₂ using liquid solvents or solid sorbents so that it may be stored or used again. Although DAC has potential for extensive carbon removal, its high energy demand and operational costs remain key challenges (Keith et al., 2018).

Carbon capture techniques and technologies are playing a vital role in reducing CO₂ emissions and combating climate change. While traditional CCS methods such as post-combustion and pre-combustion capture continue to be refined, newer approaches like DAC and carbon utilization are expanding the scope of carbon management. Scaling these technologies and achieving significant reductions in global carbon emissions will require ongoing investment in research, infrastructure, and regulations. With recent developments emphasizing efficiency, scalability, and integration with current industrial processes, carbon capture methods have undergone substantial evolution over time. According to a thorough examination, carbon capture and storage projects can function well on a wide scale, contributing to global emission reduction efforts "Carbon capture and storage (CCS) projects are evolving rapidly, demonstrating their potential as a scale "Recent progress in carbon dioxide capture technologies highlights innovations in pre-combustion, post-combustion, and oxy-fuel combustion methods solution for large scale carbon dioxide mitigation that increases efficiency and lowers costs (Kumar & Singh, 2024) (Clean Air Task Force, 2024). In addition to lowering emissions, turning collected CO₂ into methane and methanol boosts the economy by producing useful products (Pacific Northwest National Laboratory, 2024). In order to reduce industrial carbon footprints, "carbon capture and storage technologies are being adopted in industries such as cement, steel, ethanol, and power plants, demonstrating their feasibility" (Springer, 2023). The use of nano material's in absorption based CO₂ capture systems has significantly enhanced the efficiency of carbon sequestration" (Gupta et al., 2022).

Ethical, Moral, and Social Conditions in Carbon Capture and Utilization Carbon Capture and Utilization is emerging as a key technique in addressing climate change by capturing carbon dioxide emissions and repurposing them into useful products such as fuels, chemicals as well as building supplies. Although CCU offers chances to lower CO₂ levels in the atmosphere, it also brings up a number of moral, ethical, and societal issues. These issues include public perception, economic equity, long term sustainability, and environmental justice. To guarantee that CCU technologies are implemented ethically and make a significant contribution to climate mitigation, these issues must be resolved.

Ethical Considerations in CCU

One of the primary ethical concerns regarding CCU is the potential for moral hazard, where businesses could use CCU as an excuse to keep releasing CO₂ instead of switching to more environmentally friendly energy

sources (Anderson & Peters, 2016). CCU may impede investments in renewable energy and other sustainable practices by concentrating on capturing emissions rather than preventing them in the first place. This begs the question of whether CCU is being utilized as a real carbon mitigation strategy or as a way to postpone structural adjustments that are required in high emission industries like cement and fossil fuel production. The equitable allocation of CCU risks and benefits presents another ethical conundrum.

The deployment of CCU facilities often requires significant financial investment, and wealthier countries or corporations may have more access to these technologies than developing nations.

This disparity could lead to an unjust scenario where developed nations continue their industrial activities while poorer regions suffer the consequences of climate change without access to mitigation technologies (Gupta & Van Asselt, 2019). Ethical decision making in CCU deployment must ensure that benefits, such as economic growth and reduced emissions, are distributed equitably across different communities and nations.

Moral Issues in CCU

In debates concerning the legitimacy of CCU as a climate solution, the moral obligation of governments and corporations to implement it is equally crucial. Instead of engaging in green washing, when businesses claim environmental gains while maintaining damaging activities, industries who engage in CCU must make sure they are lowering overall carbon emissions (Shue, 2017). Sustaining public confidence requires openness in reporting emission reductions and the performance of CCU systems. Furthermore, there are ethical questions about CCU's long term viability. Converting collected CO₂ into fuels that are then burned and released back into the atmosphere is a common practice in CCU applications. This does not help remove CO₂ permanently, even if it might reduce net emissions in the short term (Mac Dowell et al., 2017).

A morally responsible CCU strategy should prioritize applications that lead to long term or permanent carbon storage, such as mineralization processes that convert CO₂ into solid materials like plastics or concrete.

