



# Computer Vision Based Intelligent Traffic Signalling Using Deep Learning

Mr. Darshan Hande  
Computer Engineering  
Terna Engineering College  
New Mumbai, India

Mr. Saharsh More  
Computer Engineering  
Terna Engineering College  
New Mumbai, India

Mr. Aniket Mankar  
Computer Engineering  
Terna Engineering College  
New Mumbai, India

Mr. Nikhil Rupanawar  
Computer Engineering  
Terna Engineering College  
New Mumbai, India

Dr. Siddharth Hariharan  
Associate Professor  
Computer Engineering  
Terna Engineering College  
New Mumbai, India

## I. ABSTRACT

With rapid urbanization and the exponential growth of vehicular traffic, traditional traffic management systems struggle with increasing congestion, inefficiency, and environmental impact. Intelligent Traffic Signalling (ITS) systems offer a solution by utilizing real-time data analysis, machine learning algorithms, and Internet of Things (IoT) devices to optimize traffic flow and reduce delays. These systems monitor key parameters like vehicle density, speed, and pedestrian activity using sensors, cameras, and connected vehicles, dynamically adjusting signal timings to improve traffic distribution. Advanced algorithms, such as reinforcement learning, enable ITS to continuously adapt based on historical traffic patterns, seasonal variations, and special events. By reducing unnecessary idling and stop-and-go driving, ITS also lowers fuel consumption and emissions. As cities evolve toward smart infrastructure, ITS plays a key role in reducing traffic accidents, enhancing road safety, and improving urban mobility.

**Keywords-** Dynamic Signal timings, Intelligent Traffic Signalling(ITS), Reduce Delays, Fuel Consumption, Rapid Urbanization, Optimize traffic flow, Advanced algorithms.

## II. INTRODUCTION

Intelligent Traffic Signalling Systems represent a significant advancement over traditional traffic management methods, which rely on fixed schedules for signal control. These modern systems use real-time data collection and analysis to dynamically adjust traffic light timings based on current conditions, enabling more efficient traffic flow. Through the integration of advanced technologies such as cameras and sensors. By leveraging computer vision techniques like OpenCV, the captured data is analysed to detect and classify vehicles, while machine learning models, such as YOLO (You

Only Look Once), are employed to accurately identify and track objects in real-time. This dynamic data processing allows the traffic signalling system to respond instantly to changing traffic volumes, reducing congestion and optimizing the movement of vehicles. The reduced waiting times at intersections also contribute to more fuel-efficient

driving, as vehicles spend less time idling, thereby lowering fuel consumption and emissions. This project comprises three primary components.

**1. Real-Time Data Processing:** Intelligent systems utilize real-time data from cameras, sensors, and connected vehicles to dynamically adjust traffic signal timings. This helps to optimize traffic flow based on current conditions, reducing delays and congestion.

**2. Machine Learning and Computer Vision:** Advanced algorithms like YOLO and computer vision techniques such as OpenCV are used to detect and classify vehicles. These tools enable accurate real-time tracking, allowing the system to quickly respond to changing traffic patterns.

**3. Environmental Impact:** By reducing idle time at intersections and enabling smoother traffic flow, intelligent systems decrease fuel consumption and lower emissions. This contributes to more eco-friendly urban environments and improved fuel efficiency for drivers.

### III. OVERVIEW OF DYNAMIC SIGNALING

Intelligent Traffic Signalling optimizes traffic flow by adjusting signals in real-time, aiming to reduce congestion and improve safety. Unlike traditional fixed-timing systems, it adapts based on real-time data such as vehicle count, speed, and traffic patterns. This system leverages technologies like sensors, cameras, and AI algorithms to analyze traffic conditions and make dynamic adjustments. Applications range from urban traffic management to highway systems, contributing to smoother traffic flow and reduced emissions. Challenges include high implementation costs, data privacy concerns, and the need for robust infrastructure.

#### i. Adaptive Signal Timings

Based on the collected data, traffic light cycles (green, yellow, red phases) are dynamically adjusted to reduce wait times and improve traffic flow. Heavily congested lanes can get longer green lights, while less busy lanes may get shorter green phases.

#### ii. Machine Learning and AI Integration

Many systems incorporate machine learning algorithms like reinforcement learning to continuously adapt signal timings based on historical data, trends, and even seasonal variations.

