IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Revolutionizing Waste Collection And Disposal In Cities Using Iot

Mr. N.NAGA RAJU 1, THUPAKULA ANUSHA 2, TRIPURANENI PRATHYUSHA 3, SUVARANAKANTI PARDHA SARADHI 4, BORRA SHARON KUMAR 5

#1 Assistant Professor in Department of Information Technology, Dhanekula Institute of Engineering and Technology, Vijayawada.

#2#3#4#5 B.Tech with Information Technology in Dhanekula Institute of Engineering and Technology, Vijayawada.

ABSTRACT_ Linking smart things to the internet, Internet of Things (IoT) It can allow more safe data sharing. Smart City and Internet of Things technology's fast changes are helping urban planning to guarantee sustainable cities and living conditions. IOT makes life easier and more efficient.

The current system requires human effort to check every time and manually manages garbage containers. One of the main problems in the cities is the monitoring and control of garbage. The suggested system automates this procedure. Here we are employing fixed over the dustbins ultrasonic sensors. When bins are full of rubbish, the distance between the sensors and the waste will be reduced. Every time it will measure the level and compute the distance. Soil moisture sensor for detect the wet content in bin and this live data is delivered to Arduino. Data processed by Arduino will be sent to the cloud server via GSM/GPRS. By means of this website, the user may view the information and prepare accordingly; which bin requires attention and specific action will be performed to clean the bins.

1.INTRODUCTION

With the rapid advancement of technology, linking smart devices to the internet has become a revolutionary step in modern urban development. This interconnected network, known as the Internet of Things (IoT), enables real-time data collection, communication, and automation of various processes, leading to improved efficiency and enhanced decision-making. One of the most impactful applications of IoT is in the development of smart cities, where cutting-edge solutions are implemented to address urban challenges and ensure sustainable living conditions.

One of the major challenges in urban areas is waste management. Traditional waste collection systems rely on manual monitoring and periodic collection schedules, which are often inefficient and resource-intensive. The existing system requires human intervention to check garbage bins frequently, leading to delays, overflowing bins, and unnecessary fuel consumption for collection trucks. This results in environmental pollution, unpleasant living conditions, and inefficient use of municipal resources.

To tackle these issues, a smart waste management system using IoT is proposed. The system aims to automate garbage monitoring and collection using sensor-based technology. Ultrasonic sensors will be fixed over the dustbins to measure the waste level by detecting the distance between the sensor and the waste. When the bin is full, the system will trigger an alert, indicating the need for collection. Additionally, a soil moisture sensor will be integrated to determine the wet content in the bin, which helps in the proper segregation and disposal of waste.

The collected real-time data will be processed using an Arduino microcontroller and transmitted to a cloud-based platform through GSM/GPRS communication. This data will then be accessible to municipal authorities via a web-based dashboard, allowing them to monitor bin status, plan waste collection routes efficiently, and prioritize bins that require immediate attention. By implementing this automated system, cities can achieve better resource utilization, reduce waste overflow, lower collection costs, and contribute to a cleaner, healthier environment.

This IoT-based solution not only makes life easier and more efficient but also plays a crucial role in transforming cities into smart, sustainable, and technologically advanced urban spaces.

2.LITERATURE SURVEY

Hong et al. [1] the suggested system was founded on waste data level of garbage bins in metropolitan regions. The data was transmitted via the internet for analysis and distribution. Every day new data was gathered, and on that ground the rate of waste level was planned to predict the overflow of bins before has optional that replacing SGS Smart Garbage Sensor instead of RFID waste collecting system helps to improve their energy efficiency up to 26% and can reduce the food waste decrease. SGS has put SGBs Smart Garbage Bins inside to manage the system's energy efficiency.

Pavel Masek et al. [2] has proposed that it offers end-to-end security and privacy based on dynamic federation smart city platform. Its advantages are that it has strong dependability and has resilience on system breakdown over a certain month. It emphasises the gathering of ontological method accomplishments and wastage.

Lozano Murciegoet.al [3] has options that to collect the dustbins being filled using a truck. The main advantage is that it lowers the fuel expense of the trucks quite than driving an extended distance it makes the path simpler and easier to reach the dustbin employing route optimisation.