Social Conditions and Public Acceptance

The success of CCU technologies is closely tied to public perception and social acceptance. Many communities are wary of large scale industrial projects, especially those involving the storage and utilization of CO₂. The implementation of CCU may have negative effects on the environment, public health, and the economy (Markusson, Dahl Gjefsen, Stephens, & Tyfield, 2017). To resolve these issues openly and guarantee that CCU initiatives do not disproportionately affect vulnerable groups, governments and businesses must interact with local communities. Economic changes and the possibility of job dislocation are additional social factors to take into account. As CCU technologies proliferate, they may alter employment trends in sectors including manufacturing, construction, and the exploitation of fossil fuels. Workers in high emission industries may face financial difficulties as a result of CCU's potential to upend established labour markets and generate new occupations in carbon management and material manufacturing (Garcia & Berghout, 2021). A just transition framework is needed to support workers in adapting to new economic realities and ensuring that the benefits of CCU are accessible to all. Even while CCU has a lot of potential to lower CO₂ emissions and open up new business opportunities, it needs to be applied in a way that is morally, ethically, and socially appropriate. Researchers, companies, and governance must make sure that CCU technologies are employed in conjunction with deep de-carbonization efforts rather than in substitution of them. For CCU to be implemented successfully and fairly on a worldwide basis, it will be crucial to address concerns of equity, sustainability, transparency, and public engagement.

Carbon Capture and Utilization and Sustainable Industrial Practices

Carbon Capture and Utilization is increasingly being recognized as a crucial component of sustainable industrial practices. CCU can help lower greenhouse gas emissions, encourage resource efficiency, and aid in the shift to a circular carbon economy by absorbing carbon dioxide emissions from industrial operations and turning them into beneficial goods. CCU technologies are being investigated by sectors like manufacturing, construction, and energy in order to meet sustainability objectives while preserving economic feasibility. However, CCU must guarantee long term environmental advantages, energy efficiency, and economic viability in order to be successfully incorporated into sustainable industrial processes.

Role of CCU in Sustainable Industrial Practices

Industries such as cement production, steel manufacturing, and chemical processing are among the largest contributors to global CO₂ emissions. Traditional methods of carbon mitigation, such as energy efficiency improvements and the use of renewable energy, are essential but often insufficient to achieve net zero emissions. CCU lowers the overall industrial carbon footprint by offering an extra way to absorb CO₂ emissions at the source and turn them into useful goods (Mac Dowell et al., 2017). For instance, burning fossil fuels and calcining limestone both create CO₂ emissions during the cement-making process. By capturing these emissions and transforming them into materials with cement-like qualities, CCU technologies can cut emissions per unit of production and the demand for virgin raw materials (Rodriguez et al., 2019). Increasing resource efficiency is a fundamental tenet of sustainable industrial processes. By turning waste CO₂ into useful commodities like chemicals, building materials, and synthetic fuels, CCU supports this objective. This strategy helps create a carbon economy that is circular, where carbon emissions are reused instead of being released into the atmosphere.

For instance, CO₂ derived fuels, such as synthetic methane or methanol, can replace conventional fossil fuels in transportation and energy sectors. Similarly, CO₂ can be used as a raw material for producing plastics and polymers, decreasing reliance on feedstocks derived from petroleum (Pérez-Fortes et al., 2016). In addition to reducing waste, these applications give industry sustainable substitutes for conventional resources. Although CCU has the potential to lower industrial emissions, the energy needed to capture and transform CO₂ is still a problem. To optimize environmental benefits, energy efficiency and integration with renewable energy sources must be given top priority in sustainable CCU operations. For instance, electrochemical CO₂ conversion technologies and direct air captures (DAC) demand large quantities of electricity. These procedures could counteract their carbon reduction benefits if they are fuelled by fossil fuels (Deutz & Bardow, 2021).

To address this, industries are increasingly coupling CCU with renewable energy sources such as wind and solar power. For instance, green hydrogen produced by electrolysis with renewable energy can be mixed with CO₂ that has been captured to produce synthetic fuels with little effect on the environment. Instead of focusing on the economic and environmental benefits of carbon capture and use, this strategy makes sure that CCU helps with decarbonization.

As a potential way to lower carbon dioxide emissions while producing economic value, carbon capture and utilization has drawn a lot of attention. CCU offers benefits to the economy and the environment by recycling CO₂ from industrial sources into useful products. It supports sustainable development, resource efficiency, and decarbonization.

while it also creates a new market opportunities and job prospects. However, its full benefits depend on technological advancements, government support, and integration with renewable energy sources.