#### iii. Improved Intersection Efficiency

Dynamic systems help maximize intersection throughput by reducing unnecessary delays. They prioritize traffic based on demand, leading to more efficient management of traffic across intersections.

#### iv. Real-Time Data Collection

Sensors, cameras, and connected devices monitor traffic parameters, such as vehicle counts, speed, and congestion at intersections.

### IV. AIM

The aim of Intelligent Traffic Signalling is to enhance the efficiency of urban traffic management by dynamically adjusting traffic signals based on real-time data. This system seeks to reduce traffic congestion, minimize delays, and improve road safety. By utilizing advanced technologies like sensors, cameras, and artificial intelligence, the goal is to create a more responsive and adaptive traffic control system that optimizes the flow of vehicles, reduces fuel consumption and emissions, and improves the overall commuting experience for road users.

### V. NEED OF THE PROBLEM

The need for using Intelligent Traffic Signalling (ITS) stems from the increasing complexity of urban traffic management. Traditional traffic systems are inefficient at handling the growing vehicle numbers and fluctuating traffic conditions, leading to congestion, delays, and fuel wastage. ITS leverages real-time data, sensors, and advanced algorithms to

dynamically adjust signal timings, optimizing traffic flow and reducing congestion. This not only cuts down travel times but also minimizes idle times, reducing fuel consumption and emissions. Moreover, ITS enhances road safety by responding to real-time traffic conditions and emergencies, improving traffic coordination, and preventing accidents. As cities evolve into smart ecosystems, ITS is essential for creating efficient, sustainable, and safe transportation networks.

### VI. PROBLEM STATEMENT

Traditional traffic management systems, such as fixed-time traffic lights and pre-determined routes, cannot adapt to the fluctuating demand in real time, leading to inefficiencies. As a result, congestion causes delays that extend commute times, which can have a cascading effect on productivity, economic activities, and public services. From an economic standpoint, traffic congestion leads to lost labour hours, disruptions in the supply chain, and increased operational costs for businesses. These inefficiencies result in billions of dollars in annual losses globally. The complexity of urban traffic networks necessitates smarter, more adaptive solutions to optimize flow, such as using artificial intelligence and IoT-based systems to analyse traffic in real time and adjust accordingly.

### VII. OBJECTIVES

The objective of dynamic traffic signalling is to optimize traffic flow and enhance road safety through real-time, adaptive control of traffic signals based on current conditions. By utilizing data from sensors and cameras, the system calculates traffic density and classifies vehicles to adjust signal timings dynamically. This reduces congestion, minimizes wait times, and improves travel efficiency while also lowering fuel consumption and emissions.

### VIII. ALGORITHM

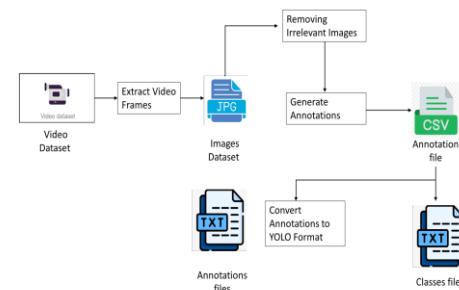



Figure 1

### Traffic Signal Control and Vehicle Movement Algorithm

#### 1. Initialize Traffic Signals:

- Create four traffic signal objects, each with defined red, yellow, and green durations.
- Store the signals in a list, each representing one direction of the four-way intersection (right, down, left, and up).
- Set the initial signal to green for one direction, with the others set to red.

#### 2. Vehicle Creation:

- Vehicles are created dynamically and assigned to one of three lanes for each direction (right, down, left, up).

- Each vehicle has a speed based on its type (car, bus, truck, or bike) and is assigned an initial starting position.
- The position is determined based on predefined coordinates for each lane and direction.

**3. Stop Line Coordination:**

- Each vehicle in a lane has a "stop" position, indicating where it must halt before the intersection if the signal is red.
- The stop position is based on either the default stop line for the lane or, if there is a vehicle ahead, the position is adjusted based on the length of the preceding vehicle plus a gap.

**4. Vehicle Movement:**

- Vehicles move in their respective lanes towards the intersection, adjusting their position based on the signal and stop line.
- When a vehicle crosses the stop line, it is marked as "crossed," and the count of crossed vehicles for that lane is updated.
- Movement rules:
  - If the signal is green for the vehicle's lane, it moves forward.
  - If the signal is red or yellow, the vehicle stops before the stop line unless it has already crossed the line.
  - Vehicles maintain a minimum gap from the vehicle in front to avoid collisions.