Anagnostopoulos et al. [4] has suggested that it initially begins with a presumption that the smart city must include the IoT foundation. Dynamic scheduling is used. It is founded on the fact that the rubbish will be made only when the dustbins are completely filled or the maximum capacities are reached. Abarca Guerrero et al. [6] describes the data indicating that rising population levels and fast expanding urbanisation cause the first countries to encounter a well-known factor influencing their waste management systems. The waste management collaborators are various such as household, industrial sectors, educational and research institutions, etc.

3.PROPOSED SYSTEM

By combining a glove fitted with flex sensors to identify hand motions, an Arduino microcontroller to interpret the data, and Zigbee modules for wireless communication, the proposed system provides a modern alternative. A Raspberry Pi gets the transferred data, which it processes into text on an LCD and voice commands played via a speaker. Compact, portable, and affordable, this system allows dynamic, real-time communication without using middlemen. It enables mute people to properly express tailored messages, hence closing communication gaps in many settings.

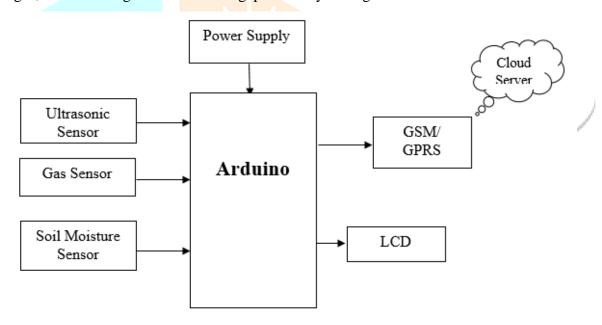


Fig 1:Block Diagram

3.1 IMPLEMENTATION

3.1.1 ARDUINO

The Arduino microcontroller is an easy to use yet powerful single board computer that has gained considerable traction in the hobby and professional market. The Arduino is open-source, which means hardware is reasonably priced and development software is free. This guide is for students in ME 2011, or students anywhere who are confronting the Arduino for the first time. For advanced Arduino users, prowl the web; there are lots of resources.

This is what the Arduino board looks like.

Fig 2:Arduino

The Arduino programming language is a simplified version of C/C++. If you know C, programming the Arduino will be familiar. If you do not know C, no need to worry as only a few commands are needed to perform useful functions.

3.1.2 Ultrasonic sensor:

An ultrasonic sensor is an electronic device that measures the distance of a target object by emitting ultrasonic sound waves, and converts the reflected sound into an electrical signal. Ultrasonic waves travel faster than the speed of audible sound (i.e., the sound that humans can hear). Ultrasonic sensors have two main components: the transmitter (which emits the sound using piezoelectric crystals) and the receiver (which encounters the sound after it has travelled to and from the target).

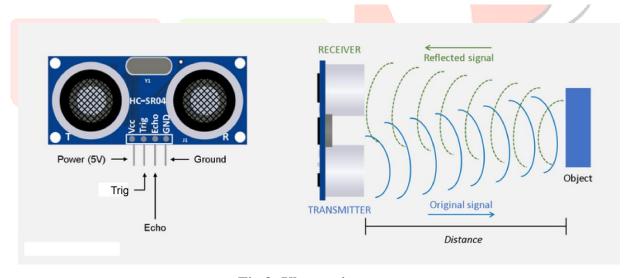


Fig 3: Ultrasonic sensor

3.1.3 Soil Moisture Sensor:

One type of sensor used to measure the volumetric content of water in the soil is the soil moisture sensor. The straight gravimetric dimension of soil moisture has to be removed; drying and sample weighting follow. These sensors gauge the volumetric water content indirectly using many other soil characteristics including dielectric constant, electrical resistance, neutron interaction, and moisture content replacement.

Ecological elements like temperature, kind of soil, otherwise electrical conductivity should guide the relationship between the computed property and soil moisture. The moisture of soil as well as mostly used in agriculture and remote sensing within hydrology might affect the microwave emission reflected.

Soil Moisture Sensor Pin Configuration

The FC-28 soil moisture sensor includes 4-pins

Fig 4: Soil Moisture Sensor

3.1.4 **GSM**

A GSM modem is a device that can be either a mobile phone or a modem device allowing a computer or any other processor to communicate via a network. A GSM modem runs across a network range subscribed by the network operator and needs a SIM card to function. A computer can be connected to it via serial, USB or Bluetooth connection.