Economic Benefits of CCU

CCU enables the conversion of captured CO₂ into commercially valuable products, such as synthetic fuels, chemicals, polymers, and building materials. These industries have the potential to grow into multi-billion-dollar markets encouraging industry diversification and economic growth (Hepburn et al., 2019). Synthetic fuels based on CO₂, for instance, can be a sustainable substitute for fossil fuels, lowering reliance on crude oil and promoting energy security. The CCU sector has the capacity to create jobs in a number of different industries, encompassing material sciences, engineering, chemical processing, and renewable energy. There are prospects for both direct and indirect employment as a result of the specialized labour needed to create CCU infrastructure, such as CO₂ capture plants, transportation networks, and utilization facilities (Garcia & Berghout, 2021). Countries investing in CCU can strengthen their green economy by transitioning workers from high-emission industries into sustainable sectors.

With many governments putting carbon pricing mechanisms like carbon taxes or cap and trade systems into place, industries are under increasing regulatory pressure to decrease emissions. By using CO₂ instead of paying pollution fines, CCU can assist industry in reducing these expenses. According to Perez-Fortes et al. (2016), companies that invest in CCU may be able to sell carbon credits in carbon trading markets, which would make emission reductions profitable. By generating hydrogen and synthetic fuels, CCU may lessen reliance on imported fossil fuels and promote energy security. By using CO₂ as a raw material rather than as a waste, it also promotes the circular economy. Long term cost reductions for enterprises result from this since it lessens the requirement for virgin resources and industrial waste (Mac Dowell et al., 2017).

CCU helps lower CO₂ emissions by capturing them before they enter the atmosphere. While CCU offers the advantage of using CO₂ for beneficial purposes, Carbon Capture and Storage concentrates on permanently storing CO₂ underground. CO₂ is either permanently stored or reused in a way that offsets additional emissions thanks to technologies like mineralization, fuel synthesis, and polymer manufacturing (Fasih et al., 2020).

Carbon intensive raw materials are essential to many industries. CCU makes it possible to produce fuels, concrete, and polymers based on CO₂, which lessens the demand for inputs originating from fossil fuels. For instance, the production of cement, which is one of the most polluting industries, may drastically cut emissions through CO₂ mineralization. Research indicates that adding CO₂ to cement can reduce emissions by 30–50% when compared to conventional techniques (Rodriguez et al., 2019).

As many CCU technologies also collect pollutants like sulphur oxides and nitrogen oxides, lowering industrial CO₂ emissions can also improve air quality. Particularly in cities where industrial pollutants contribute to poor air quality, this results in lower levels of smog, acid rain, and respiratory illnesses (Deutz and Bardow, 2021).

Carbon neutral or even carbon negative solutions can be produced by combining CCU with renewable energy sources. For example, CCU operations like direct air capture and CO₂ to-methanol conversion can be powered by excess renewable energy from solar and wind. This reduces dependency on fossil fuel-based energy by establishing a closed-loop system in which captured carbon is continually recycled (Hepburn et al., 2019). By lowering industrial emissions and generating employment, CCU offers two benefits. CCU promotes sustainable industrial processes, lessens reliance on resources, and advances the circular economy by incorporating CO₂ into value added goods. However, the integration of renewable energy, supportive legislation, and technological advancements are necessary for its success. CCU can be crucial in guaranteeing both environmental preservation and economic resilience as the world economy moves toward decarbonization.

Challenges and Considerations for Sustainable Implementation

The economic viability of CCU's implementation in industrial processes will determine how widely it is used. A large amount of financial investment is needed for many CCU technologies, which are still in the early stages of development. To ensure commercial viability, the market for products derived from CO₂ must also be increased. Governments and businesses need to work together to develop financial incentives, carbon pricing mechanisms, and supportive policies to drive CCU adoption (Hepburn et al., 2019). Permanent carbon elimination is not a result of every CCU application. When the fuels are consumed, certain CCU processes, like the conversion of CO₂ to fuel, produce short-term emissions. Although these uses can lessen dependency on fossil fuels, they don't assist sequester carbon over the long run. Applications that produce permanent carbon storage, including mineralization, where CO₂ is transformed into stable solid carbonates for usage in building materials, should be given priority in sustainable CCU initiatives (Fasihi et al., 2020). A key factor in the success of CCU projects is public acceptance and regulatory backing. Many individuals have doubts about carbon capture technology because they link them to a persistent dependence on fossil fuels rather than sincere attempts to reduce carbon emissions. Clear communication and strict regulations are essential to ensure that CCU is implemented as a sustainability solution rather than a means for industries to delay necessary emissions reductions (Markusson et al., 2018).

Through lowering carbon emissions, increasing resource efficiency, and promoting the circular carbon economy, CCU has the potential to revolutionize industrial sustainability. However, enterprises must make sure that these technologies are applied with an emphasis on long-term carbon reduction, energy efficiency, and economic viability if they want CCU to be a useful sustainability tool. To enable CCU to make a significant contribution to global sustainability, governments, businesses, and researchers must collaborate to create laws, incentives, and technology developments.