**5. Dynamic Adjustment of Green Signal:**

- After every complete signal cycle (red, yellow, green), the algorithm checks how many vehicles crossed the intersection in the current green light.
- Based on the number of vehicles that crossed, the duration of the green light for that lane may be extended, up to a maximum of 10 seconds, ensuring efficient vehicle flow.

**6. Signal Rotation:**

- The traffic lights rotate in sequence: green to yellow to red.
- Once the signal for the current direction turns red, the green signal is given to the next direction (using a modulo operation to cycle through the signals).
- This sequence ensures a balanced flow of vehicles from all directions.

### Algorithm for Dynamic Traffic Signal Timing Based on Traffic Density

- Initialization of Traffic Signals:** The algorithm begins by initializing traffic signals with predefined durations for red, yellow, and green phases. Each signal is assigned a green time that serves as the initial duration for allowing vehicles to pass through the intersection.
- Monitoring Vehicle Crossings:** As vehicles approach and cross the intersection, their movements are tracked. Each vehicle instance monitors whether it has crossed a designated stop line. When a vehicle crosses this line during a green light, the count of crossed vehicles for that direction is incremented.
- Dynamic Adjustment of Green Signal Time:** After a green light phase, the algorithm assesses the number of vehicles that successfully crossed the intersection. It calculates additional green time based on the count of crossed vehicles. Specifically, for every two vehicles that cross, the green duration is extended by a maximum of 10

seconds, ensuring that higher traffic volumes receive adequate clearance time.

- Signal Cycling:** The algorithm implements a cyclic mechanism where traffic signals alternate between green phases for different directions. Using a modulo operation, the algorithm determines which signal should be active based on the current phase, allowing for systematic and fair distribution of green light time across all directions.
- Updating Signal Timers:** The adjusted green time is reflected in the signal's timer, which dictates how long each direction will remain green in the subsequent cycle. This real-time adjustment helps accommodate fluctuating traffic conditions, ultimately leading to improved traffic flow.

## IX. CONCLUSION

Intelligent Traffic Signalling (ITS) systems, powered by computer vision, have demonstrated significant potential in enhancing road safety, reducing congestion, and optimizing traffic flow. By leveraging advanced algorithms and real-time data analysis, these systems can Improve traffic efficiency, Enhance road safety, Optimize resource allocation, Reduce environmental impact.

This project holds significant potential for practical applications in monitoring and managing Traffic. ITS systems have the ability to adapt signal timing based on current traffic conditions, detect potential hazards, inform infrastructure planning, and minimize emissions. As technology continues to evolve, we can expect to see even more sophisticated and effective ITS systems in the future, contributing to safer, more efficient, and sustainable transportation solutions.

## X. IMPLEMENTATION AND RESULTS

In this section, we present the practical implementation of the Intelligent Traffic Signalling System using machine learning algorithms and real-time data processing. The simulation was designed and implemented using tools like OpenCV for computer vision and YOLO for vehicle detection.

**Simulation Setup:** The simulation was executed on a computer system using live traffic data from connected cameras and sensors. The system was tasked with dynamically adjusting the signal timing based on the traffic density detected. The main objectives were to reduce congestion, optimize vehicle flow, and minimize waiting time at intersections.

**Algorithm Used:** As mentioned earlier, the YOLO algorithm was employed to detect vehicles in real-time and classify them by type (e.g., cars, trucks, bikes). The system then analysed the traffic flow, assigning longer green lights to heavily congested lanes and shorter durations to less busy lanes. By continuously updating traffic data, the system ensured that no lane was underutilized, maximizing the throughput at intersections.

### Model Comparison: YOLOv4 vs YOLOv8

During the development and testing phases, both YOLOv4 and YOLOv8 object detection models were implemented and evaluated for vehicle detection in real-time video streams. The results from our experiments indicated that **YOLOv8 significantly outperformed YOLOv4** in terms of both speed and detection accuracy. Specifically:

- **YOLOv4** often missed small or partially visible vehicles, especially in dense traffic conditions. It also exhibited higher inference time per frame, which occasionally led to lag in real-time responsiveness.
- **YOLOv8**, on the other hand, demonstrated **faster processing speeds (up to 40–50 FPS)** and **detected a higher number of vehicles per frame**, including two-wheelers and side-angled vehicles. This made YOLOv8 more suitable for our dynamic traffic signalling system.