A GSM modem can also be a regular GSM mobile phone with the correct cable and software driver to link to a serial port or USB port on your computer. Usually, a GSM modem is preferred over a GSM mobile phone. In transaction terminals, supply chain management, security applications, weather stations, and GPRS mode remote data logging, the GSM modem offers wide range of uses.

Fig 5:GSM

GPRS Modules are one of the commonly used communication modules in embedded systems. A GPRS Module is used to enable communication between a microcontroller (or a microprocessor) and the GPRS Network. Here, GSM stands for Global System for Mobile Communication and GPRS stands for General Packet Radio Service.

3.1.5 LCD:

The invention, LCD (Liquid Crystal Display), is used by various smaller computers and scratch pad displays. Like technology for gas-plasma and light-producing diode (LED), LCDs let screens be far more thinner than technology for cathode beam tube (CRT). Operating on the concept of blocking light, LCDs consume significantly less power than gas displays and LED screens.

A LCD is either built utilising an uninvolved lattice or a display network for dynamic framework presentation. The dynamic framework LCD is also sometimes called a meagre film transistor (TFT) display. Across the network, the passive LCD grid has a matrix of conductors at each pixel junction. Two lattice conductors transmitting current control any pixel's lighting. A functional system has a transistor at every pixel crossing point, so it needs less current to change the brightness of a pixel.

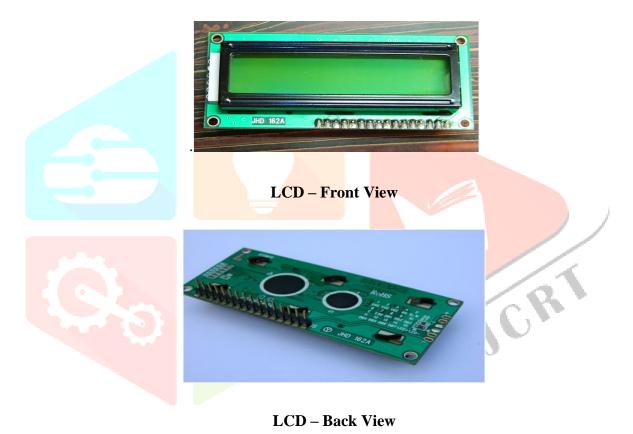


Fig 6:LCD

3.1.6 MQ2 sensor:

Monitoring of gases produced is quite crucial in present technology context. Monitoring of gases is extremely vital from residential appliances like air conditioners to electric chimneys and safety systems at businesses. Such systems rely heavily on gas sensors. Small like a nose, gas sensors spontaneously react to the gas present, so maintaining the system informed about any changes in the concentration of molecules at gaseous state.

Depending on the sensitivity levels, type of gas to be sensed, physical size and many other criteria, gas sensors come in broad specifications. This Insight addresses a methane gas sensor capable of detecting gases like ammonia that could be generated from methane. A gas first ionises into its components when it

encounters with this sensor; then, the sensing element adsorbs it. The potential difference on the element created by this adsorption is sent to the processor unit via output pins in form of current.

Fig 7: MQ2 sensor

The gas sensor module consists of a steel exoskeleton under which a sensing element is housed. This sensing element is subjected to current through connecting leads. This current is known as heating current through it, the gases coming close to the sensing element get ionized and are absorbed by the sensing element. This changes the resistance of the sensing element which alters the value of the current going out of it

4.RESULTS AND DISCUSSION

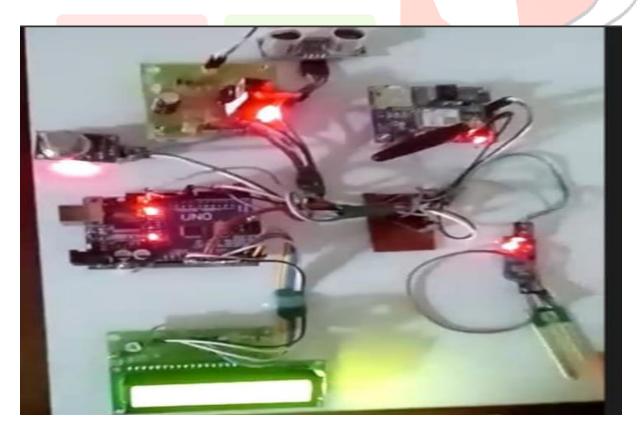


Fig 8:Kit working

By automating the monitoring of trash bins, the suggested IoT-based waste management system minimises the need for manual inspections. The technology guarantees real-time data collecting by using ultrasonic sensors to monitor garbage levels and soil moisture sensors to find wet waste. An Arduino processes this data and sends it to a cloud server using GSM/GPRS. A web interface lets users see bin status, hence allowing quick planning and timely garbage disposal. The program helps to clean up areas and guides the creation of smart, sustainable cities.