Conclusion

One possible way to address the economic and environmental issues related to carbon dioxide emissions is through carbon capture and utilization. CCU provides two benefits: it reduces climate change and generates new economic opportunities by recovering CO₂ from industrial and energy resources and converting it into useful products. However, the creation of affordable technology, encouraging legislation, and integration with renewable energy sources are necessary for its success. For CO₂ based goods like fuels, chemicals, and building materials, CCU opens up new markets. It promotes industrial innovation and the generation of jobs, aiding in the shift to a low-carbon economy. By using captured CO₂ instead of paying penalties, industries can lower carbon taxes and compliance expenses. By absorbing CO₂ before it enters the atmosphere, CCU lowers greenhouse gas emissions. By substituting CO₂ produced raw materials for fossil fuel-based ones, it encourages sustainable production. By lowering related pollutants, it enhances public health and air quality. The high upfront costs of carbon capture infrastructure continue to be a deterrent. Permanent carbon sequestration is not offered by many CCU uses, such as the conversion of CO₂ to fuel. Government incentives and regulatory assistance are essential for CCU's effectiveness in order to promote widespread adoption. Although it is essential to sustainable industrial operations, CCU by itself is not a panacea for climate change. To optimize its impact, it must be used in conjunction with plans to reduce carbon emissions, increase the use of renewable energy, and enhance energy efficiency. To create CCU solutions that are scalable, energy efficient, and commercially feasible, governments, businesses, and researchers must work together. If used successfully, In addition to promoting a circular carbon economy and guaranteeing long term sustainable development and economic resilience, CCU can make a substantial contribution to global decarbonization initiatives. One of the main global goals for reducing climate change is to achieve net-zero emissions, when the quantity of greenhouse gases produced into the atmosphere is equal to the amount

removed. By absorbing CO₂ emissions from energy and industrial sources and turning them into useful goods, carbon capture and utilization plays a critical part in this transformation. CCU can make a substantial contribution to the net-zero emissions target when paired with other decarbonization tactics including the use of renewable energy sources and increases in energy efficiency.

References

1. Hepburn, C., Adlen, E., Beddington, J., et al. (2019). The technological and economic prospects for CO₂ utilization and removal. *Nature*, 575(7781), 87–97.
2. Daggash, H. A., Fennell, P. S., & Mac Dowell, N. (2019). The role and value of negative emissions technologies in decarbonising the UK energy system. *International Journal of Greenhouse Gas Control*, 81, 181–198. <https://doi.org/10.1016/j.ijggc.2018.12.02>
3. Cuéllar-Franca, R. M., & Azapagic, A. (2015). Carbon capture, storage and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts. *Journal of CO₂ Utilization*, 9, 82–102. <https://doi.org/10.1016/j.jcou.2014.12.001>
4. Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO₂ capture and utilization in mitigating climate change. *Nature Climate Change*, 7(4), 243–249. <https://doi.org/10.1038/nclimate3231>
5. Zhang, Z., Hu, Y., Wang, S., & Song, H. (2020). Recent advances in carbon dioxide utilization. *Renewable and Sustainable Energy Reviews*, 125, 109799.
6. Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R., & Vilarino, M. V. (2018). Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In V. Masson-Delmotte et al. (Eds.), *Global Warming of 1.5°C. An IPCC Special Report*.
7. Allam, R. J., Palmer, M. R., Brown, G. W., Fetvedt, J., Freed, D., Nomoto, H., & Itoh, M. (2017). High-efficiency supercritical carbon dioxide power cycle with inherent carbon capture. *Journal of Cleaner Production*, 82, 96–102.
8. Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N. & Fennell, P. S. (2014). Carbon capture and storage update. *Energy & Environmental Science*, 7(1), 130–189.
9. Keith, D. W., Holmes, G., St. Angelo, D., & Heidel, K. (2018). A process for capturing CO₂ from the atmosphere. *Joule*, 2(8), 1573–1594.
10. Lackner, K. S., Brennan, S., Matter, J. M., Park, A.-H. A., Wright, A., & van der Zwaan, B. (2012). The urgency of the development of CO₂ capture and storage (CCS) technologies. *PNAS*, 109(33), 13156–1316
11. Metz, B., Davidson, O., de Coninck, H., Loos, M., & Meyer, L. (2005). *IPCC Special Report on Carbon Dioxide Capture and Storage*. Cambridge University Press.
12. Rubin, E. S., Davison, J. E., & Herzog, H. J. (2012). The cost of CO₂ capture and storage. *International Journal of Greenhouse Gas Control*, 11, 55–68.
13. Clean Air Task Force. (2024). New holistic review of major carbon capture and storage projects. Retrieved from <https://www.catf.us>.
14. Kumar, R., & Singh, P. (2024). Recent progress in carbon dioxide capture technologies: A review. ResearchGate. Retrieved from <https://www.researchgate.net>.
15. Pacific Northwest National Laboratory. (2024). Carbon capture and conversion to methane and methanol. Retrieved from <https://www.pnnl.gov>.
16. Springer. (2023). Review of carbon capture and storage technologies in selected industries. Retrieved from <https://link.springer.com>.