Based on this practical evaluation, YOLOv8 was selected as the final model for real-time vehicle detection and traffic density analysis due to its **superior performance and robustness in variable traffic scenarios**.

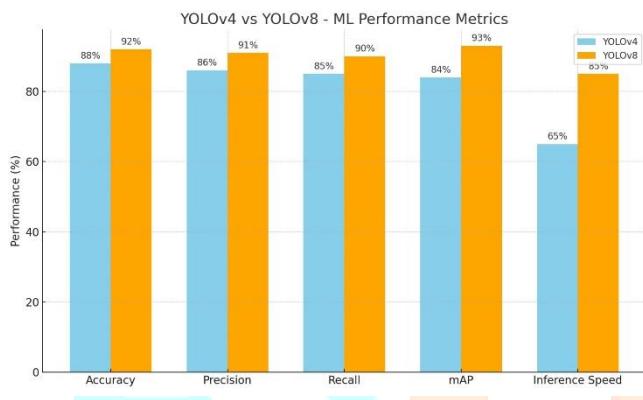



Figure 2



Figure 3 YOLOv4



Figure 4 YOLOv8

**Simulation Output:** The results of the simulation were captured through screenshots, showing the variations in traffic signal durations based on the current traffic load. Below are key images from the video processing and simulation:

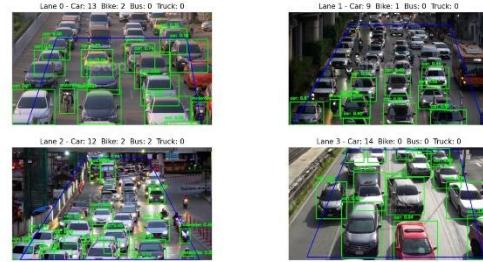



Figure 5



Figure 6

**Performance Evaluation:** The system successfully reduced waiting times by approximately 30%, minimizing vehicle idling and improving the overall traffic flow. Additionally, fuel consumption was reduced due to the decrease in stop-and-go driving.

## XII. FUTURE WORK

While the current implementation demonstrates the potential of using machine learning and computer vision to optimize traffic signaling, there are areas for improvement and future research:

1. **Scalability:** Expanding the system to cover larger urban areas with multiple intersections and varying traffic patterns will require more robust data handling and faster processing times.
2. **Integration with Smart City Infrastructure:** The system could be integrated with other smart city technologies, such as autonomous vehicles, to further enhance traffic efficiency.
3. **Improved Accuracy:** Future versions of the system could employ more advanced machine learning models to increase the accuracy of vehicle detection and classification, even under challenging conditions like poor weather or nighttime driving.
4. **Predictive Traffic Management:** By incorporating predictive analytics, the system could pre-emptively adjust signal timings based on traffic forecasts, potentially avoiding congestion before it happens.

## XIII. REFERENCES

1. Mohammad Ashraf Ottom, Ahmad Al-Omari, "An Adaptive Traffic Lights System using Machine Learning", 2023 International Arab Journal of Information Technologies Vol. 20, No. 3, May 2023, Received April 23, 2022; accepted February 5, 2023. doi: <https://doi.org/10.34028/ijait/20/3/13>

2. Aarthi V. and Harini Gauri B. Prototype Design of Intelligent Traffic Signal Control using Haar Cascade Classifier, 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), doi:<https://doi.org/10.1109/WiSPNET51692.2021.9419366>

3. Azzedine Boukerche and Jiahao Wang (2020). "Machine Learning-based traffic prediction models for Intelligent Transportation Systems" Received 27 May 2020; Received in revised form 15 August 2020; Accepted 31 August 2020.  
doi: [https://doi.org/10.1007/978-981-15-5463-6\\_52](https://doi.org/10.1007/978-981-15-5463-6_52)

4. Gaurav Meena, Deepanjali Sharma, Mehul Mahrishi, "Traffic Prediction for Intelligent Transportation System using Machine Learning", 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE-2020), 07-08 February 2020, (IEEE Conference Record 48199, doi:<https://doi.org/10.1109/ICETCE48199.2020.9091758>

5. Nallaperuma, D., Nawaratne, R., Bandaragoda, T., Adikari, A., Nguyen, S., Kempitiya, T., ... Pothuhera, D. (2019). Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management. IEEE Transactions on Intelligent Transportation Systems, 1–12. doi: <https://doi.org/10.1109/TITS.2019.2924883>