5.CONCLUSION

Ultimately, the inclusion of IoT technology into waste management systems provides a notable enhancement above conventional human techniques. This system effectively tracks the waste levels and wet content in garbage bins by automating the process using ultrasonic and soil moisture sensors. Processed by an Arduino and sent to a cloud server, the real-time data offers users quick information on bin status via an easily available webpage. This automated system improves garbage management efficiency as well as smart urban planning, hence helping to create more sustainable and clean cities.

REFERENCES

- [1] Prof. R.M.Sahu, Akshay Godase, Pramod Shinde, Reshma Shinde, "Garbage and Street Light Monitoring System Using Internet of Things" INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING, ISSN (Online) 2321 – 2004, Vol. 4, Issue 4, April 2016.
- [2] Kanchan Mahajan, Prof.J.S.Chitode, "Waste Bin Monitoring System Using Integrated Technologies", International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 7, July 2014.
- [3] Md. Shafiqul Islam, M.A. Hannan, Maher Arebey, Hasan Basri, "An Overview For Solid Waste Bin Monitoring System", Journal of Applied Sciences Research, ISSN 181-544X, vol.5,lssue4, February 2012.

[4] Twinkle sinha, k.mugesh Kumar, p.saisharan, "SMART DUSTBIN", International Journal of Industrial Electronics and Electrical Engineering, ISSN: 2347-6982 Volume-3, Issue-5, May2015.

[5] Richu Sam Alex, R Narciss Starbell, "Energy Efficient Intelligent Street Lighting System Using ZIGBEE and Sensors", International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-3, Issue-4, April 2014

Author's Profiles

Mr. NALLURI NAGARAJU is presently working as an Assistant Professor in the Department of Information Technology at Dhanekula Institute of Engineering and Technology, specializing in computer networking. With over 2 years of teaching experience, he has played a vital role in mentoring and guiding students in the field of IT. He holds a strong academic background and has contributed significantly through his expertise in artificial intelligence.

Mail ID: nallurinagaraju143@gmail.com

THUPAKULA ANUSHA is a B.Tech student specializing in Information Technology at Dhanekula Institute of Engineering and Technology, Vijayawada. She is proficient in Python, C, and C++ . She completed internship in ChatGPT/Generative AI, addressing ethical concerns and working on image classification using advanced machine learning models like SVM, KNN, MLP, and CNN and other internships like AI&ML, Full Stack Development. She is also skilled in SQL and has a strong foundation in data analysis, automation, and software development.

Mail ID: anushanaidu0703@gmail.com

TRIPURANENI PRATHYUSHA is a B.Tech student specializing in Information Technology at Dhanekula Institute of Engineering and Technology, Vijayawada. She completed internship in ChatGPT/Generative AI, addressing ethical concerns and working on image classification using advanced machine learning models like SVM, KNN, MLP, and CNN and other internships like AI&ML, Full Stack Development. She has a strong foundation in Python, JAVA, SQL and web development technologies like HTML, CSS, and JavaScript.

Mail ID: prathyushatripuraneni02@gmail.com

SUVARANAKANTI PARDHA SARADHI is a B. Tech student specializing in Information Technology at Dhanekula Institute Of Engineering And Technology. He is passionate about exploring emerging technologies and continuously enhancing his skills through hands-on challenges. He has completed internships in Full Stack Development, AI & ML, CLOUD. He is skilled in java, python and sql and levaraging in new technologies.

Mail ID: pardhasaradhi1023@gmail.com

BORRA SHARON KUMAR is a B.Tech student specializing in Information Technology at Dhanekula Institute of Engineering and Technology, Vijayawada. He has a strong foundation in programming and is proficient in Python, C, and C++. He is skilled in data analysis and automation, continuously exploring advanced AI techniques to develop innovative solutions. His passion for technology and problem-solving drives him to enhance his skills in the ever-evolving field of computer science.

Mail ID: burrasharon@gmail.com