17. Gupta, S., Sharma, A., & Patel, R. (2022). A comprehensive review on recent advancements in absorption-based CO₂ capture. *MDPI Sustainability*, 15(7), 5827. Retrieved from <https://www.mdpi.com>.

18. Anderson, K., & Peters, G. (2016). The trouble with negative emissions. *Science*, 354(6309), 182-183.

19. Garcia, D., & Berghout, N. (2021). The social dimension of carbon capture and utilization: Opportunities and challenges for a just transition. *Climate Policy*, 21(5), 689-704.

20. Gupta, J., & van Asselt, H. (2019). Helping one another? The role of the climate regime in enhancing the equity and effectiveness of the global response to climate change. *Climate Policy*, 19(10), 1270-1281.

21. Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO₂ capture and utilization in mitigating climate change. *Nature Climate Change*, 7(4), 243-249.

22. Markusson, N., Dahl Gjefsen, M., Stephens, J. C., & Tyfield, D. (2017). The political economy of carbon capture and storage: An analysis of two decades of academic research. *WIREs Climate Change*, 8(4), e473.

23. Shue, H. (2017). *Climate justice: Vulnerability and protection*. Oxford University Press.

24. Deutz, S., & Bardow, A. (2021). How (carbon) negative is direct air capture? Life cycle assessment of an industrial direct air capture process. *ACS Sustainable Chemistry & Engineering*, 9(2), 1173-1181.

25. Fasihi, M., Efimova, O., & Breyer, C. (2020). Techno-economic assessment of CO₂ direct air capture plants. *Journal of Cleaner Production*, 224, 957-980.

26. Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., Mac Dowell, N., ... & Rayner, S. (2019). The technological and economic prospects for CO₂ utilization and removal. *Nature*, 575(7781), 87-97.

27. Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO₂ capture and utilization in mitigating climate change. *Nature Climate Change*, 7(4), 243-249.

28. Markusson, N., Dahl Gjefsen, M., Stephens, J. C., & Tyfield, D. (2018). The political economy of carbon capture and storage: An analysis of two decades of academic research. *WIREs Climate Change*, 8(4), e473.

29. Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., & Tzimas, E. (2016). Methanol synthesis using captured CO₂ as raw material: Techno-economic and environmental assessment. *Applied Energy*, 161, 718-732.

30. Rodriguez, C. R., Thomsen, T., Berntsson, T., & Normann, F. (2019). Techno-economic analysis of carbon capture and utilization for sustainable cement production. *Applied Energy*, 252, 113422.

31. Deutz, S., & Bardow, A. (2021). How (carbon) negative is direct air capture? Life cycle assessment of an industrial direct air capture process. *ACS Sustainable Chemistry & Engineering*, 9(2), 1173-1181.

32. Fasihi, M., Efimova, O., & Breyer, C. (2020). Techno-economic assessment of CO₂ direct air capture plants. *Journal of Cleaner Production*, 224, 957-980.

33. Garcia, D., & Berghout, N. (2021). The social dimension of carbon capture and utilization: Opportunities and challenges for a just transition. *Climate Policy*, 21(5), 689-704.

34. Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., Mac Dowell, N., ... & Rayner, S. (2019). The technological and economic prospects for CO₂ utilization and removal. *Nature*, 575(7781), 87-97.

35. Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO₂ capture and utilization in mitigating climate change. *Nature Climate Change*, 7(4), 243-249.

36. Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., & Tzimas, E. (2016). Methanol synthesis using captured CO₂ as raw material: Techno-economic and environmental assessment. *Applied Energy*, 161, 718-732.

37. Rodriguez, C. R., Thomsen, T., Berntsson, T., & Normann, F. (2019). Techno-economic analysis of carbon capture and utilization for sustainable cement production. *Applied Energy*, 252, 113422.

